ANSYS中所用主泊松比prxy(大泊松比)和次泊松比NUXY(小泊松比)的关系
- 格式:doc
- 大小:24.50 KB
- 文档页数:1
如前所述,在做 Full积分法的瞬态分析时,用阻尼比定义的阻尼都被 ANSYS 程序忽略掉了,所以同一个模型采用 full 法和模态叠加法的瞬态分析,ANSYS 计算采用的阻尼可能不一样,造成结果也有差别。
以下是结构分析中 ANSYS 常用的几种阻尼输入的命令流演示。
1)用 MP,damp 来输入粘滞阻尼DAMPRATO = 0.025 ! 已知粘滞阻尼的阻尼比LOSSMODM = 2*DAMPRATO ! 粘滞阻尼的阻尼比乘以2 是等价的材料阻尼系数(日本规范的“减衰系数”)CRITFREQ = 2.6 ! 此为粘性阻尼等效为材料阻尼时的换算频率MP_BETAD = DAMPRATO/(acos(-1)*CRITFREQ) ! 粘滞阻尼与频率有关/prep7mp,damp,1,MP_BETAD !定义viscous damping,与频率有关/soluantype,modalmodopt,lanb,1! 要使模态计算考虑阻尼的影响,必须用材料阻尼,材料阻尼必须在求解前指定! mxpand,,,,yes, 选项!阻尼比输入只在对求出的振型求反应再叠加中有用,! ansys 不会把阻尼比还原计算为阻尼阵 [C] 的mxpand,1,,,yes,,,Solve2)用 MP,Damp 输入材料阻尼DAMPRATO=0.025LOSSMODM=2*DAMPRATO ! 材料阻尼系数,书上给的一般是LOSSMODM/prep7mp,damp,1,DAMPRATO !常数,如果已知的是材料阻尼系数LOSSMODM,就要除以2 /soluantype,modal ! 使用模态叠加法modopt,lanb,1! importantmxpand,1,,,yes,,,,Solve3)用 BETAD 输入粘滞阻尼(振型叠加法)! MSUP method with BETAD! BETAD is damping_ratio/pi*f, even for MSUPDAMPRATO=0.025 ! 阻尼比LOSSMODM=2*DAMPRATO !等效的材料阻尼系数/prep7! mp,damp,1,DAMPRATOBETAD,DAMPRATO/(acos(-1)*442) ! 注意此公式! 442 是你给定的频率值/soluantype,modal !模态分析modopt,lanb,1! importantmxpand,1,,,yeslumpm,on,,,,solve/soluantype,harmic !谐分析hropt, msuphrout, on, offharfrq, FREQBEGN, FREQENDG,,,solve4)使用 DMPRAT 定义的整体结构的常数阻尼比(模态叠加法)! MSUP method with DMPRAT! shows that DMPRAT is damping ratioDAMPRATO=0.025 !全结构阻尼比是0.025LOSSMODM=2*DAMPRATO/prep7!mp,damp,1,DAMPRATO/soluantype,modal ! 先做无阻尼振型分解solve/soluantype,harmichropt,msuphrout,on,offharfrq,FREQBEGN,FREQENDGnsubst,NUM_STEPkbc,1dmprat,DAMPRATO ! 在这里定义此阻尼比,常数,,,,,,solve5)用 MP,DAMP 定义粘性阻尼做 FULL 瞬态分析! 粘性阻尼随频率增加而增加,高频衰减快! Full method with MP,DAMP! shows that MP,DAMP with FULL is damping_ratio/pi*f! As freq increases, damping is hugeDAMPRATO=0.025LOSSMODM=2*DAMPRATOCRITFREQ=480MP_BETAD=DAMPRATO/(acos(-1)*CRITFREQ) ! 注意此公式/prep7mp,damp,1,MP_BETAD6)用 DMPRAT 定义全结构常数阻尼比! Full method with DMPRATDAMPRATO=0.025LOSSMODM=2*DAMPRATOCRITFREQ=480MP_BETAD=DAMPRATO/(acos(-1)*CRITFREQ)/prep7et,1,1! mp,damp,1,MP_BETAD ! 如果用材料阻尼形式输入,就这样输入dmprat,DAMPRATO !常数阻尼比/soluantype,modal !带阻尼的振型分解modopt,lanb,3! importantmxpand,3,,,yeslumpm,on,,,solve/soluantype,harmichropt,full ! full harmonic analysis6.单元阻尼许多单元具有单元阻尼,单元阻尼都是在相关单元数据中输入。
ANSYS结构分析单元功能与特性/可以组成一一些命令,一般是一种总体命令(session),三十也有特殊,比如是处理/POST1! 是注释说明符号,,与其他软件的说明是一样的,ansys不作为命令读取,* 此符号一般是APDL的标识符,也就是ansys的参数化语言,如*do ,,,*enddo等等NSEL的意思是node select,即选择节点。
s就是select,选择。
DIM是定义数组的意思。
array 数组。
MP命令用来定义材料参数。
K是建立关键点命令。
K,关键点编号,x坐标,y坐标,z坐标。
K, NPT, X, Y, Z是定义关键点,K是命令,NPT是关键点编号,XYZ是坐标。
NUMMRG, keypoint 用这个命令,要保证关键点的位置完全一样,只是关键点号不一样的才行。
这个命令对于重复的线面都可以用。
这个很简单,压缩关键。
Ngen 复制节点e,节点号码:这个命令式通过节点来形成单元NUMCMP,ALL:压缩所有编号,这样你所有的线都会按次序重新编号~你要是需要固定的线固定的标号NSUBST,100,500,50:通过指定子步数来设置载荷步的子步LNSRCH线性搜索是求解非线性代数方程组的一种技巧,此法会在一段区间内,以一定的步长逐步搜索根,相比常用的牛顿迭代法所要耗费的计算量大得多,但它可以避免在一些情况下牛顿迭代法出现的跳跃现象。
LNSRCH激活线性搜索PRED 激活自由度求解预测NEQIT指定一个荷载步中的最大子步数AUTOTS 自动求解控制打开自动时间步长.KBC -指定阶段状或者用跳板装载里面一个负荷步骤。
SPLINE:P1,P2,P3,P4,P5,P6,XV1,YV1,ZV1,XV6,YV6,ZV6(生成分段样条曲线)*DIM,Par,Type,IMAX,JMAX,KMAX,Var1,Var2,Var3(定义载荷数组的名称)【注】Par: 数组名Type:array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tableIMAX,JMAX,KMAX各维的最大下标号Var1,Var2,Var3 各维变量名,缺省为row,column,plane(当type为table时)/config是设置ansys配置参数的命令格式为/CONFIG, Lab, V ALUELab为参数名称value为参数值例如:/config,MXEL,10000的意思是最大单元数为10000杆单元:LINK1、8、10、11、180梁单元:BEAM3、4、23、24,44,54,188,189管单元:PIPE16,17,18,20,59,602D实体元:PLANE2,25,42,82,83,145,146,182,1833D实体元:SOLID45,46,64,65,72,73,92,95,147,148,185,186,187,191壳单元:SHELL28,41,43,51,61,63,91,93,99,143,150,181,208,209弹簧单元:COMBIN7,14,37,39,40质量单元:MASS21接触单元:CONTAC12,52,TARGE169,170,CONTA171,172,173,174,175,178矩阵单元:MATRIX27,50表面效应元:SURF153,154粘弹实体元:VISCO88,89,106,107,108,超弹实体元:HYPER56,58,74,84,86,158耦合场单元:SOLID5,PLANE13,FLUID29,30,38,SOLID62,FLUID79,FLUID80,81,SOLID98,FLUID129,INFIN110,111,FLUID116,130界面单元:INTER192,193,194,195显式动力分析单元:LINK160,BEAM161,PLANE162,SHELL163,SOLID164,COMBI16杆单元单元名称简称节点数节点自由度特性备注LINK1 2D杆 2 Ux,Uy EPCSDGB常用杆元LINK8 3D杆Ux,Uy,Uz EPCSDGBLINK103D仅受拉或仅受压杆EDGB模拟缆索的松弛及间隙LINK11 3D线性调节器EGB模拟液压缸和大转动LINK180 3D有限应变杆EPCDFGB 另可考虑粘弹塑性E-弹性(Elasticity),P-塑性(Plasticity),C-蠕变(Creep),S-膨胀(Swelling),D-大变形或大挠度(Large deflection),F-大应变(Large strain)或有限应变(Finite strain),B-单元生死(Birth and dead),G-应力刚化(Stress stiffness)或几何刚度(Geometric stiffening),A-自适应下降(Adaptive descent)等。
ANSYS中几个概念解释杨氏模量弹性模量剪切模量体积模量强度刚度泊松比杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度,泊松比“模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标。
杨氏模量(Young'sModulus )——杨氏模量就是弹性模量,这是材料力学里的一个概念。
对于线弹性材料有公式σ(正应力)=E ε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
杨(ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。
钢的杨氏模量大约为2×1011N?m -2,C30混凝土是3.00×1010N?m -2。
弹性模量(ElasticModulus )E ——弹性模量E 是指材料在弹性变形范围内,作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力(如拉伸,压缩,弯曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
弹性模量E 是在比例极限内,应力与材料相应的应变之比。
对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
根据不同的受力情况,有相应的拉伸弹性模量(杨氏模量)、剪切弹性模量(刚性模量)、体积弹性模量、压缩弹性模量等。
剪切模量G (ShearModulus )——剪切模量是指剪切应力与剪切应变之比,它表征材料抵抗切应变的能力。
模量大,则表示材料的刚性强。
剪切模数G 是材料的基本物理特性参数之一,可表示材料剪切变形的难易程度;与杨氏(压缩、拉伸)弹性模量E 、泊桑比ν并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。
一、定义材料号及特性mp,lab, mat, co, c1,…….c4lab: 待定义的特性项目ex,alpx,reft,prxy,nuxy,gxy,mu,dens ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号缺省为当前材料号c 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表这里不考虑温度:TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:afun,deg三、单元生死载荷步第一个载荷步TIME,... 设定时间值静力分析选项NLGEOM,ON 打开大位移效果NROPT,FULL 设定牛顿-拉夫森选项ESTIF,... 设定非缺省缩减因子可选ESEL,... 选择在本载荷步中将不激活的单元EKILL,... 不激活选择的单元ESEL,S,LIVE 选择所有活动单元NSLE,S 选择所有活动结点NSEL,INVE 选择所有非活动结点不与活动单元相连的结点D,ALL,ALL,0 约束所有不活动的结点自由度可选NSEL,ALL 选择所有结点ESEL,ALL 选择所有单元D,... 施加合适的约束F,... 施加合适的活动结点自由度载荷SF,... 施加合适的单元载荷BF,... 施加合适的体载荷SAVESOLVE请参阅TIME,NLGEOM,NROPT,ESTIF,ESEL,EKILL,NSLE,NSEL,D,F,SF和BF命令得到更详细的解释;后继载荷步在后继载荷步中,用户可以随意杀死或重新激活单元;象上面提到的,要正确的施加和删除约束和结点载荷;用下列命令杀死单元:Command:EKILLGUI: Main Menu>Solution>-Load Step Opts-Other>Kill Elements用下列命令重新激活单元:Command: EALIVEGUI: Main Menu>Solution>-Load Step Opts-Other>Activate Elem第二个或后继载荷步:TIME,...ESEL,...EKILL,... 杀死选择的单元ESEL,...EALIVE,... 重新激活选择的单元...FDELE,... 删除不活动自由度的结点载荷D,... 约束不活动自由度...F,... 在活动自由度上施加合适的结点载荷DDELE,... 删除重新激活的自由度上的约束SAVESOLVE四、u /grid, keykey: “0”或“off”无网络“1”或“on” xy网络“2”或“x”只有x线“3”或“y”只有y线u xvar, nn: “0”或“1”将x轴作为时间轴“n”将x轴表示变量“n”“-1”u /axlab, axis, lab 定义轴线的标志axis: “x”或“y”lab: 标志,可长达30个字符u plvar, nvar, nvar2, ……,nvar10 画出要显示的变量作为纵坐标五、Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点缺省R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0”使用正负号“1”仅用绝对值六、VDELE, NV1, NV2, NINC, KSWP: 删除未分网格的体nv1:初始体号nv2:最终的体号ninc:体号之间的间隔kswp=0:只删除体kswp=1:删除体及组成关键点,线面如果nv1=all,则nv2,ninc不起作用七、VSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWPType,是选择的方式,有选择s,补选a,不选,全选all、反选inv等,其余方式不常用Item, Comp 是选取的原则以及下面的子项如 volu 就是根据实体编号选择,loc 就是根据坐标选取,它的comp就可以是实体的某方向坐标其余还有材料类型、实常数等MIN, VMAX, VINC,这个就不必说了吧,例:vsel,s,volu,,14vsel,a,volu,,17,23,2上面的命令选中了实体编号为 14,17,19,21,23的五个实体u rforce, nvar, node, item, comp, name 指定待存储的节点力数据nvar: 变量号node: 节点号item compF x,M x, y,zname: 给此变量一个名称,8个字符u add, ir, ia,ib,ic,name,--,--,facta, factb, factc 将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称Fini退出四大模块,回到BEGIN层/cle 清空内存,开始新的计算1.定义参数、数组,并赋值.2. /prep7进入前处理定义几何图形:关键点、线、面、体定义几个所关心的节点,以备后处理时调用节点号;设材料线弹性、非线性特性设置单元类型及相应KEYOPT设置实常数设置网格划分,划分网格根据需要耦合某些节点自由度定义单元表存盘3./solu加边界条件设置求解选项定义载荷步求解载荷步4./post1通用后处理5./post26 时间历程后处理菜单命令7.参数化设计语言8.理论手册Fini退出四大模块,回到BEGIN层/cle 清空内存,开始新的计算1 定义参数、数组,并赋值.u dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组par: 数组名type: array 数组,如同fortran,下标最小号为1,可以多达三维缺省char 字符串组每个元素最多8个字符tableimax,jmax, kmax 各维的最大下标号var1,var2,var3 各维变量名,缺省为row,column,plane当type为table时2 /prep7进入前处理定义几何图形:关键点、线、面、体u csys,kcnkcn , 0 迪卡尔zuobiaosi1 柱坐标2 球4 工作平面5 柱坐标系以Y轴为轴心n 已定义的局部坐标系u numstr, label, value 设置以下项目编号的开始nodeelemkplineareavolu注意:vclear, aclear, lclear, kclear 将自动设置节点、单元开始号为最高号,这时如需要自定义起始号,重发numstru K, npt, x,y,z, 定义关键点Npt:关键点号,如果赋0,则分配给最小号u Kgen,itime,Np1,Np2,Ninc,Dx,Dy,Dz,kinc,noelem,imoveItime:拷贝份数Np1,Np2,Ninc:所选关键点Dx,Dy,Dz:偏移坐标Kinc:每份之间节点号增量noelem: “0”如果附有节点及单元,则一起拷贝;“1”不拷贝节点和单元imove:“0”生成拷贝“1”移动原关键点至新位置,并保持号码,此时itime,kinc,noelem被忽略注意:MAT,REAL,TYPE 将一起拷贝,不是当前的MAT,REAL,TYPEu A, P1, P2, ……… P18 由关键点生成面u AL, L1,L2, ……,L10 由线生成面面的法向由L1按右手法则决定,如果L1为负号,则反向;线需在某一平面内坐标值固定的面内u vsba, nv, na, sep0,keep1,keep2 用面分体u vdele, nv1, nv2, ninc, kswp 删除体kswp: 0 只删除体1 删除体及面、关键点非公用u vgen, itime, nv1, nv2, ninc, dx, dy, dz, kinc, noelem, imove 移动或拷贝体itime: 份数nv1, nv2, ninc:拷贝对象编号dx, dy, dz :位移增量kinc: 对应关键点号增量noelem,:0:同时拷贝节点及单元1:不拷贝节点及单元imove: 0:拷贝体1:移动体u cm, cname, entity 定义组元,将几何元素分组形成组元cname: 由字母数字组成的组元名entity: 组元的类型volu, area, line, kp, elem, nodeu cmgrp, aname, cname1, ……,cname8 将组元分组形成组元集合aname: 组元集名称cname1……cname8: 已定义的组元或组元集名称u cmlist,nameu cmdele,nameu cmplot, label1定义几个所关心的节点,以备后处理时调用节点号;u n,node,x,y,z,thxy, thyz, thzx 根据坐标定义节点号如果已有此节点,则原节点被重新定义,一般为最大节点号;设材料线弹性、非线性特性u mp,lab, mat, co, c1,…….c4 定义材料号及特性lab: 待定义的特性项目ex,alpx,reft,prxy,nuxy,gxy,mu,dens ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号缺省为当前材料号c 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数u Tb, lab, mat, ntemp,npts,tbopt,eosopt 定义非线性材料特性表Lab: 材料特性表之种类Bkin: 双线性随动强化Bis 双线性等向强化Mkin: 多线性随动强化最多5个点Mis 多线性等向强化最多100个点Dp: dp模型Mat: 材料号Ntemp: 数据的温度数对于bkin: ntemp缺省为6mis ntemp缺省为1,最多20bis ntemp缺省为6,最多为6dp: ntemp, npts, tbopt 全用不上Npts: 对某一给定温度数据的点数u TBTEMP,temp,kmod 为材料表定义温度值temp: 温度值kmod: 缺省为定义一个新温度值如果是某一整数,则重新定义材料表中的温度值注意:此命令一发生,则后面的TBDATA和TBPT均指此温度,应该按升序若Kmod为crit, 且temp为空,则其后的tbdata数据为solid46,shell99,solid191中所述破坏准则如果kmod为strain,且temp为空,则其后tbdata数据为mkin中特性;u TBDATA, stloc, c1,c2,c3,c4,c5,c6给当前数据表定义数据配合tbtemp,及tb使用stloc: 所要输入数据在数据表中的初始位置,缺省为上一次的位置加1 每重新发生一次tb或tbtemp命令上一次位置重设为1,发生tb后第一次用空闲此项,则c1赋给第一个常数u tbpt, oper, x,y 在应力-应变曲线上定义一个点oper: defi 定义一个点dele 删除一个点x,y:坐标设置单元类型及相应KEYOPTu ET, itype, ename, kop1……kop6, inopr 设定当前单元类型Itype:单元号Ename:单元名设置实常数u Keyopt, itype, knum, valueitype: 已定义的单元类型号knum: 单元的关键字号value: 数值注意:如果 ,则必须使用keyopt命令,否则也可在ET命令中输入设置网格划分,划分网格映射网格划分1.面映射网格划分条件:a. 3或4条边b.面的对边必须划分为相同的单元或其划分与一个过渡形网格的划分相匹配c. 该面如有3条边,则划分的单元不必须为偶数,并且各边单元数相等d. mahkeye. mshpattern如果多于四条边,可将线合并成Lcomb可用amap命令,先选面,再选4个关键点即可指定面的对边的分割数,以生成过渡映射四边形网格,只适用于有四条边的面2. 体映射网格划分1若将体划分为六面体单元,必须满足以下条件a. 该体的外形为块状六面体、楔形或棱形五面体、四面体b. 对边必须划分为相同的单元数,或分割符合过渡网格形式c. 如果体是棱形或四面体,三角形面上的单元分割数必须是偶数2 当需要减少围成体的面数以进行映射网格划分时,可以对面相加或连接;如果连接而有边界线,线也必须连接在一起;3体扫掠生成网格步骤:a. 确定体的拓扑是否能够进行扫掠;侧面不能有孔;体内不能有封闭腔;源面与目标面必须相对b. 定义合适的单元类型c. 确定扫掠操作中如何控制生成单元层的数目 lesized. 确定体的哪一个边界面作为源面、目标面e. 有选择地对源面、目标面和边界面划分网格3. 关于连接线和面的一些说明连接仅是映射网格划分的辅助工具4. 用desize定义单元尺寸时单元划分应遵守的级别高:lesizekesizeesizedesize用smartzing定义单元尺寸时单元划分应遵守的级别高:lesizekesizesmartsizeu LESIZE,NL1,Size, Angsiz,ndiv,space,kforc,layer1,layer2,kyndiv 为线指定网格尺寸NL1: 线号,如果为all,则指定所有选中线的网格;Size: 单元边长,程序据size计算分割份数,自动取整到下一个整数Angsiz: 弧线时每单元跨过的度数Ndiv: 分割份数Space: “+”: 最后尺寸比最先尺寸“-“: 中间尺寸比两端尺寸free: 由其他项控制尺寸kforc 0: 仅设置未定义的线,1:设置所有选定线,2:仅改设置份数少的,3:仅改设置份数多的kyndiv: 0,No,off 表示不可改变指定尺寸1,yes,on 表示可改变u ESIZE,size,ndiv 指定线的缺省划分份数已直接定义的线,关键点网格划分设置不受影响u desize, minl, minh,……控制缺省的单元尺寸minl: n 每根线上低阶单元数缺省为3defa 缺省值stat 列出当前设置off 关闭缺省单元尺寸minh: n 每根线上高阶单元数缺省为2u mshape, key, dimension 指定单元形状key: 0 四边形2D,六面体3D1 三角形 2D, 四面体3DDimension: 2D 二维3D 三维u smart,off 关闭智能网格u mshkey, key 指定自由或映射网格方式key: 0 自由网格划分1 映射网格划分2 如果可能的话使用映射,否则自由即使自由smartsizing也不管用了u Amesh, nA1,nA2,ninc 划分面单元网格nA1,nA2,ninc 待划分的面号,nA1如果是All,则对所有选中面划分u SECTYPE, ID, TYPE, SUBTYPE, NAME, REFINEKEY定义一个截面号,并初步定义截面类型ID: 截面号TYPE: BEAM:定义此截面用于梁SUBTYPE: RECT 矩形CSOLID:圆形实心截面CTUBE: 圆管I: 工字形HREC: 矩形空管ASEC: 任意截面MESH: 用户定义的划分网格NAME: 8字符的截面名称字母和数字组成REFINEKEY: 网格细化程度:0~5对于薄壁构件用此控制,对于实心截面用SECDATA控制u SECDATA, VAL1, VAL2, …….VAL10 描述梁截面说明:对于SUBTYPE=MESH, 所需数据由SECWRITE产生,SECREAD读入u SECNUM,SECID 设定随后梁单元划分将要使用的截面编号u LATT, MAT, REAL, TYPE, --, KB, KE, SECNUM为准备划分的线定义一系列特性MAT: 材料号REAL: 实常数号TYPE: 线单元类型号KB、KE: 待划分线的定向关键点起始、终止号SECNUM: 截面类型号u SECPLOT,SECID,MESHKEY 画梁截面的几何形状及网格划分SECID:由SECTYPE命令分配的截面编号MESHKEY:0:不显示网格划分1:显示网格划分u /ESHAPE, SCALE 按看似固体化分的形式显示线、面单元SCALE: 0:简单显示线、面单元1:使用实常数显示单元形状u esurf, xnode, tlab, shape 在已存在的选中单元的自由表面覆盖产生单元xnode: 仅为产生surf151 或surf152单元时使用tlab: 仅用来生成接触元或目标元top 产生单元且法线方向与所覆盖的单元相同,仅对梁或壳有效,对实体单元无效Bottom产生单元且法线方向与所覆盖的单元相反,仅对梁或壳有效,对实体单元无效Reverse 将已产生单元反向Shape: 空与所覆盖单元形状相同Tri 产生三角形表面的目标元注意:选中的单元是由所选节点决定的,而不是选单元,如同将压力加在节点上而不是单元上u Nummrg,label,toler, Gtoler,actiontch 合并相同位置的itemlabel: 要合并的项目node: 节点, Elem,单元,kp: 关键点也合并线,面及点mat: 材料,type: 单元类型,Real: 实常数cp:耦合项,CE:约束项,CE: 约束方程,All:所有项toler: 公差Gtoler:实体公差Action: sele 仅选择不合并空合并注意:可以先选择一部分项目,再执行合并;如果多次发生合并命令,一定要先合并节点,再合并关键点;合并节点后,实体荷载不能转化到单元,此时可合并关键点解决问题;u Lsel, type, item, comp, vmin, vmax, vinc, kswp 选择线type: s 从全部线中选一组线r 从当前选中线中选一组线a 再选一部线附加给当前选中组aunoneuunselectinve: 反向选择item: line 线号loc 坐标length 线长comp: x,y,zkswp: 0 只选线1 选择线及相关关键点、节点和单元u Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点缺省R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0”使用正负号“1”仅用绝对值u NSLL,type, nkey 选择与所选线相联系的节点u nsla, type, nkey: 选择与选中面相关的节点type:s 选一套新节点r 从已选节点中再选a 附加一部分节点到已选节点u 从已选节点中去除一部分nkey: 0 仅选面内的节点1 选所有和面相联系的节点如面内线,关键点处的节点u esel, type, item, comp, vmin, vmax, vinc, kabs 选择一组单元Type: S: 选择一组单元缺省R: 在当前组中再选一部分作为一组A: 为当前组附加单元U: 在当前组中不选一部分单元All: 选所有单元None: 全不选Inve: 反向选择当前组Stat: 显示当前选择状态Item: Elem: 单元号Type: 单元类型号Mat: 材料号Real: 实常数号Esys: 单元坐标系号u ALLSEL, LABT, ENTITY 选中所有项目LABT: ALL: 选所有项目及其低级项目BELOW: 选指定项目的直接下属及更低级项目ENTITY: ALL: 所有项目缺省VOLU:体高级AREA:面LINE :线KP:关键点ELEM:单元NODE:节点低级u Tshap,shape 定义接触目标面为2D、3D的简单图形Shape: line:直线Arc:顺时针弧Tria:3点三角形Quad:4点四边形………….根据需要耦合某些节点自由度u cp, nset, lab,,node1,node2,……node17nset: 耦合组编号lab: ux,uy,uz,rotx,roty,rotznode1-node17: 待耦合的节点号;如果某一节点号为负,则此节点从该耦合组中删去;如果node1=all,则所有选中节点加入该耦合组;注意:1,不同自由度类型将生成不同编号2,不可将同一自由度用于多套耦合组u CPINTF, LAB, TOLER 将相邻节点的指定自由度定义为耦合自由度LAB:UX,UY,UZ,ROTX,ROTY,ROTZ,ALLTOLER: 公差,缺省为说明:先选中欲耦合节点,再执行此命令定义单元表说明:1,单元表仅对选中单元起作用,使用单元表之前务必选择一种类型的单元2,单元表各行为选中各单元,各列为每单元的不同数据u ETABLE, LAB, ITEM, COMP 定义单元表,添加、删除单元表某列LAB:用户指定的列名REFL, STAT, ERAS 为预定名称ITEM: 数据标志查各单元可输出项目COMP: 数据分量标志存盘u save, fname, ext,dir, slab 存盘fname : 文件名最多32个字符缺省为工作名ext: 扩展名最多32个字符缺省为dbdir: 目录名最多64个字符缺省为当前slab: “all”存所有信息“model”存模型信息“solv”存模型信息和求解信息3 /soluu /solu 进入求解器加边界条件u D, node, lab, value, value2, nend, ninc, lab2, lab3, ……lab6 定义节点位移约束Node : 预加位移约束的节点号,如果为all,则所有选中节点全加约束,此时忽略nend和ninc.Lab: ux,uy,uz,rotx,roty,rotz,allValue,value2: 自由度的数值缺省为0Nend, ninc: 节点范围为:node-nend,编号间隔为nincLab2-lab6: 将lab2-lab6以同样数值施加给所选节点;注意:在节点坐标系中讨论设置求解选项u antype, status, ldstep, substep, actionantype: static or 1 静力分析buckle or 2 屈曲分析modal or 3 模态分析trans or 4 瞬态分析status: new 重新分析缺省,以后各项将忽略rest 再分析,仅对static,full transion 有效ldstep: 指定从哪个荷载步开始继续分析,缺省为最大的,runn数指分析点的最后一步substep: 指定从哪个子步开始继续分析;缺省为本目录中,runn文件中最高的子步数action, continue: 继续分析指定的ldstep,substep说明:继续以前的分析因某种原因中断有两种类型singleframe restart: 从停止点继续需要文件:必须在初始求解后马上存盘单元矩阵或 .osav : 如果.esav坏了,将.osav改为.esavresults file: 不必要,但如果有,后继分析的结果也将很好地附加到它后面注意:如果初始分析生成了.rdb, .ldhi, 或rnnn 文件;必须删除再做后继分析步骤: 1进入anasys 以同样工作名2进入求解器,并恢复数据库3antype, rest4指定附加的荷载5指定是否使用现有的矩阵缺省重新生成kuse: 1 用现有矩阵6求解multiframe restart:从以有结果的任一步继续用不着u pred,sskey, --,lskey….. 在非线性分析中是否打开预测器sskey: off 不作预测当有旋转自由度时或使用solid65时缺省为offon 第一个子步后作预测除非有旋转自由度时或使用solid65时缺省为on -- :未使用变量区lskey: off 跨越荷载步时不作预测缺省on 跨越荷载步时作预测此时sskey必须同时on注意:此命令的缺省值假定solcontrol为onu autots, key 是否使用自动时间步长key:on: 当solcontrol为on时缺省为onoff: 当solcontrol为off时缺省为off1: 由程序选择当solcontrol为on且不发生autots命令时在 .log文件中纪录“1”注意:当使用自动时间步长时,也会使用步长预测器和二分步长u NROPT, option,--,adptky 指定牛顿拉夫逊法求解的选项OPTION: AUT程序选择FULL:完全牛顿拉夫逊法MODI:修正的牛顿拉夫逊法INIT:使用初始刚阵UNSYM:完全牛顿拉夫逊法,且允许非对称刚阵ADPTKY:ON: 使用自适应下降因子OFF:不使用自适应下降因子u NLGEOM,KEYKEY: OFF:不包括几何非线性缺省ON:包括几何非线性u ncnv, kstop, dlim, itlim, etlim, cplim 终止分析选项kstop: 0 如果求解不收敛,也不终止分析1 如果求解不收敛,终止分析和程序缺省2如果求解不收敛,终止分析,但不终止程序dlim:最大位移限制,缺省为itlim: 累积迭代次数限制,缺省为无穷多etlim:程序执行时间秒限制,缺省为无穷cplim:cpu时间秒限制,缺省为无穷u solcontrol ,key1, key2,key3,vtol 指定是否使用一些非线性求解缺省值key1: on 激活一些优化缺省值缺省CNVTOL Toler=%Minref=对力和弯矩NEQIT 最大迭代次数根据模型设定在15~26之间ARCLEN 如用弧长法则用较更先进的方法PRED 除非有rotx,y,z或solid65,否则打开LNSRCH 当有接触时自动打开CUTCONTROL Plslimit=15%, npoint=13SSTIF 当NLGEOM,on时则打开NROPT,adaptkey 关闭除非:摩擦接触存在;单元12,26,48,49,52存在;当塑性存在且有单元20,23,24,60存在AUTOS 由程序选择off 不使用这些缺省值key2: on 检查接触状态此时key1为on此时时间步会以单元的接触状态据keyopt7的假定为基础当keyopt2=on 时,保证时间步足够小key3: 应力荷载刚化控制,尽量使用缺省值空:缺省,对某些单元包括应力荷载刚化,对某些不包括查nopl:对任何单元不包括应力刚化incp:对某些单元包括应力荷载刚化查vtol:u outres, item, freq, cname 规定写入数据库的求解信息item: all 所有求解项basic 只写nsol, rsol, nload, strsnsol 节点自由度rsol 节点作用荷载nload 节点荷载和输入的应变荷载strs 节点应力freq: 如果为n,则每n步包括最后一步写入一次none: 则在此荷载步中不写次项all: 每一步都写last: 只写最后一步静力或瞬态时为缺省定义载荷步u nsubst, nsbstp, nsbmx, nsbmn, carry 指定此荷载步的子步数nsbstp: 此荷载步的子步数如果自动时间步长使用autots,则此数定义第一子步的长度;如果solcontrol打开,且3D面-面接触单元使用,则缺省为1-20步;如果solcontrol打开,并无3D接触单元,则缺省为1子步;如果solcontrol关闭,则缺省为以前指定值;如以前未指定,则缺省为1nsbmx, nsbmn:最多,最少子步数如果自动时间步长打开u time, time 指定荷载步结束时间注意:第一步结束时间不可为“0”u f, node, lab, value, value2, nend, ninc 在指定节点加集中荷载node:节点号lab: Fx,Fy,Fz,Mx,My,Mzvalue: 力大小value2: 力的第二个大小如果有复数荷载nend,ninc:在从node到nend的节点增量为ninc上施加同样的力注意:1节点力在节点坐标系中定义,其正负与节点坐标轴正向一致u sfa, area, lkey, lab, value, value2 在指定面上加荷载area: n 面号all 所有选中号lkey: 如果是体的面,忽略此项lab: presvalue: 压力值u SFBEAM, ELEM, LKEY, LAB, VALI, VALJ, VAL2I, VAL2J, IOFFST, JOFFST 对梁单元施加线荷载ELEM: 单元号,可以为ALL,即选中单元LKEY: 面载类型号,见单元介绍;对于BEAM188,1为竖向;2为横向;3为切向VALI,VALJ: I, J节点处压力值VAL2I,VAL2J: 暂时无用IOFFST, JOFFST: 线载距离I, J 节点距离u lswrite, lsnum 将荷载与荷载选项写入荷载文件中lsnum :荷载步文件名的后缀,即荷载步数当 stat 列示当前步数init 重设为“1”缺省为当前步数加“1”注意1. 尽量加面载,不加集中力,以免奇异点2. 面的切向荷载必须借助面单元求解载荷步u lssolve, lsmin, lsmax, lsinc 读入并求解多个荷载步lsmin, lsmax, lsinc :荷载步文件范围4 /post1通用后处理u set, lstep, sbstep, fact, king, time, angle, nset 设定从结果文件读入的数据lstep :荷载步数sbstep:子步数,缺省为最后一步time:时间点如果弧长法则不用nset: data set numberu dscale, wn, dmult 显示变形比例wn: 窗口号或all,缺省为1dmult, 0或auto : 自动将最大变形图画为构件长的5%u pldisp, kund 显示变形的结构kund: 0 仅显示变形后的结构1 显示变形前和变形后的结构2 显示变形结构和未变形结构的边缘u get, par, node, n, u, xy,z 获得节点n的xy,z位移给参数par等价于函数 ux,uy,uznodex,y,z: 获得x,y,z节点号arnodex,y,z:获得和节点n相连的面注意:此命令也可用于/solu模块u fsum, lab, item 对单元之节点力和力矩求和lab: 空在整体迪卡尔坐标系下求和rsys 在当前激活的rsys坐标系下求和item: 空对所有选中单元不包括接触元求和cont: 仅对接触节点求和u PRSSOL, ITEM, COMP 打印BEAM188、BEAM189截面结果说明:只有刚计算完还未退出ANSYS时可用,重新进入ANSYS时不可用item comp 截面数据及分量标志S COMP X,XZ,YZ应力分量PRIN S1,S2,S3主应力SINT应力强度,SEQV等效应力EPTO COMP 总应变PRIN 总主应变,应变强度,等效应变EPPL COMP 塑性应变分量PRIN 主塑性应变,塑性应变强度,等效塑性应变u plnsol, item, comp, kund, fact 画节点结果为连续的轮廓线item: 项目见下表comp: 分量kund: 0 不显示未变形的结构1 变形和未变形重叠2 变形轮廓和未变形边缘fact: 对于接触的2D显示的比例系数,缺省为1item comp discriptionu x,y,z,sum 位移rot x,y,z,sum 转角s x,y,z,xy,yz,xz 应力分量1,2,3 主应力Int,eqv 应力intensity,等效应力epeo x,y,z,xy,yz,xz 总位移分量1,2,3 主应变Int,eqv 应变intensity,等效应变epel x,y,z,xy,yz,xz 弹性应变分量1,2,3 弹性主应变Int,eqv 弹性intensity,弹性等效应变eppl x,y,z,xy,yz,xz 塑性应变分量u PRNSOL, item, comp 打印选中节点结果item: 项目见上表comp: 分量u PRETAB, LAB1, LAB2, ……LAB9 沿线单元长度方向绘单元表数据LABn : 空:所有ETABLE命令指定的列名列名:任何ETABLE命令指定的列名u PLLS, LABI, LABJ, FACT, KUND 沿线单元长度方向绘单元表数据LABI:节点I的单元表列名LABJ:节点J的单元表列名FACT: 显示比例,缺省为1kund: 0 不显示未变形的结构1 变形和未变形重叠2 变形轮廓和未变形边缘5 /post26 时间历程后处理u nsol, nvar, node, item, comp,name在时间历程后处理器中定义节点变量的序号nvar:变量号从2到nv根据numvar定义node: 节点号item compu x, y,zrot x, y,zu ESOL, NVAR, ELEM, NODE, ITEM, COMP, NAME 将结果存入变量NVAR: 变量号,2以上ELEM: 单元号NODE: 该单元的节点号,决定存储该单元的哪个量,如果空,则给出平均值ITEM:COMP:NAME: 8字符的变量名, 缺省为ITEM加COMPu rforce, nvar, node, item, comp, name 指定待存储的节点力数据nvar: 变量号node: 节点号item compF x,M x, y,zname: 给此变量一个名称,8个字符u add, ir, ia,ib,ic,name,--,--,facta, factb, factc将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称u /grid, keykey: “0”或“off”无网络“1”或“on” xy网络“2”或“x”只有x线“3”或“y”只有y线u xvar, nn: “0”或“1”将x轴作为时间轴“n”将x轴表示变量“n”“-1”u /axlab, axis, lab 定义轴线的标志axis: “x”或“y”lab: 标志,可长达30个字符u plvar, nvar, nvar2, ……,nvar10 画出要显示的变量作为纵坐标u prvar, nvar1, ……,nvar6 列出要显示的变量6 PLOTCONTROL菜单命令u pbc, ilem, ……,key, min, max, abs 在显示屏上显示符号及数值item: u 所加的位移约束rot 所加的转角约束key: 0 不显示符号1 显示符号2 显示符号及数值u /SHOW, FNAME, EXT, VECT, NCPL 确定图形显示的设备及其他参数FNAME: X11:屏幕文件名:各图形将生成一系列图形文件JPEG: 各图形将生成一系列JPEG图形文件说明:没必要用此命令,需要的图形文件可计算后再输出7 参数化设计语言u do, par, ival, fval, inc 定义一个do循环的开始par: 循环控制变量ival, fval, inc:起始值,终值,步长正,负u enddo 定义一个do循环的结束u if,val1, oper, val2, base: 条件语句val1, val2: 待比较的值也可是字符,用引号括起来oper: 逻辑操作当实数比较时,误差为1e-10eq, ne, lt, gt, le, ge, ablt, abgtbase: 当oper结果为逻辑真时的行为lable: 用户定义的行标志stop: 将跳出anasysexit: 跳出当前的do循环cycle: 跳至当前do循环的末尾then: 构成if-then-else结构。
单元特性在单元特性列表中给出了单元的附加分析能力,如应力刚化、大变形、塑性、蠕变、膨胀、单元生死等,绝大多数特性使单元为非线性且需要迭代求解。
KEYOPTS可在ET命令的6个顺序位置输入KEYOPTS的值,也可以用命令KEYOPT 单独输入,但KEYOPT(7)机器以上的值必须采用命令KEYOPT输入。
节点解节点解包括自由度解与约束节点的反力解。
单元解单元解主要指面载荷、质心解、表面解、积分点解、单元节点解、单元节点载荷、非线性解、平面和轴对称解、杆件力解等及其结果项。
绝大多数单元用两个表格分别描述输出结果和获取这些结果的方式,即单元输出说明表、单元ETABLE和ESOL的表项和序号。
单元输出说明表描述了单元可能的结果,并给出了哪些结果在打印输出(O 栏)中有效,哪些结果项在结果文件(R栏)中有效等。
单元ETABLE和ESOL 的表项和序号表描述了命令ETABLE和ESOL中的表项和结果对应号。
表项SMISC(Summable Miscellaneous)和NMISC(Nonsummable Miscellaneous)分别表示可求和杂项与不可求和杂项。
单元节点解是指每个单元节点上的结果数据,是一种导出结果,通常是利用单元的积分点结果外推到节点上,单元节点解的输出通常位于单元坐标系下。
在/POST1中,用命令PLNSOL绘制所选择单元和节点的节点应力时,应力的连续云图穿过单元边界,云图采用单元节点解线性内插得到,而所显示的某个节点的某项结果取与该节点相连的所有单元的单元节点解中该节点的某项结果的平均值,因此PLNSOL虽然绘制的是节点的某项结果,但实际是通过单元节点解计算得到的。
平面和轴对成解:2D实体分析基于“单位厚度计算”,其结果也多基于单位厚度给出。
当然,大多数2D实体单元也可设置“厚度”。
2D轴对称实体分析基于360度计算,其结果也多基于360度给出。
特别是对于轴对称结构分析,,合力是指360度模型的合力,而X、Y、Z和XY分别对应径向、轴向、周向和平面内,总体坐标系的Y轴必须是对称轴,且应该在X轴的正象限建立结构模型。
ANSYS中的24种材料属性ANSYS是一种常用的工程模拟软件,用于解决复杂工程问题,如结构分析、流体动力学、电磁场分析等。
在ANSYS软件中,各种材料的性质和行为是通过材料模型来描述的。
以下是ANSYS中常用的24种材料属性:1. 弹性模量(Young's modulus):表示材料的刚度,即材料在应力作用下的变形程度。
2. 剪切模量(Shear modulus):表示材料抵抗剪切应力的能力。
3. 泊松比(Poisson's ratio):描述材料在拉伸时横向收缩的程度。
4. 密度(Density):表示材料的质量与体积之比。
5. 线膨胀系数(Linear expansion coefficient):指材料在温度变化下的线性膨胀程度。
6. 灵敏度系数(Pound-Stress Sensitivity Coefficient):衡量材料的应力-变形灵敏度。
7. 杨氏系数(Yield strength):指材料在达到屈服点时所能承受的最大应力。
8. 屈服强度(Ultimate tensile strength):指材料在达到破断点前所能承受的最大应力。
9. 断裂韧性(Fracture toughness):描述材料在破裂时所需要的能量。
10. 硬度(Hardness):衡量材料对局部塑性变形的抵抗能力。
11. 弹性极限(Elastic limit):材料在弹性范围内所能承受的最大应力。
12. 节流应力(Buckling stress):指材料受压时失去稳定性的引发应力。
13. 热导率(Thermal conductance):指材料传导热量的能力。
14. 热膨胀系数(Thermal expansion coefficient):指材料在温度变化下的体积膨胀程度。
15. 电导率(Electrical conductance):指材料导电的能力。
16. 磁导率(Permeability):指材料对磁场的导磁能力。
Ansys材料参数的定义问题参数的定义正确与否ANSYS计算结果的精度,不仅与模型,⽹格,算法紧密相关,⽽且材料参数对结果的可靠性也有决定性的作⽤,为⽅便⼤家的学习,本⼈就⽤过的⼀些材料模型,作出⼀些总结,并给出相关的命令操作,希望对从事ANSYS应⽤的兄弟姐妹们有所帮助,⽔平有限,不对之处还望及时纠正.先给出线性材料的定义问题,线性材料分为三类:1.isotropic:各向同性材料2.orthotropic:正交各向异性材料3.anisotropic:各向异性材料1. isotropic各向同性材料的定义:这种材料⽐较普遍,⽽且定义也⾮常简单,只需定义两个常数:EX, NUXYNUXY默认为0.3,剪切模量GXY默认为EX/(2(1+NUXY)),如果你定义的是各向同性的弹参数⼀般不⽤定义.如果要定义,⼀定要和公式: EX/(2(1+NUXY))的值匹性材料的话,这个参数配,否则出错,另泊松⽐的定义⼀般推荐不要超过0.5.相关命令,例如:mp,ex,1,300e9mp,nuxy,1,0.252.orthotropic:正交各向异性材料:这种材料也是⽐较常见的,不过定义起来稍微⿇烦⼀点,需定义的常数有: EX, EY, EZ, NUXY, NUYZ, NUXZ, GXY, GYZ, GXZ参数不定义的话,程序会提⽰出错,⽐如:XY注意:在这⾥没有默认值,就是说,如果你某些参数平⾯的平⾯应⼒问题,如果你只定义了EX, EY,程序将提⽰你,这是正交各向异性材料, GXY, NUXY是必须的.相关命令,例如:mp,ex,1,300e9mp,ey,1,200e9mp,nuxy,1,0.25mp,gxy,1,170e9…3.anisotropic:各向异性材料:材料定义起来较为复杂,这⾥我只作些简单的说明,更详细的资料,⼤家可以去各向异性材料定义看帮助.对于各向异性弹性材料的定义,需要定义弹性系数矩阵,这个矩阵是⼀个对称正定阵,因⽽输⼊的值⼀定要为正值.弹性常数矩阵如下图所⽰,各向异性体只有21个独⽴的弹性常数,因⽽我们也就只需输⼊参数即可,⽽且对于⼆维问题,弹性常数缩减为10个.弹性系数矩阵可以⽤刚度或柔21个参数度两种形式来定义,⾃⼰根据情况选⽤,输⼊的时候,可以通过菜单或者TB命令的TBOPT选项来控制.相关的命令流,例如:tb,anel,1tbdata,1, 110e6, 120e6, 130e6, 140e6, 150e6, 160e6tbdata,7, 220e6, 230e6, 240e6, 250e6, 260e6tbdata,12, 330e6, 340e6, 350e6, 360e6tbdata,16, 440e6, 450e6, 460e6tbdata,19, 550e6, 560e6tbdata,21, 660e6另:需注意⼀下各个参数参数的编号顺序和起始位置,不要搞错了,输⼊的时候,是按照上三⾓阵来录⼊的,即:D11,D12,D13,D14,D15,D16,D22,D23…MPMP, Lab, MAT, C0, C1, C2, C3, C4Defines a linear material property as a constant or a function of temperature.PREP7: MaterialsMP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFSProduct RestrictionsLabValid material property label. Applicable labels are listed under "Material Properties" in the input table for each element type in the Element Reference. See Linear Material Properties of the Element Reference for more complete property label definitions:EXElastic moduli (also EY, EZ).—ALPXSecant coefficients of thermal expansion (also ALPY, ALPZ).—CTEXInstantaneous coefficients of thermal expansion (also CTEY, CTEZ).—THSXThermal strain (also THSY, THSZ).—REFTReference temperature. Must be defined as a constant; C1 through C4 are ignored.—PRXYMajor Poisson's ratios (also PRYZ, PRXZ).—NUXYMinor Poisson's ratios (also NUYZ, NUXZ).—GXYShear moduli (also GYZ, GXZ).—DAMPK matrix multiplier for damping.—Note:If used in an explicit dynamic analysis, the value corresponds to the percentage ofdamping in the high frequency domain. For example, 0.1 roughly corresponds to 10%damping in the high frequency domain.DMPRConstant material damping coefficient.—MUCoefficient of friction.—DENSMass density.—CSpecific heat.—ENTHEnthalpy.—KXXThermal conductivities (also KYY, KZZ).—HFConvection or film coefficient.—EMISEmissivity.—QRATEHeat generation rate.—VISCViscosity.—SONCSonic velocity.—RSVXElectrical resistivities (also RSVY, RSVZ).—Electric relative permittivities (also PERY, PERZ).Electric relative permittivities (also PERY, PERZ).PERX—Note:If you enter permittivity values less than 1 for SOLID5, PLANE13, or SOLID98, theprogram interprets the values as absolute permittivity. Values input for PLANE223,SOLID226, or SOLID227 are always interpreted as relative permittivity.MURXMagnetic relative permeabilities (also MURY, MURZ).—MGXXMagnetic coercive forces (also MGYY, MGZZ).—LSSMMagnetic loss tangent.—LSSTElectric loss tangent.—SBKXSeebeck coefficients (also SBKY, SBKZ).—MATMaterial reference number to be associated with the elements (defaults to the current MAT setting [MAT]).C0Material property value, or if a property-versus-temperature polynomial is being defined, the constant term in the polynomial. C0 can also be a table name (%tabname%); if C0 is a table name, C1 through C4 are ignored.C1, C2, C3, C4Coefficients of the linear, quadratic, cubic, and quartic terms, respectively, in the property-versus-temperature polynomial. Leave blank (or set to zero) for a constant material property.。
什么是泊松比的意思概念介绍泊松比由法国科学家泊松(Simon Denis Poisson,1781-1840)最先发现并提出。
那么你对泊松比了解多少呢?以下是由店铺整理关于什么是泊松比的内容,希望大家喜欢!什么是泊松比泊松比是指材料在单向受拉或受压时,横向正应变与轴向正应变的绝对值的比值,也叫横向变形系数,它是反映材料横向变形的弹性常数。
泊松比的起源泊松比由法国科学家泊松(Simon Denis Poisson,1781-1840)[1] 最先发现并提出。
他在1829年发表的《弹性体平衡和运动研究报告》一文中,用分子间相互作用的理论导出弹性体的运动方程,发现在弹性介质中可以传播纵波和横波,并且从理论上推演出各向同性弹性杆在受到纵向拉伸时,横向收缩应变与纵向伸长应变之比是一常数,其值为四分之一。
若在弹性范围内加载,横向应变εx与纵向应变εy之间存在下列关系:εx=- νεy式中ν为材料的一个弹性常数,称为泊松比。
泊松比是量纲为一的量。
泊松比详细介绍材料沿载荷方向产生伸长(或缩短)变形的同时,在垂直于载荷的方向会产生缩短(或伸长)变形。
垂直方向上的应变εl与载荷方向上的应变ε之比的负值称为材料的泊松比。
以v表示泊松比,则v=-εl/ε。
在材料弹性变形阶段内,v是一个常数。
理论上,各向同性材料的三个弹性常数E、G、v中,只有两个是独立的,因为它们之间存在如下关系:G=E/2(1+v)。
材料的泊松比一般通过试验方法测定。
对于传统材料,在弹性工作范围内,v一般为常数,但超越弹性范围以后,v随应力的增大而增大,直到v=0.5为止。
常用材料的E、ν值主次泊松比的区别主泊松比PRXY,指的是在单轴作用下,X方向的单位拉(或压)应变所引起的Y方向的压(或拉)应变;次泊松比NUXY,它代表了与PRXY成正交方向的泊松比,指的是在单轴作用下,Y方向的单位拉(或压)应变所引起的X方向的压(或拉)应变。
PRXY与NUXY是有一定关系的: PRXY/NUXY=EX/EY对于正交各向异性材料,需要根据材料数据分别输入主次泊松比,但是对于各向同性材料来说,选择PRXY或NUXY来输入泊松比是没有任何区别的,只要输入其中一个即可。
ANSYS中所用主泊松比prxy(大泊松比)和次泊松比NUXY(小泊松比)的关系
假设Ex大于Ey,Vxy(PRXY)大于Vyx(NUXY),因此Vxy一般指主泊松比,Vyx指次泊松比。
对于orthotropic材料输入何种泊松比更合适,这需要知道材料的来源。
实际上,orthotropic材料一般输入主泊松比。
对于异向同性材料,那种都一样,因为主泊松比与次泊松比相等。
1.在正交各项异性材料中才有PRXY和NUXY的概念,其实是PR??的下标与通常说的泊松比一致,而NU??的下标则相反,如下
PRXY=Vxy,NUXY=Vyx
为何有主(或大)泊松比和次(或小)泊松比之分呢?原来正交各项异性的刚度矩阵(或柔度矩阵)可以用12个工程常数决定,其中三个杨氏模量、六(三对)个泊松比和三个剪切模量。
而六个泊松比是两两相关联的,故只须提供三个。
ANSYS公司为防止下标混淆,就规定假设:Ex%26amp;gt;Ey%26amp;gt;Ez,根据相关公式,如:Vxy/Vyx=Ex/Ey,Vxy必然大于Vyx,就称Vxy为大泊松比PXY。
同理得出另外两个大泊松比PRYZ=Vyx,PRXZ=Vxz,特别注意最后一个是PRXZ而不是%26quot;PRZX%26quot;。
其实这一大通解释也有些废话,因为使用中三个杨氏模量的实际值并不一定按大小顺序,故PRXY也不一定大于NUXY,我们只要记住主泊松比的下标与常规泊松比下标一致就足够了。