PUSHOVER分析方法
- 格式:pdf
- 大小:295.83 KB
- 文档页数:4
M i das进行P ushover分析的总结 1.1版-----完全是个人体会,有所错误在所难免一.不得不说的基本概念1.P ushover是什么和前提条件P ushover也叫推倒分析,是一种静力弹塑性分析方法,或者叫非线性静力分析方法,在特定前提下,可以近似分析结构在地震作用下的性能变化情况。
给桥梁用某种方式,比如墩顶集中力方式,施加单调增加的荷载,相应的荷载位移关系就会呈现明显的非线性特征。
这里可以认为IO是处在正常使用状态,LS为承载能力极限状态,CP是完全倒塌破坏。
从IO开始结构开始进入弹塑性状态,在LS前结构的损伤尚可修复,且结构整体是安全的,而越过LS 损伤就难以修复了,但是CP前还不至于倒塌。
设计中对于不同构件或部位,在特定地震作用下,其性能要求是不一样的。
而特定的前提很明确,就是在整个地震反应时程中,结构反应由单一振型控制,在《公路桥梁抗震细则》(以下简称《细则》)中,认为常规桥梁中的规则桥梁都满足这一条件(条文说明 6.3.4),因此E1地震可以采用简化反应谱方法,也可用一般的多振型反应谱方法,E2则用Pus hover。
2.P ushover的分析目的在E2地震作用下,《细则》要求:可见,对于规则桥梁,只需要检算墩顶位移就可以了。
对于单柱墩,容许位移可按7.4.7条推荐的公式进行计算,而双柱墩按7.4.8条要求进行Pus hover分析根据塑性铰的最大容许转角(7.4.3)得到。
而无论是7.4.3还是7.4.7都要用到Φy和Φu,对于圆形或者矩形截面可按附录B计算,而特殊的截面,可按7.4.4和7.4.5的要求计算。
计算方法可以自己编程实现,也可用现成的软件如R es ponse2000等来作为工具。
而对于在特定的E2地震作用下,墩顶的位移,都需要用P ushover的能力谱法得到。
所以Pus hover的目的一个是画出荷载位移曲线后,找到塑性铰达到最大容许转角时的曲线点,计算出墩顶容许位移,第2个目的是应用能力谱法,找到性能点,得到E2地震作用下,墩顶的位移。
PUSHOVER分析方法全攻略作为一种常用的风险评估方法,PUSHOVER分析(Pushover Analysis)是一种基于位移的结构性能评估方法,可用于评估结构在地震等外部力作用下的破坏性能。
PUSHOVER分析的基本原理是通过对结构进行逐步加载,计算结构的位移响应,并在每个加载级别上评估结构的非弹性变形。
其中,位移响应与荷载之间的关系被表示为荷载位移曲线(Load-displacement Curve),曲线上的各点对应于结构在不同荷载水平上的位移响应。
为了进行PUSHOVER分析,以下是一些主要步骤和技术,供参考:1.结构模型准备首先,需要准备一个精确的结构模型,包括准确的几何形状、结构材料性质以及荷载。
模型可以通过各种建模软件进行创建,如ETABS、SAP2000等。
2.定义截面性能曲线对于每个结构构件,需要定义其截面的性能曲线。
这些曲线一般采用双切模型(Bi-linear Model)或多切模型(Multi-linear Model)来表示构件的力-位移响应。
3.建立非线性弹簧模型根据结构的截面性能曲线,需要建立每个构件的非线性弹簧模型。
这些弹簧模型可以通过弹簧刚度系数和屈服强度等参数来表示。
4.定义加载方式定义结构的加载方式,包括单项或多项加载。
在推进分析中,通常采用单项加载,即逐步增加水平荷载。
5.设定分析参数根据需要,设定分析的参数,包括推进步长、最大推进步数以及各构件的水平刚度。
6.进行PUSHOVER分析根据设定的加载方式和分析参数,进行PUSHOVER分析。
在每个加载步骤中,计算结构的位移响应,并绘制荷载位移曲线。
7.评估结构性能根据荷载位移曲线,评估结构的性能,包括塑性铰的形成、破坏模式以及结构的侧向刚度退化等。
8.修正分析结果在分析过程中,根据实际情况对模型进行修正。
例如,在形成塑性铰后,可以调整结构的刚度或强度参数。
9.分析结果报告最后,将分析结果整理成报告,包括结构的性能评估、塑性铰的位置和破坏模式等信息。
静力非线性分析方法(Nonlinear Static Procedure),也称Pushover分析法,是基于性能评估现有结构和设计新结构的一种方法。
静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止的过程。
控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。
Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method, CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。
从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。
正因为如此,随着90年代以后基于位移的抗震设计(Displacement-Based Seismic Design, DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design, PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。
这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。
第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定水平地震作用下的反应,目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP(Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整,两者在理论上是一致的。
在一些文献中只将第一方面的内容称为Pushover,不包括计算目标位移和结果评价的内容。
Pushover分析:基本概念静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。
静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。
控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。
Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。
从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。
正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。
这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。
第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。
两者在理论上是一致的。
在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移和结果评价的内容。
《Push-over方法具体实现中的几个问题讨论》Push- over方法是近年来在国外得到广泛应用的一种结构抗震能力评价新方法,既考虑了计算的简便性,避免了以往非线性动力分析的繁琐,又兼顾了构件的弹塑性性能,具有良好的准确性,成为目前抗震设计方法研究热点。
国内外许多组织将其纳入抗震规范,如美国的ATC-40、欧洲的Eurocodes 8规范以及我国的《建筑抗震设计规范》(GB 50011-2001)等。
建立合理的分析模型、确定施加水平荷载的加载模式、构件截面的屈服内力以及停止加载的条件是实现Push- over方法的关键。
《Push-over分析法及其与非线性动力分析法的对比》Push-over法正是顺应了这些要求,近些年兴起的一种地震分析方法。
它主要是作为一种结构抗震性能的评估方法,而不是作为设计结构构件的替换方法。
它可以帮助我们更好地了解结构的内部反应机制,给出有关结构强度极限、相应变形、强度分配不连续性以及可能遭受严重破坏的部位等有关信息。
《Push-over分析方法在双柱桥墩抗震性能评价上的应用》对于桥梁结构抗震分析主要是对墩柱抗震性能的研究。
目前常用的方法包括线弹性反应谱法、弹塑性动力时程分析法、等效静力分析法等。
线弹性反应谱法由于难以正确反映结构开裂后的非弹性阶段的特性,其应用范围受到一定限制;弹塑性时程分析方法由于需要准备包括场地地震波等在内的大量数据,且其计算繁琐,难以在实际工程应用中广泛推广;等效静力分析方法由于其计算过程简单、而且实用因而在桥梁抗震分析中已得到广泛应用。
Push-over方法则是应用最多的等效静力分析方法,但目前国内在这方面的研究很少。
有关Push-over分析方法的思想其实在很早时就已提出,当时主要用于理论研究。
Imbsen和Penzien等提出用于桥梁的抗震能力评估。
1975年,Freeman等人在Push-over分析方法中引入了地震需求谱和能力谱曲线的概念,发展了Push-over分析方法,并促进了Push-over分析方法在结构抗震性能评估等方面的应用推广。
Push-over方法的理论与应用Push-over方法是一种常用于结构抗震性能评估和设计的分析方法,它通过模拟结构在地震作用下的非线性行为,为工程师提供了便捷且较准确的结构性能分析工具。
本文将围绕Push-over方法的理论原理和应用领域展开,以期为读者带来对该方法的深入理解和实际运用的指导。
首先,我们来了解Push-over方法的基本原理。
Push-over方法基于结构的整体受力性态进行分析,它通过在结构的某个关键位置施加水平推力,逐渐增加推力大小,直至结构达到塑性破坏为止。
在此过程中,可以绘制出结构的侧向推力-层间位移曲线,该曲线被称为Push-over曲线。
Push-over曲线的形状及其特征参数能够反映出结构的受力性能和抗震性能,进而为结构的抗震设计和性能评估提供依据。
Push-over方法的应用领域十分广泛,特别适用于高层建筑、桥梁、烟囱等结构类型。
首先,对于高层建筑结构来说,Push-over方法可以用于评估结构的层间位移、剪力分布、承载能力等性能指标,从而提供参考和指导高层建筑的抗震设计。
其次,对于桥梁结构而言,Push-over方法可以通过分析结构的侧向刚度、轴向力分布等指标,评估结构的耐震能力,从而为桥梁的抗震设防水平提供科学依据。
此外,Push-over方法还可以应用于烟囱、矿井、核电站等工程中,评估结构的安全性能,从而确保工程的安全运行。
在进行Push-over分析时,需要考虑几个关键因素。
首先是结构的非线性行为。
Push-over方法基于结构的非线性响应进行分析,因此需要进行合理的非线性模拟和参数设定。
其次是地震荷载的选取。
在进行Push-over分析时,需要选取适当的地震荷载记录,并考虑地震波谱和时程特性等因素。
此外,还需要确定推力的施加位置和方式,以及适当选择分析的执行步长和收敛准则等。
在实际应用中,Push-over方法的准确性和可靠性得到了广泛验证。
许多国内外研究表明,与传统的线性弹性分析相比,Push-over方法能够更准确地评估结构的抗震性能,提供更好的设计和修复方案。
静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点比较一、Pushover分析法1、Pushover分析法优点:(1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。
(2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。
2、Pushover分析法缺点:(1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。
(2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。
(3)只能从整体上考察结构的性能,得到的结果较为粗糙。
且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。
不能完全真实反应结构在地震作用下性状。
二、弹塑性时程分析法1、时程分析法优点:(1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。
(2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。
(3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。
(4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。
2、时程分析法缺点:(1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。
(2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。
所以此法的计算工作十分繁重,必须借助于计算机才能完成。
静力弹塑性Pushover分析方法在高层建筑结构中的应用共3篇静力弹塑性Pushover分析方法在高层建筑结构中的应用1静力弹塑性Pushover分析方法是一种在高层建筑结构中广泛应用的结构分析方法,它可以用于评估建筑物的破坏机制和耐震性能,并为施工和维护提供有用的指导和建议。
本文将详细介绍该方法的原理和应用。
Pushover分析方法基于弹塑性理论,可以很好地模拟结构的非线性特性,并预测其塑性极限以及峰值位移。
该方法在分析中采用了非常简便的工具,比如一维曲线(Capacity Curve)和位移时程,因此可以更好地理解分析结果。
Pushover分析方法通常在进行性能评估时使用,其主要目标是确定结构的破坏机制。
该方法通常包括以下步骤:1.建立结构的有限元模型在进行Pushover分析之前,需要建立结构的有限元模型。
有限元模型必须准确地描述结构的几何形状、材料属性和边界条件。
通常情况下,有限元模型是由保密的BUILDING INFORMATION MODELING(BIM)或其他建模软件生成。
2.确定结构的荷载模型在确定荷载模型时,需要考虑结构所受的地震、风荷载和重力荷载等因素。
在进行Pushover分析之前,需要将自重和其它固定荷载先施加在结构上,然后再考虑施加的横向载荷。
3.确定分析属性分析属性是指用于模拟结构响应的材料模型、纵横向构型变化以及分析强度等因素。
静力弹塑性Pushover分析采用材料的弹性模量及屈服强度,在结构滞回曲线上用刚度和残余形变表达了结构的非线性本质。
4.进行Pushover分析进行Pushover分析时,需要使用一种称为Capacity Curve的曲线来描述结构的响应。
该曲线可以通过在结构中逐步增加侧向荷载来构建。
在每个荷载步长上,都会根据结构的强度、刚度和残留形变来计算结构的响应。
通过计算位移和弧度等参数,可以建立结构的Capacity Curve。
5.进行破坏模式分析通过Capacity Curve,可以确定结构的塑性极限和层间的响应状况。
■静力弹塑性分析方法( PUSHOVER 分析方法)简介静力弹塑性分析也称PUSHOVER 分析方法,是指在结构上施加竖向荷载并保持不变,同时施加某种分布的水平荷载,该水平荷载单调增加,构件逐步屈服,从而得到结构在横向静力作用下的弹塑性性能。
主要步骤为:(1)按通常做法建立结构模型,包括几何尺寸、物理参数等;(2)根据单元种类(梁、柱、支撑、剪力墙等)和材料类型(钢、钢筋混凝土),确定各单元塑性铰性质(恢复力模型),根据受力形式可分为轴压、弯曲、剪切、压弯铰。
一般程序将塑性铰集中在杆件两端,并不考虑沿杆长的分布,轴压铰集中在杆件中央;(3)施加全部竖向荷载;(4)确定结构的目标位移;(5)选择合适的水平加载模式,施加在结构上,逐渐增加水平荷载,结构构件相继屈服,随之修改其刚度(程序自动完成),直到达到结构目标位移,对结构性能进行评判。
■静力弹塑性分析的原理MIDAS 程序提供的pushover 的分析方法,主要基于两本手册,一本是由美国应用技术委员会编制的《混凝土建筑抗震评估和修复》(ATC —40),另一本是由美国联邦紧急管理厅出版的《房屋抗震加固指南》(FEMA273/274)。
程序中FEMA 较本构关系和性能指标就来自于(FEMA273/274),而pushover 方法的主干部分,即分析部分采用的是能力谱法CSM ,来自于ATC 一40 (1996)和FEMA-273(1997)。
其主要步骤如下:(1)用单调增加水平荷载作用下的静力弹塑性分析,计算结构的基底剪力b V 一顶点位移n u 曲线(图1(a ))。
(2)建立能力谱曲线:对不很高的建筑结构,地震反应以第一振型为主,可用等效单自由度体系代替原结构。
因此,可以将b V —n u 曲线转换为谱加速度aS 一谱位移d S 曲线,即能力谱曲线(图l (b ))。
图1 pushover 曲线和能力谱之间的转换(3)建立需求谱曲线需求谱曲线分为弹性和弹塑性两种需求谱。
静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点Pushover分析法1、Pushover分析法优点:(1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。
(2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。
2、Pushover分析法缺点:(1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。
(2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。
(3)只能从整体上考察结构的性能,得到的结果较为粗糙。
且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。
不能完全真实反应结构在地震作用下性状。
二、弹塑性时程分析法1、时程分析法优点:(1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。
(2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。
(3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。
(4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。
2、时程分析法缺点:(1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。
(2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。
所以此法的计算工作十分繁重,必须借助于计算机才能完成。