【高中数学】2018数学人教A版必修四阶段质量检测:(一) Word版含解析
- 格式:doc
- 大小:184.50 KB
- 文档页数:12
阶段质量检测(一) A 卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知AD DB =45,DE ∥BC ,则ECAC 等于( )A.95B.54C.59D.49解析:选C ∵DE ∥BC ,AD DB =45,∴AB DB =95.∴DB AB =59.又∵DB AB =EC AC ,∴EC AC =59.2.如图,∠ACB =90°,CD ⊥AB 于D ,AD =3,CD =2,则AC ∶BC 的值是( )A .3∶2B .9∶4 C.3∶ 2D.2∶ 3 解析:选A Rt △ACD ∽Rt △CBD , ∴AC BC =AD CD =32.3.在△ABC 中,AB =9,AC =12,BC =18,D 为AC 上一点,DC =23AC ,在AB 上取一点E ,得到△ADE .若图中的两个三角形相似,则DE 的长是( )A .6B .8C .6或8D .14解析:选C 依题意,本题有两种情形:(1)如图1,过D 作DE ∥CB 交AB 于E . 则AD AC =DECB . 又∵DC =23AC ,∴AD AC =13.∴DE =13BC =6.(2)如图2,作∠ADE =∠B ,交AB 于E , 则△ADE ∽△ABC . ∴AD AB =DE BC . 又∵AD =13AC =4,∴DE =AD ·BC AB =4×189=8.∴DE 的长为6或8.4.如图,在△ABC 中,∠BAC =90°,AD 是斜边BC 上的高,DE 是△ACD 的高,且AC =5,CD =2,则DE 的值为( )A.2215B.215C.3215D.2125解析:选A AC 2=CD ·BC , 即52=2×BC , ∴BC =252.∴AB =BC 2-AC 2=2524-52=5212. ∵DE AB =DC BC ,∴DE =2215.5.如图,在Rt △ABC 中,CD 为斜边AB 上的高,若BD =3 cm ,AC =2 cm ,则CD 和BC 的长分别为( )A. 3 cm 和3 2 cm B .1 cm 和 3 cm C .1 cm 和3 2 cm D. 3 cm 和2 3 cm解析:选D 设AD =x , 则由射影定理得x (x +3)=4, 即x =1(负值舍去), 则CD =AD ·BD =3(cm), BC =BD ·AB =3(3+1)=23(cm).6.如图,DE ∥BC ,S△ADE ∶S 四边形DBCE =1∶8,则AD ∶DB 的值为( )A .1∶4B .1∶3C .1∶2D .1∶5解析:选C 由S △ADE ∶S 四边形DBCE =1∶8, 得S △ADE ∶S △ABC =1∶9. ∵DE ∥BC , ∴△ADE ∽△ABC . ∴⎝⎛⎭⎫AD AB 2=S △ADE S △ABC =19.∴AD AB =13,AD DB =12.7.△ABC 和△DEF 满足下列条件,其中不一定使△ABC 与△DEF 相似的是( ) A .∠A =∠D =45°38′,∠C =26°22′,∠E =108° B .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =16 C .BC =a ,AC =b ,AB =c ,DE =a ,EF =b ,DF =c D .AB =AC ,DE =DF ,∠A =∠D =40° 解析:选C A 项中∠A =∠D ,∠B =∠E =108°, ∴△ABC ∽△DEF ;B 项中AB ∶AC ∶BC =EF ∶DE ∶DF =2∶3∶4; ∴△ABC ∽△EFD ;D 项中AB AC =DEDF ,∠A =∠D ,∴△ABC ∽△DEF ;而C 项中不能保证三边对应成比例.8.在Rt △ACB 中,∠C =90°,CD ⊥AB 于D .若BD ∶AD =1∶4,则tan ∠BCD 的值是( )A.14B.13C.12D .2解析:选C 由射影定理得CD 2=AD ·BD , 又BD ∶AD =1∶4.令BD =x ,则AD =4x (x >0),∴CD 2=4x 2,∴CD =2x ,tan ∠BCD =BD CD =x 2x =12.9.如图,在▱ABCD 中,E 为CD 上一点,DE ∶CE =2∶3,连接AE ,BE ,BD 且AE ,BD 交于点F ,则S △DEF ∶S △EBF ∶S △ABF 等于( )A .4∶10∶25B .4∶9∶25C .2∶3∶5D .2∶5∶25解析:选A ∵AB ∥CD ,∴△ABF ∽△EDF . ∴DE AB =DF FB =25.∴S △DEF S △ABF=⎝⎛⎭⎫252=425. 又△DEF 和△BEF 等高. ∴S △DEF S △EBF =DF FB =25=410. ∴S △DEF ∶S △EBF ∶S △ABF =4∶10∶25.10.如图,已知a ∥b ,AF BF =35,BCCD =3,则AE ∶EC 等于( )A.125B.512C.75D.57解析:选A ∵a ∥b ,∴AE EC =AG CD ,AF BF =AGBD .∵BCCD =3,∴BC =3CD ,∴BD =4CD . 又AF BF =35, ∴AG BD =AF BF =35.∴AG 4CD =35.∴AG CD =125.∴AE EC =AG CD =125.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上) 11.如图,设l 1∥l 2∥l 3,AB ∶BC =3∶2,DF =20,则DE =________.解析:EF ∶DE =AB ∶BC =3∶2, ∴DE DF =25,又DF =20,∴DE =8.答案:812.如图,AB 与CD 相交于点E ,过E 作BC 的平行线与AD 的延长线交于点P ,已知∠A =∠C ,PD =2DA =2,则PE =________.解析:∵PE ∥BC ,∠C =∠A , ∴∠PED =∠C =∠A . ∴△PDE ∽△PEA . ∴PE PA =PD PE , 即PE 2=PD ·PA . 又PD =2,DA =1, ∴PA =3.∴PE 2=2×3=6,故PE = 6. 答案: 613.如图,在矩形ABCD 中,AB =3,BC =3,BE ⊥AC ,垂足为E ,则ED =________.解析:在Rt △ABC 中,BC =3,AB =3, 所以∠BAC =60°.因为BE ⊥AC ,AB =3,所以AE =32. 在△EAD 中,∠EAD =30°,AD =3, 由余弦定理知,ED 2=AE 2+AD 2-2AE ·AD ·cos ∠EAD=34+9-2×32×3×32=214, 故ED =212. 答案:21214.如图,▱ABCD 中,N 是AB 延长线上一点,BCBM -ABBN 的值为________. 解析:∵AD ∥BM ,∴AB BN =DM MN . 又∵DC ∥AN , ∴DM MN =MC MB. ∴DM +MN MN =MC +MB MB , 即DN MN =BC BM .∴BC BM -AB BN =DN MN -DM MN =MN MN =1.答案:1三、解答题(本大题共4小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,△ABC 中,BC 的中点为D ,∠ADB 和∠ADC 的平分线分别交AB ,AC 于点M ,N .求证:MN ∥BC .证明:∵MD 平分∠ADB , ∴AD BD =AM MB. ∵ND 平分∠ADC ,∴AD DC =ANNC . ∵BD =DC ,∴AM MB =AD BD =AD DC =ANNC . ∴MN ∥BC .16.(本小题满分12分)如图,已知△ABC 中,AB =AC ,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F .求证:BP 2=PE ·PF . 证明:连接PC , ∵AB =AC ,AD 是中线, ∴AD 是△ABC 的对称轴,故PC =PB . ∠PCE =∠ABP . ∵CF ∥AB , ∴∠PFC =∠ABP , 故∠PCE =∠PFC . ∵∠CPE =∠FPC , ∴△EPC ∽△CPF , 故PC PF =PE PC , 即PC 2=PE ·PF , ∴BP 2=PE ·PF .17.(本小题满分12分)如图,四边形ABCD 是平行四边形,P 是BD 上任意一点,过P 点的直线分别交AB ,DC 于E ,F ,交DA ,BC 的延长线于G ,H .(1)求证:PE ·PG =PF ·PH ;(2)当过P 点的直线绕点P 旋转到F ,H ,C 重合时,请判断PE ,PC ,PG 的关系,并给出证明.解:(1)证明:∵AB ∥CD ,∴PE PF =PB PD . ∵AD ∥BC ,∴PH PG =PBPD .∴PE PF =PHPG.∴PE ·PG =PF ·PH . (2)关系式为PC 2=PE ·PG .证明:由题意可得到右图, ∵AB ∥CD ,∴PE PC =PB PD . ∵AD ∥BC , ∴PC PG =PB PD. ∴PE PC =PCPG ,即PC 2=PE ·PG .18.(本小题满分14分)如图(1),已知矩形ABCD 中,AB =1,点M 在对角线AC 上,AM =14AC ,直线l 过点M 且与AC 垂直,与边AD 相交于点E .(1)如果AD =3,求证点B 在直线l 上;(2)如图(2),如果直线l 与边BC 相交于点H ,直线l 把矩形分成的两部分的面积之比为2∶7,求AD 的长;(3)如果直线l 分别与边AD ,AB 相交于E ,G ,当直线l 把矩形分成的两部分的面积之比为1∶6时,求AE 的长.解:(1)证明:连接BD ,交AC 于O 点, ∵四边形ABCD 为矩形,∴OA =12AC .∵AM =14AC ,∴AM =OM .在Rt △ABD 中,AB =1,AD =3, ∴BD =AB 2+AD 2=2.∴BO =OA =AB =1.∴△AOB 是等边三角形.又AM =OM , ∴BM ⊥AO .∴点B 在直线l 上.(2)设AD =a ,则AC =1+a 2.∵∠EAM =∠CAD ,∠AME =∠D =90°, ∴△AEM ∽△ACD .∴AE AC =AMAD. 又AM =14AC =141+a 2,∴AE =AC ·AM AD =1+a24a.由AE ∥HC ,得△AEM ∽△CHM , ∴AE HC =AM MC =13.∴HC =3AE . 又BH =BC -HC =a -3(1+a 2)4a =a 2-34a ,而S 梯形ABHE =12(AE +BH )·AB=12⎝⎛⎭⎫1+a 24a +a 2-34a ·1=a 2-14a. ∵S 梯形ABHE ∶S 梯形EHCD =2∶7, ∴S 梯形ABHE =29S 矩形ABCD =29a .∴a 2-14a =29a .解得a =3,即AD =3.(3)如图,由题意知直线l 分别交AD ,AC ,AB 于E ,M ,G 三点, 则有△AEG ∽△DCA ,∴AG AD =AE DC . ∵DC =1, ∴AE =AGAD.∵S △AEG =12AE ·AG ,S △AEG S 多边形EGBCD =16,∴S △AEG S 矩形ABCD =17.∴12AE ·AG AD ·DC =17, 即AE ·AG AD =27.∴AE 2=27,AE =147.。
函数 f (x ) = tanx +亍的单调增区间为阶段质量检测(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分•在每小题给出的四个选项中, 只有一项是符合题目要求的 )1.在0°〜360°的范围内,与一510°终边相同的角是( )A. 330° B . 210 C. 150° D . 30°.右 sinB .C.C.5.化简,1+ 2sin ( n - 2 )• cos ( n - 2 )得( )A. sin 2 + cos 2 B . cos 2 — sin 2 C. sin 2 — cos 2 D . ± cos 2 — sin 23. 已知弧度数为2的圆心角所对的弦长也是 2, 则这个圆心角所对的弧长是(A.C. 2sin 1 D . sin 24. 的图象的一条对称轴是A.nX = 4 B . x = 2A. )函数 f (x ) = siiA. j k n —牙,k n+今,k € ZB. (k n , (k + 1) n ) , k € ZC. k n —苧,k 冗 + 才,k € ZD. k n — 4, k n7.已知sina=F ,则sin—a 的值为(A £B .12 C.A. C. 9.a 是第三象限第一象限B .第二象限 第三象限D .第四象限函数 y = cos 2x + sin x cosa acos 2,则2的终边所在的象限是()-6 <x 违的最大值与最小值之和为3 3 A.2B . 2 C . 0D. 4 10 .将函数y =sin x —;的图象上所有点的横坐标伸长到原来的 32倍(纵坐标不变),n再将所得的图象向左平移n 个单位,得到的图象对应的解析式为(31 1 n A. y = sin B . y = sin i ?x — q,1 n 、C. y = sin 2x —石Ic n ■D . y = sin 2x —石11 .已知函数y = A sin(w x+ $ )(A>0, w >0, | $ |< n )的一段图象如图所示,则函数的解析式为()44A. y = 2sin i 2x ―专B. C .D.y = 2sin |2x — -4 或 y = 2sin j 2x +y = 2sin 2x + 苧y = 2si n 2x —茅3n~T12 .函数 f (x ) = A sin 3 x ( w >0),对任意 x 有 f i x —,且f么f 4等于()A. a B . 2aC. 3a D . 4a二、填空题(本大题共4小题,每小题5分,共20分)13.已知 tan a =— 3, nn <a <n,那么 cos a — sin a 的值是14.设 f (n ) = cos n+ 4,贝V f (1) + f (2) + f (3) +•••+ f (2 015)等于15 •定义运算a *b 为a *b =a (a wb ),例如1*2 = 1,则函数f (x ) = sin x *cos x 的值 b(a >b ),域为 (n 、 16.给出下列4个命题:①函数y = sin 严―丿的最小正周期是nn ;②直线x =令是函数y = 2sin 3x — ~的一条对称轴;③若 Sin a + cos a = — 5,且a 为第二象限角,则tan a- 2 —4;④函数y = cos (2 — 3x )在区间, 3上单调递减.其中正确的是出所有正确命题的序号)•三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、 证明过程或演算步骤)tan a,亠17. (10分)已知=—1,求下列各式的值:tan a — 1sin a — 3cos a2⑴sin a+ cos a ;⑵"血从迹"2"18. (12 分)已知函数 f (x ) = 2sin g x —才,x € R【勺值;(1)用五点法画出它在一个周期内的闭区间上的图象;⑵写出f (x )的值域、最小正周期、对称轴,单调区间.x + $ ) , x € R 其中 0W $ <nn 的图象与 y 轴交于点(0,1).(1) 求$的值;Cj Cj⑵ 求函数f (x )的单调递增区间.(nx+~43-1 -2-32LTT Sir 3rr 7TT 2TT 11 2 44 2 420. (12 分)如图,函数 y = 2sin( n⑵求函数y = 2sin( n x+ $ )的单调递增区间;(3)求使y》1的x的集合.21. (12 分)已知函数f(x) = A sin( co x+Q )( A>0, co >0, | $ |< n ),在同一周期内,当x=誇时,f (x)取得最大值3;当x =彳2时,f(x)取得最小值一3.(1) 求函数f (x)的解析式;(2) 求函数f(x)的单调递减区间;n n(3) 若x€ |- —, y 时,函数h( x) = 2f (x) + 1 —m的图象与x轴有两个交点,求实数m 的取值范围.n、22. (12 分)如图,函数y= 2cos( o x + 0 )(x€ R, o >0, 0< 0 < y 的图象与y 轴交于点(0 , 3),且该函数的最小正周期为n .(1)求0和o的值;1 .解析:选B因为一510 °答=—360 °案X 2 + 210。
模块综合检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若sinα2=√33,则cos α=()A.−23B.−13C.13D.23解析:cosα=1-2sin2α2=1−2×(√33)2=13.故选C.答案:C2若tan(α-3π)>0,sin(-α+π)<0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由已知得tanα>0,sinα<0,∴α是第三象限角.答案:C3函数f(x)=si n(2x+π3)的图象的对称轴方程可以为()A.x=π12B.x=5π12C.x=π3D.x=π6解析:由2x+π3=kπ+π2(k∈Z),得x=kπ2+π12(k∈Z).当k=0时,x=π12 .答案:A4已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()A.π3B.π2C.2π3D.5π6解析:因为a⊥(2a+b),所以a·(2a+b)=0, 即2|a|2+a·b=0.设a与b的夹角为θ,则有2|a |2+|a ||b |cos θ=0.又|b |=4|a |,所以2|a |2+4|a |2cos θ=0,则cos θ=−12,从而θ=2π3. 答案:C5已知a =(1,12),b =(1,-12),c=a +k b ,d=a-b ,c 与d 的夹角是π4,则k 的值为( ) A.−13B.−3C.-3或−13D.−1解析:c =(1,12)+(k ,-12k)=(1+k ,12-12k),d =(0,1). co s π4=12-12k √(1+k )+14(1-k ),解得k=-3或−13.答案:C6将函数y =√3cos x +sin x(x ∈R )的图象向左平移m (m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .π12B.π6C .π3D.5π6解析:y =√3cos x+sin x=2co s (x -π6),向左平移m (m>0)个单位长度后得到函数y=2co s (x +m -π6)的图象.由于该图象关于y 轴对称,所以m −π6=kπ(k ∈Z ),即m=k π+π6,故当k=0时,m 取得最小值π6.答案:B7对任意平面向量a ,b ,下列关系式中不恒成立的是( )A.|a ·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b )2=|a+b|2D.(a+b )·(a-b )=a 2-b 2。
2018年新人教A版高中数学必修四全册同步检测目录第1章1.1-1.1.1任意角第1章1.1-1.1.2弧度制第1章1.2-1.2.1任意角的三角函数第1章1.2-1.2.2同角三角函数的基本关系第1章1.3第1课时诱导公式二、三、四第1章1.3第2课时诱导公式五、六第1章1.4-1.4.1正弦函数、余弦函数的图象第1章1.4-1.4.2第1课时正、余弦函数的周期性与奇偶性第1章1.4-1.4.2第2课时正、余弦函数的单调性与最值第1章1.4-1.4.3正切函数的性质与图象第1章1.5函数y=Asin(ωx+φ)的图象第1章1.6三角函数模型的简单应用第1章章末复习课第1章单元评估验收(一)第2章2.1平面向量的实际背景及基本概念第2章2.2-2.2.2向量减法运算及其几何意义第2章2.2-2.2.3向量数乘运算及其几何意义第2章2.3-2.3.1平面向量基本定理第2章2.3-2.3.3平面向量的坐标运算第2章2.3-2.3.4平面向量共线的坐标表示第2章2.4-2.4.1平面向量数量积的物理背景及其含义第2章2.4-2.4.2平面向量数量积的坐标表示、模、夹角第2章2.5平面向量应用举例第2章章末复习课第2章单元评估验收(二)第3章3.1-3.1.1两角差的余弦公式第3章3.1-3.1.2两角和与差的正弦、余弦、正切公式第3章3.1-3.1.3二倍角的正弦、余弦、正切公式第3章3.2简单的三角恒等变换第3章章末复习课第3章单元评估验收(三)模块综合评价第一章三角函数1.1 任意角和弧度制1.1.1 任意角A级基础巩固一、选择题1.已知A={第二象限角},B={钝角},C={大于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=CC.A C D.A=B=C解析:钝角大于90°,小于180°,故B C,选项B正确.答案:B2.若角α的终边经过点M(0,-3),则角α()A.是第三象限角B.是第四象限角C.既是第三象限角,又是第四象限角D.不是任何象限的角解析:因为点M(0,-3)在y轴负半轴上,所以角α的终边不在任何象限.答案:D3.若α是第四象限角,则-α一定在()A.第一象限B.第二象限C.第三象限D.第四象限解析:因为α是第四象限角,所以k·360°-90°<α<k·360°,k∈Z.所以-k·360°<-α<-k·360°+90°,k∈Z,由此可知-α是第一象限角.答案:A4.终边与坐标轴重合的角α的集合是()A.{α|α=k·360°,k∈Z}B.{α|α=k·180°+90°,k∈Z}C.{α|α=k·180°,k∈Z}D.{α|α=k·90°,k∈Z}解析:终边在坐标轴上的角为90°或90°的倍数角,所以终边与坐标轴重合的角的集合为{α|α=k·90°,k∈Z}.答案:D5.下面说法正确的个数为()(1)第二象限角大于第一象限角;(2)三角形的内角是第一象限角或第二象限角;(3)钝角是第二象限角.A.0 B.1 C.2 D.3解析:第二象限角如120°比第一象限角390°要小,故(1)错;三角形的内角可能为直角,直角既不是第一象限角,也不是第二象限角,故(2)错;(3)中钝角是第二象限角是对的.所以正确的只有1个.答案:B二、填空题6.50°角的始边与x轴的非负半轴重合,把其终边按顺时针方向旋转3周,所得的角是________.解析:顺时针方向旋转3周转了-(3×360°)=-1 080°.又50°+(-1 080°)=-1 030°,故所得的角为-1 030°.答案:-1 030°7.若α为锐角,则角-α+k·360°(k∈Z)是第________象限角.解析:α为锐角,则角α是第一象限角,所以角-α是第四象限角,又因为角-α+k·360°(k∈Z)与-α的终边相同,所以角-α+k·360°(k∈Z)是第四象限角.答案:四8.在0°~360°范围内,与角-60°的终边在同一条直线上的角为________.解析:根据终边相同角定义知,与-60°终边相同角可表示为β=-60°+k·360°(k∈Z),当k=1时β=300°与-60°终边相同,终边在其反向延长线上且在0°~360°范围内角为120°.答案:120°,300°三、解答题9.如图所示,写出阴影部分(包括边界)的角的集合,并指出-950°12′是否是该集合中的角.解:题图阴影部分(包括边界)的角的范围是k·360°≤α≤k·360°+125°,k∈Z,所求集合为{α|k·360°≤α≤k·360°+125°,k∈Z},因为-950°12′=-3×360°+129°48′,所以-950°12′不是该集合中的角.10.已知角β的终边在直线3x-y=0上.(1)写出角β的集合S;(2)写出S中适合不等式-360°<β<720°的元素.解:(1)因为角β的终边在直线3x-y=0上,且直线3x-y=0的倾斜角为60°,所以角β的集合S={β|β=60°+k·180°,k∈Z}.(2)在S={β|β=60°+k·180°,k∈Z}中,取k=-2,得β=-300°,取k=-1,得β=-120°,取k=0,得β=60°,取k=1,得β=240°,取k=2,得β=420°,取k=3,得β=600°.所以S中适合不等式-360°<β<720°的元素分别是-300°,-120°,60°,240°,420°,600°.B级能力提升1.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于()A.{-36°,54°} B.{-126°,144°}C.{-126°,-36°,54°,144°} D.{-126°,54°}解析:令k=-1,0,1,2,则A,B的公共元素有-126°,-36°,54°,144°.答案:C2.如图,终边落在OA的位置上的角的集合是________;终边落在OB的位置上,且在-360°~360°内的角的集合是________.解析:终边落在OA的位置上的角的集合是{α|α=120°+k·360°,k∈Z};终边落在OB的位置上的角的集合是{α|α=315°+k·360°,k∈Z}(或{α|α=-45°+k·360°,k∈Z}),取k=0,1,得α=315°,-45°,所求的集合是{-45°,315°}.答案:{α|α=120°+k·360°,k∈Z}{-45°,315°}3.已知角α的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M有几类终边不相同的角?(2)集合M中大于-360°且小于360°的角是哪几个?(3)写出集合M中的第二象限角β的一般表达式.解:(1)集合M的角可以分成四类,即终边分别与-150°,-60°,30°,120°的终边相同的角.(2)令-360°<30°+k·90°<360°,则-133<k<113,又因为k∈Z,所以k=-4,-3,-2,-1,0,1,2,3,所以集合M中大于-360°且小于360°的角共有8个,分别是-330,-240°,-150,-60°,30°,120°,210°,300.(3)集合M中的第二象限角与120°角的终边相同,所以β=120°+k·360°,k∈Z.第一章 三角函数 1.1 任意角和弧度制1.1.2 弧度制A 级 基础巩固一、选择题1.下列说法中,错误的是( ) A .半圆所对的圆心角是π rad B .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度解析:根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误. 答案:D2.时钟的分针在1点到3点20分这段时间里转过的弧度为( ) A.143π B .-143π C.718π D .-718π解析:显然分针在1点到3点20分这段时间里,顺时针转过了73周,转过的弧度为-73×2π=-143π. 答案:B3.在半径为10的圆中,240°的圆心角所对弧长为( ) A.403π B.203πC.2003π D.4003π 解析:240°=240180π=43π,所以弧长l =|α|·r =43π×10=403π.答案:A4.把-11π4表示成θ+2k π(k ∈Z)的形式,使|θ|最小的θ值是( )A .-3π4B .-π4C.π4D.3π4解析:令-11π4=θ+2k π(k ∈Z),则θ=-11π4-2k π(k ∈Z).取k ≤0的值,k =-1时,θ=-3π4,|θ|=3π4;k =-2时,θ=5π4,|θ|=5π4>3π4;k =0时,θ=-11π4,|θ|=11π4>3π4.答案:A5.一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( ) A.π2 B.π3 C. 3D. 2解析:设圆内接正方形的边长为a ,则该圆的直径为2a , 所以弧长等于a 的圆弧所对的圆心角为α=l r =a22a = 2.答案:D二、填空题6.π12 rad =________度,________ rad =-300°. 解析:π12=180°12=15°;-300°=-300×π180=-5π3.答案:15 -5π37.已知扇形的圆心角为60°,半径为3,则扇形的面积是________. 解析:因为60°=π3 rad则扇形的面积S =12×π3×32=32π.答案:32π8.(1)1°的圆心角所对弧长为1米,则此圆半径为________米; (2)1 rad 的圆心角所对弧长为1米,则此圆半径为______米. 解析:(1)因为|α|=1°=π180,l =1,所以r =l|α|=1π180=180π.(2)因为l =1,|α|=1,所以r =l|α|=1. 答案:(1)180π (2)1三、解答题 9.已知α=2 000°.(1)把α写成2k π+β [k ∈Z ,β∈[0,2π)]的形式; (2)求θ,使得θ与α的终边相同,且θ∈(4π,6π).解:(1)α=2 000°=5×360°+200°=10π+109π. (2)θ与α的终边相同,故θ=2k π+109π,k ∈Z , 又θ∈(4π,6π),所以k =2时,θ=4π+109π=46π9.10.用弧度表示终边落在如图所示阴影部分内(不包括边界)的角的集合.解:(1)如题图①,330°角的终边与-30°角的终边相同,将-30°化为弧度,即-π6,而75°=75×π180=5π12, 所以终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π-π6<θ<2k π+5π12,k ∈Z .(2)如题图②,因为30°=π6,210°=7π6,这两个角的终边所在的直线相同,因此终边在直线AB 上的角为α=k π+π6,k ∈Z ,又终边在y 轴上的角为β=k π+π2,k ∈Z ,从而终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪k π+π6<θ<k π+π2,k ∈Z .B 级 能力提升1.集合⎩⎨⎧α⎪⎪⎪⎭⎬⎫k π+π4≤α≤k π+π2,k ∈Z 中角的终边所在的范围(阴影部分)是( )解析:当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z ,所以选C.答案:C2.钟表的时间经过了一小时,则时针转过了________rad.解析:钟表的时针是按顺时针的方向旋转的,经过12小时,时针转过-2π rad ,所以经过一小时,时针转过-π6rad.答案:-π63.已知半径为10的圆O 中,弦AB 的长为10.求α(∠AOB )所在的扇形的弧长l 及弧所在的弓形的面积S .解:由⊙O 的半径r =10=AB ,知△AOB 是等边三角形, 所以α=∠AOB =60°=π3.所以弧长l =a ·r =π3×10=10π3,所以S 扇形=12lr =12×10π3×10=50π3,又S △AOB =12·AB ·53=12×10×53=5032,所以S =S 扇形-S △AOB =50⎝ ⎛⎭⎪⎫π3-32.第一章 三角函数 1.2 任意角的三角函数 1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.已知角α终边经过P ⎝ ⎛⎭⎪⎫32,12,则cos α等于( )A.12B.32C.33 D .±12解析:由三角函数定义可知,角α的终边与单位圆交点的横坐标为角α的余弦值,故cos α=32. 答案:B2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM解析:因为78π是第二象限角,所以sin 78π>0,cos 78π<0,所以MP >0,OM <0, 所以MP >0>OM . 答案:D3.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A.⎝ ⎛⎭⎪⎫12,32B.⎝ ⎛⎭⎪⎫-12,32C.⎝⎛⎭⎪⎫-32,12D.⎝ ⎛⎭⎪⎫12,-32解析:设P (x ,y ),因为角α=2π3在第二象限,所以x =-12,y =1-⎝ ⎛⎭⎪⎫-122=32,所以P ⎝ ⎛⎭⎪⎫-12,32.答案:B4.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形C .直角三角形D .以上三种情况都可能解析:因为sin αcos β<0,α,β∈(0,π),所以sin α>0,cos β<0,所以β为钝角.答案:B5.函数y =11+sin x的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+2k π,k ∈ZC.{}x |x ≠2k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-3π2+2k π,k ∈Z解析:因为1+sin x ≠0,所以sin x ≠-1.又sin 3π2=-1,所以x ≠3π2+2k π,k ∈Z.答案:A 二、填空题6.(2016·四川卷)sin 750°=________.解析:sin 750°=sin(30°+2×360°)=sin 30°=12.答案:127.sin 1 485°的值为________.解析:sin 1 485°=sin(4×360°+45°)=sin 45°=22.答案:228.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.解析:作图如下,因为θ∈⎝ ⎛⎭⎪⎫π3,π2,所以θ >π4,根据三角函数线的定义可知AT >MP >OM .答案:AT >MP >OM 三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°; (2)cos ⎝ ⎛⎭⎪⎫-233π+tan 17π4.解:(1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 120°cos 30°+cos 60°sin 30°=32×32+12×12=1.(2)原式=cos ⎣⎢⎡⎦⎥⎤π3+(-4)×2π+tan ⎝ ⎛⎭⎪⎫π4+2×2π=cos π3+tan π4=12+1=32.10.已知P (-2,y )是角α终边上一点,且sin α=-55,求cos α与tan α的值.解:因为点P 到原点的距离为r =4+y 2, 所以sin α=y 4+y 2=-55,所以y 2+4=5y 2,所以y 2=1.又易知y <0,所以y =-1,所以r =5, 所以cos α=-25=-255,tan α=-1-2=12.B 级 能力提升1.若α是第三象限角,则|sin α|sin α-cos α|cos α|=( )A .0B .1C .2D .-2解析:因为α是第三象限角,所以sin α<0,cos α<0, 所以|sin α|sin α-cos α|cos α|=-1-(-1)=0. 答案:A2.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________. 解析:因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0, 所以点(-3cos θ,4cos θ)到原点的距离r =5|cos θ|=-5cos θ, 所以cos α=-3cos θ-5cos θ=35.答案:353.利用三角函数线,写出满足|cos α|>|sin α|的角α的集合. 解:如图,作出单位圆.所以角α满足的集合为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪k π-π4<α<k π+π4,k ∈Z .第一章 三角函数 1.2 任意角的三角函数 1.2.2 同角三角函数的基本关系A 级 基础巩固一、选择题1.化简1-sin 2160°的结果是( ) A .cos 160° B .-cos 160° C .±cos 160° D .±|cos 160°| 解析:1-sin 2160°=cos 2160°=|cos 160°|=-cos 160°. 答案:B2.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=35,则tan α=( )A.34 B .-34 C.43 D .-43解析:由sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π得cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.答案:B3.若α是三角形的内角,且sin α+cos α=23,则三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等边三角形解析:将sin α+cos α=23两边平方,得1+2sin αcos α=49,即2sin α·cos α=-59.又α是三角形的内角,所以sin α>0,cos α<0,所以α为钝角.答案:A4.若sin θ=m -3m +5,cos θ=4-2mm +5,则m 的值为( )A .0B .8C .0或8D .3<m <9解析:由sin 2θ+cos 2θ=1得⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1,解得m =0或8. 答案:C5.已知sin αcos α=18,且π<α<5π4,则cos α-sin α的值为( )A.32B .-32C.34 D .-34解析:(cos α-sin α)2=1-2sin αcos α=1-2×18=34,因为π<α<54π,所以cos α<sin α,所以cos α-sin α<0, 所以cos α-sin α=-34=-32. 答案:B 二、填空题6.在△ABC 中,若cos(A +B )>0,sin C =13,则tan C 等于________.解析:在△ABC 中,因为cos(A +B )>0, 所以0<A +B <π2,又C =π-(A +B ),所以角C 是钝角,所以cos C =- 1-sin 2C =-223,所以tan C =sin C cos C =13-223=-24.答案:-247.若4sin α-2cos α5cos α+3sin α=10,则tan α的值为________.解析:因为4sin α-2cos α5cos α+3sin α=10,所以4sin α-2cos α=50cos α+30sin α, 所以26sin α=-52cos α,即sin α=-2cos α. 所以tan α=-2. 答案:-28.已知-π2<x <0,sin x +cos x =15,则sin x -cos x =________.解析:由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125,即2sin x cos x =-2425,所以(sin x -cos x )2=1-2sin x ·cos x =4925,又因为-π2<x <0,所以sin x <0,cos x >0,sin x -cos x <0,所以sin x -cos x =-75.答案:-75三、解答题9.已知tan α=23,求下列各式的值;(1)1sin αcos α; (2)sin 2α-2sin αcos α+4cos 2α.解:(1)1sin αcos α=sin 2α+cos 2αsin αcos α=tan 2α+1tan α=136.(2)sin 2α-2sin αcos α+4cos 2 a = sin 2α-2sin αcos α+4cos 2αsin 2α+cos 2α=tan 2α-2tan α+4tan 2α+1=49-43+449+1=2813.10.化简:tan α·1sin2α-1(α是第二象限角). 解:tan α·1sin2α-1=tan α·1-sin2αsin2α=tan α·cos2αsin2α=sin αcos α·⎪⎪⎪⎪⎪⎪cos αsin α. 因为α为第二象限角, 所以sin α>0,cos α<0, 所以原式=sin αcos α·-cos αsin α=-1.B 级 能力提升1.已知α是锐角,且tan α是方程4x 2+x -3=0的根,则sin α=( ) A.45 B.35 C.25 D.15解析:因为方程4x 2+x -3=0的根为x =34或x =-1,又因为tan α是方程4x 2+x -3=0的根且α为锐角, 所以tan α=34,所以sin α=34cos α,即cos α=43sin α,又sin 2α+cos 2α=1, 所以sin 2α+169sin 2α=1, 所以sin 2α=925(α为锐角),所以sin α=35.答案:B 2.使1-cos α1+cos α=cos α-1sin α成立的α的范围是__________.解析:1-cos α1+cos α=(1-cos α)2sin 2α=1-cos α|sin α|=cos α-1sin α,所以sin α<0,故2k π-π<α<2k π,k ∈Z. 答案:{α|2k π-π<α<2k π,k ∈Z}3.求证:sin α(1+tan α)+cos α·⎝ ⎛⎭⎪⎫1+1tan α=1sin α+1cos α. 证明:左边=sin α·⎝ ⎛⎭⎪⎫1+sin αcos α+cos α·⎝ ⎛⎭⎪⎫1+cos αsin α =sin α+sin2αcos α+cos α+cos2αsin α=sin2α+cos2αsin α+sin2α+cos2αcos α=1sin α+1cos α=右边.即原等式成立.第一章 三角函数 1.3 三角函数的诱导公式 第1课时 诱导公式二、三、四A 级 基础巩固一、选择题1.sin 7π6的值是( )A .-12B .-2C .2 D.12解析:sin 7π6=sin ⎝⎛⎭⎪⎫π+π6=-sin π6=-12.答案:A2.sin 600°+tan(-300°)的值是( ) A .-32 B.32 C .-12+ 3 D.12+ 3 解析:原式=sin(360°+240°)+tan(-360°+60°)=-sin 60°+tan 60°=32. 答案:B3.已知sin(π+α)=35,α为第三象限角,则cos(π-α)=( )A.35 B .-35 C.45 D .-45解析:因为sin (π+α)=35,所以sin α=-35.因为α为第三象限角,所以cos α=-45.所以cos (π-α)=-cos α=45.答案:C4.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,若f (2 017)=5,则f (2 018)等于( )A .4B .3C .-5D .5解析:因为f (2 017)=a sin (2 017π+α)+b cos (2 017π+β)=-a sin α-b cos β=5,所以f (2 018)=a sin (2 018π+α)+b cos (2 018π+β)=a sin α+b cos β=-5.答案:C5.设tan(5π+α)=m ,则sin (α+3π)+cos (π+α)sin (-α)-cos (π+α)的值等于( )A.m +1m -1B.m -1m +1 C .-1D .1解析:因为tan(5π+α)=tan[4π+(π+α)]= tan(π+α)=tan α,所以tan α=m ;所以原式=sin (π+α)-cos α-sin α+cos α=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1. 答案:A 二、填空题6.已知tan ⎝ ⎛⎭⎪⎫π3-α=13,则tan ⎝ ⎛⎭⎪⎫2π3+α=________.解析:因为tan ⎝ ⎛⎭⎪⎫2π3+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-α=-tan ⎝ ⎛⎭⎪⎫π3-α,所以tan ⎝ ⎛⎭⎪⎫2π3+α=-13.答案:-137.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)=________.解析:由sin(π+α)=-sin α,得sin α=-45.故cos(α-2π)=cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫-452=35.答案:358.化简sin 2(π+α)-cos(π+α)cos(-α)+1的值是________. 解析:原式=(-sin α)2-(-cos α)·cos α+1= sin 2α+cos 2α+1=2. 答案:2 三、解答题9.计算下列各式的值:(1)cos π5+cos 2π5+cos 3π5+cos 4π5;(2)sin 420°cos 330°+sin(-690°)cos(-660°).解:(1)原式=⎝ ⎛⎭⎪⎫cos π5+cos 4π5+⎝ ⎛⎭⎪⎫cos 2π5+cos3π5= ⎣⎢⎡⎦⎥⎤cos π5+cos ⎝ ⎛⎭⎪⎫π-π5+⎣⎢⎡⎦⎥⎤cos 2π5+cos ⎝ ⎛⎭⎪⎫π-2π5= ⎝ ⎛⎭⎪⎫cos π5-cos π5+⎝ ⎛⎭⎪⎫cos 2π5-cos2π5=0. (2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)·cos(-2×360°+60°)=sin 60°cos 30°+sin 30°cos 60°= 32×32+12×12=1. 10.已知sin(α+π)=45,且sin αcos α<0,求2sin (α-π)+3tan (3π-α)4cos (α-3π)的值.解:因为sin(α+π)=45,所以sin α=-45,又因为sin αcos α<0, 所以cos α>0,cos α= 1-sin 2α=35,所以tan α=-43.所以原式=-2sin α-3tan α-4cos α=2×⎝ ⎛⎭⎪⎫-45+3×⎝ ⎛⎭⎪⎫-434×35=-73.B 级 能力提升1.下列三角函数:①sin ⎝ ⎛⎭⎪⎫n π+4π3;②cos ⎝ ⎛⎭⎪⎫2n π+π6;③sin ⎝ ⎛⎭⎪⎫2n π+π3;④cos ⎣⎢⎡⎦⎥⎤(2n +1)π-π6;⑤sin ⎣⎢⎡⎦⎥⎤(2n +1)π-π3,上述中的n ∈Z.其中与sin π3的值相同的是( )A .①②B .①③④C .②③⑤D .①③⑤解析:①sin ⎝ ⎛⎭⎪⎫n π+43π=⎩⎨⎧sin π3(n 为奇数),-sin π3(n 为偶数);②cos ⎝ ⎛⎭⎪⎫2n π+π6=cos π6=sin π3;③sin ⎝⎛⎭⎪⎫2n π+π3=sin π3;④cos ⎣⎢⎡⎦⎥⎤(2n +1)π-π6=cos 5π6=-sin π3;⑤sin ⎣⎢⎡⎦⎥⎤(2n +1)π-π3=sin π3.答案:C2.已知f (x )=⎩⎪⎨⎪⎧sin πx (x <0),f (x -1)-1(x >0),则f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116=________.解析:f ⎝ ⎛⎭⎪⎫-116=sin ⎝ ⎛⎭⎪⎫-116π=sin π6=12,f ⎝ ⎛⎭⎪⎫116=f ⎝ ⎛⎭⎪⎫56-1=f ⎝ ⎛⎭⎪⎫-16-2=sin ⎝ ⎛⎭⎪⎫-π6-2=-52, 所以f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116=12-52=-2. 答案:-23.已知α是第二象限角,且tan α=-2. (1)求cos 4α-sin 4α的值;(2)设角k π+α(k ∈Z)的终边与单位圆x 2+y 2=1交于点P ,求点P 的坐标. 解:(1)原式=(cos 2α+sin 2α)(cos 2α-sin 2α)=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-(-2)21+(-2)2=-35.(2)由tan α=-2得sin α=-2cos α, 代入sin 2α+cos 2α=1得cos 2α=15,因为α是第二象限,所以cos α<0, 所以cos α=-55,sin α=tan αcos α=255. 当k 为偶数时,P 的坐标⎩⎨⎧x =cos (k π+α)=cos α=-55,y =sin (k π+α)=sin α=255,即P ⎝⎛⎭⎪⎫-55,255. 当k 为奇数时,P 的坐标⎩⎨⎧x =cos (k π+α)=cos (π+α)=-cos α=55,y =sin (k π+α)=sin (π+α)=-sin α=-255, 即P ⎝ ⎛⎭⎪⎫55,-255. 综上,点P 的坐标为⎝ ⎛⎭⎪⎫-55,255或⎝ ⎛⎭⎪⎫55,-255.第一章 三角函数 1.3 三角函数的诱导公式 第2课时 诱导公式五、六A 级 基础巩固一、选择题1.sin 95°+cos 175°的值为( ) A .sin 5° B .cos 5° C .0D .2sin 5°解析:原式=cos 5°-cos 5°=0. 答案:C2.若sin ⎝ ⎛⎭⎪⎫π2+θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:由于sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0.所以角θ的终边落在第二象限.答案:B3.如果角θ的终边经过点⎝ ⎛⎭⎪⎫-35,45,那么sin ⎝ ⎛⎭⎪⎫π2+θ+cos(π-θ)+tan(2π-θ)=( ) A .-43B.43C.34D .-34解析:易知sin θ=45,cos θ=-35,tan θ=-43.原式=cos θ-cos θ-tan θ=43.答案:B4.若角A 、B 、C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cos A +C2=sin BD .sin B +C 2=cos A2解析:因为A +B +C =π,所以A +B =π-C ,A +C 2=π-B 2,B +C 2=π-A2,所以cos(A +B )=cos (π-C )=-cos C , sin(A +B )=sin (π-C )=sin C ,cos A +C 2=cos ⎝ ⎛⎭⎪⎫π2-B 2=sin B2,sin B +C 2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2.答案:D5.若sin ⎝ ⎛⎭⎪⎫π3+α=13,则cos ⎝ ⎛⎭⎪⎫π6-α=( ) A .-223 B .-13C.13D.223解析:因为π6-α=π2-⎝ ⎛⎭⎪⎫π3+α.所以cos ⎝ ⎛⎭⎪⎫π6-α=cos⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3+α=sin ⎝ ⎛⎭⎪⎫π3+α=13答案:C 二、填空题6.若cos α=15,且α是第四象限角,则cos ⎝⎛⎭⎪⎫α+π2=________.解析:因为cos α=15,且α是第四象限角,所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫152=-265.所以cos ⎝⎛⎭⎪⎫α+π2=-sin α=265.答案:2657.已知sin ⎝ ⎛⎭⎪⎫π2+α=1010,则sin ⎝ ⎛⎭⎪⎫3π2-α=________. 解析:因为sin ⎝ ⎛⎭⎪⎫π2+α=1010,所以cos α=1010.又因为sin ⎝ ⎛⎭⎪⎫3π2-α=-cos α,所以sin ⎝ ⎛⎭⎪⎫3π2-α=-1010.答案:-10108.sin 21°+sin 22°+sin 245°+sin 288°+sin 289°=________.解析:原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+sin 245°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+⎝ ⎛⎭⎪⎫222=1+1+12=52.答案:52三、解答题9.化简:sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫π2-αcos (π+α)+sin (π-α)cos ⎝ ⎛⎭⎪⎫π2+αsin (π+α).解:因为sin ⎝⎛⎭⎪⎫π2+α=cos α,cos ⎝⎛⎭⎪⎫π2-α=sin α,cos (π+α)=-cos α,sin (π-α)=sin α,cos ⎝ ⎛⎭⎪⎫π2+α=-sin α,sin (π+α)=-sin α, 所以原式=cos α·sin α-cos α+sin α·(-sin α)-sin α=-sin α+sin α=0.10.已知cos α=-45,且α为第三象限角.(1)求sin α的值;(2)求f (α)=tan (π-α)·sin (π-α)·sin ⎝ ⎛⎭⎪⎫π2-αcos (π+α)的值.解:(1)因为cos α=-45,且α为第三象限角,所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-452=-35.(2)f (α)=-tan α·sin α·cos α-cos α=tan αsin α=sin αcos α·sin α=-35-45×⎝ ⎛⎭⎪⎫-35=-920. B 级 能力提升1.已知f (x )=sin x ,下列式子成立的是( ) A .f (x +π)=sin xB .f (2π-x )=sin xC .f ⎝⎛⎭⎪⎫x -π2=-cos xD .f (π-x )=-f (x )解析:f (x +π)=sin(x +π)=-sin x ;f (2π-x )=sin(2π-x )=sin(-x )=-sin x ;f ⎝ ⎛⎭⎪⎫x -π2=sin ⎝ ⎛⎭⎪⎫x -π2=-sin ⎝ ⎛⎭⎪⎫π2-x =-cos x ;f (π-x )=sin(π-x )=sin x =f (x ).答案:C2.已知cos ⎝ ⎛⎭⎪⎫5π12+α=13,且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α= ________.解析:因为-π<α<-π2,所以-7π12<5π12+α<-π12.又cos ⎝ ⎛⎭⎪⎫5π12+α=13>0,所以sin ⎝ ⎛⎭⎪⎫5π12+α=-1-cos 2⎝ ⎛⎭⎪⎫5π12+α=-223, 由⎝ ⎛⎭⎪⎫π12-α+⎝ ⎛⎭⎪⎫5π12+α=π2, 得cos ⎝ ⎛⎭⎪⎫π12-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫5π12+α= sin ⎝ ⎛⎭⎪⎫5π12+α=-223.答案:-2233.设tan ⎝ ⎛⎭⎪⎫α+87π=a .求证:sin ⎝ ⎛⎭⎪⎫157π+α+3cos ⎝ ⎛⎭⎪⎫α-137πsin ⎝ ⎛⎭⎪⎫207π-α-cos ⎝ ⎛⎭⎪⎫α+227π=a +3a +1.证明:左边=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫87π+α+3cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+87π-3πsin ⎣⎢⎡⎦⎥⎤4π-⎝ ⎛⎭⎪⎫α+ 87π-cos ⎣⎢⎡⎦⎥⎤2π+⎝ ⎛⎭⎪⎫α+87π=-sin ⎝ ⎛⎭⎪⎫α+87π-3cos ⎝ ⎛⎭⎪⎫α+87π-sin ⎝ ⎛⎭⎪⎫α+87π-cos ⎝ ⎛⎭⎪⎫α+87π=tan ⎝ ⎛⎭⎪⎫α+87π+3tan ⎝⎛⎭⎪⎫α+87π+1.将tan ⎝ ⎛⎭⎪⎫α+87π=a 代入得,左边=a +3a +1=右边,所以等式成立.第一章 三角函数 1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象A 级 基础巩固一、选择题1.点M ⎝ ⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( ) A .0 B .1 C .-1 D .2 解析:由题意-m =sin π2,所以-m =1,所以m =-1.答案:C2.在同一坐标系中函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( ) A .重合B .形状相同,位置不同C .形状不同,位置相同D .形状不同,位置不同 解析:解析式相同,定义域不同. 答案:B3.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析:可以用特殊点来验证:x =0时,y =-sin 0=0,排除A 、C.当x =3π2时,y=-sin 3π2=1,排除B.答案:D4.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =2交点的个数是( ) A .0 B .1 C .2 D .3解析:由函数y =1+sin x ,x ∈[0,2π]的图象(如图所示),可知其与直线y =2只有1个交点.答案:B5.不等式cos x <0,x ∈[0,2π]的解集为( )A.⎝⎛⎭⎪⎫π2,3π2 B.⎣⎢⎡⎦⎥⎤π2,3π2 C.⎝ ⎛⎭⎪⎫0,π2 D.⎝ ⎛⎭⎪⎫π2,2π 解析:由y =cos x 的图象知,在[0,2π]内使cos x <0的x 的范围是⎝ ⎛⎭⎪⎫π2,3π2.答案:A 二、填空题6.用“五点法”画出y =2sin x 在[0,2π]内的图象时,应取的五个点为________________.解析:可结合函数y =sin x 的五个关键点寻找,即把相应的五个关键点的纵坐标变为原来的2倍即可.答案:(0,0),⎝ ⎛⎭⎪⎫π2,2,(π,0),⎝ ⎛⎭⎪⎫3π2,-2,(2π,0) 7.若sin x =2m +1且x ∈R ,则m 的取值范围是________. 解析:因为-1≤sin x ≤1,sin x =2m +1, 所以-1≤2m +1≤1,解得-1≤m ≤0. 答案:[-1,0] 8.函数y =log 12sin x 的定义域是______________. 解析:由log 12sin x ≥0知0<sin x ≤1,由正弦函数图象知2k π<x <2k π+π,k ∈Z.答案:{x |2k π<x <2k π+π,k ∈Z} 三、解答题9.用“五点法”作函数y =-2cos x +3(0≤x ≤2π)的简图. 解:列表:10.判断方程sin x =x10的根的个数.解:当x =3π时,y =x 10=3π10<1;。
阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若角α的终边经过点P (-1,3),则tan α的值为( ) A .-13 B .-3 C .-1010 D.31010解析:选B 由定义,若角α的终边经过点P (-1,3),∴tan α=-3.故选B. 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎪⎫α+π2=( )A .-63 B .-12 C.12 D.63解析:选A ∵sin ⎝ ⎛⎭⎪⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3.已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( ) A.π3 B .1 C.2π3D .3 解析:选B 弧长l =3r -2r =r ,则圆心角α=lr=1.4.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:选C f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4, 当k =-1时,则其中一条对称轴为x =-π4.5.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫x +π2B .y =cos ⎝⎛⎭⎪⎫x +π2C .y =cos ⎝ ⎛⎭⎪⎫2x +π2D .y =sin ⎝⎛⎭⎪⎫2x +π2 解析:选D 周期为π,排除A ,B ;y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为增函数,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为减函数,所以选D. 6.函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( )A.⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7.已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为( )A.12 B .-12 C.32 D .-32 解析:选C ∵⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4-α=π,∴3π4-α=π-⎝⎛⎭⎪⎫π4+α,∴sin ⎝⎛⎭⎪⎫3π4-α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4+α=32.8.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度解析:选B 函数y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos π2-2x -π6=cos ⎝ ⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos2x -π3.故选B.9.函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32 B .2 C .0 D.34解析:选A f (x )=1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54,∵-π6≤x ≤π6,∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数. A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6 B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6 C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3 D .f (x )=cos ⎝⎛⎭⎪⎫2x -π6解析:选B 依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.11.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝⎛⎭⎪⎫2x +3π4D .y =2sin ⎝⎛⎭⎪⎫2x -3π4 解析:选C 由图象可知A =2,因为π8-⎝ ⎛⎭⎪⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝ ⎛⎭⎪⎫-π8·2+φ=2,即sin ⎝⎛⎭⎪⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x +3π4. 12.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,且f ⎝ ⎛⎭⎪⎫-14=-a ,那么f ⎝ ⎛⎭⎪⎫94等于( )A .aB .2aC .3aD .4a解析:选A 由f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,得f (x +1)=f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12=f (x ),即1是f (x )的周期.而f (x )为奇函数,则f ⎝ ⎛⎭⎪⎫94=f ⎝ ⎛⎭⎪⎫14=-f ⎝ ⎛⎭⎪⎫-14=a .二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32,所以cos α-sin α=-1+32.答案:-1+3214.函数f (sin x )=cos 2x ,那么f ⎝ ⎛⎭⎪⎫12的值为________. 解析:令sin x =12,得x =2k π+π6或x =2k π+5π6,k ∈Z ,所以f ⎝ ⎛⎭⎪⎫12=cos π3=12. 答案:1215.定义运算a *b 为a *b =⎩⎪⎨⎪⎧a a ≤b ,ba >b ,例如1*2=1,则函数f (x )=sin x *cos x的值域为________.解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎢⎡⎦⎥⎤-1,22.答案:⎣⎢⎡⎦⎥⎤-1,22 16.给出下列4个命题:①函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝ ⎛⎭⎪⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝ ⎛⎭⎪⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).解析:函数y =sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期为π2,故①正确. 对于②,当x =7π12时,2sin ⎝⎛⎭⎪⎫3×7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确. 对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝ ⎛⎭⎪⎫23,3长度73>2π3,显然④错误.答案:①②③三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知tan α+1tan α=52,求2sin 2(3π-α)-3cos π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2的值.解:tan α+1tan α=52,即2tan 2α-5tan α+2=0,解得tan α=12或tan α=2.2sin 2(3π-α)-3cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2 =2sin 2α-3sin αcos α+2=2sin 2α-3sin αcos αsin 2α+cos 2α+2 =2tan 2α-3tan αtan 2α+1+2. 当tan α=12时,原式=2×⎝ ⎛⎭⎪⎫122-3×12⎝ ⎛⎭⎪⎫122+1+2=-45+2=65;当tan α=2时,原式=2×22-3×222+1+2=25+2=125. 18.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的单调递增区间. 解:(1)f ⎝⎛⎭⎪⎫5π4=2sin ⎝⎛⎭⎪⎫13×5π4-π6=2sin π4= 2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎪⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象; (2)写出f (x )的值域、最小正周期、对称轴,单调区间.解:(1)列表如下:(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤π4+2k π,5π4+2k π(k ∈Z ).20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎪⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎪⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎪⎫πx +π6的单调递增区间为⎣⎢⎡⎦⎥⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎪⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z . 21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3. (1)求函数f (x )的解析式;(2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎢⎡⎦⎥⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,求实数m 的取值范围.解:(1)由题意,A =3,T =2⎝⎛⎭⎪⎫7π12-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝ ⎛⎭⎪⎫2x +π3=m -16在⎣⎢⎡⎦⎥⎤-π3,π6上有两个根. 因为x ∈⎣⎢⎡⎦⎥⎤-π3,π6,所以2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.所以m -16∈⎣⎢⎡⎭⎪⎫32,1.所以m ∈[33+1,7).22.(12分)已知函数f (x )=sin(ωx +φ)-b (ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2.若将f (x )的图象先向右平移π6个单位长度,再向上平移3个单位长度,所得图象对应的函数g (x )为奇函数.(1)求f (x )的解析式;(2)求f (x )的对称轴及单调区间;(3)若对任意x ∈⎣⎢⎡⎦⎥⎤0,π3,f 2(x )-(2+m )f (x )+2+m ≤0恒成立,求实数m 的取值范围.解:(1)因为2πω=2×π2,所以ω=2,所以f (x )=sin(2x +φ)-b .又因为函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ-b +3为奇函数,且0<φ<π,所以φ=π3,b =3,故f (x )=sin ⎝⎛⎭⎪⎫2x +π3- 3.(2)令2x +π3=π2+k π,k ∈Z ,得对称轴为直线x =π12+k π2,k ∈Z .令2x +π3∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,得单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,k ∈Z ,令2x +π3∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z ,得单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z .(3)因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以-3≤f (x )≤1-3,所以-1-3≤f (x )-1≤- 3.因为f 2(x )-(2+m )f (x )+2+m ≤0恒成立, 整理可得m ≤1f x -1+f (x )-1.由-1-3≤f (x )-1≤-3,得-1-332≤1f x -1+f (x )-1≤-433,故m ≤-1-332,即实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-1-332.。
章末综合测评(三) 三角恒等变换(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知cos(α+β)+cos(α-β)=13,则cos αcos β的值为( )A .12B .13C .14D .16【解析】 由题意得:cos αcos β-sin αsin β+cos αcos β+sin αsin β=2cos αcos β=13,所以cos αcos β=16.【答案】 D2.函数y =sin ⎝⎛⎭⎫2x +π3cos ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫2x +π3·sin ⎝⎛⎭⎫π6-x 的图象的一条对称轴方程是( )A .x =π4B .x =π2C .x =πD .x =3π2【解析】 y =sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫x -π6-cos ⎝⎛⎭⎫2x +π3sin ⎝⎛⎭⎫x -π6=sin ⎣⎡⎝⎛⎭⎫2x +π3-⎦⎤⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫x +π2=cos x ,故x =π是函数y =cos x 的一条对称轴.【答案】 C3.若tan α=2tan π5,则cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=( )【导学号:00680080】A .1B .2C .3D .4【解析】 ∵cos ⎝⎛⎭⎫α-3π10=cos ⎝⎛⎭⎫α+π5-π2=sin ⎝⎛⎭⎫α+π5, ∴原式=sin ⎝⎛⎭⎫α+π5sin ⎝⎛⎭⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=tan α+tan π5tan α-tan π5.又∵tan α=2tan π5,∴原式=2tan π5+tanπ52tan π5-tanπ5=3.【答案】 C 4.2cos 10°-sin 20°cos 20°的值为( )A . 3B .62C .1D .12【解析】 原式=2cos (30°-20°)-sin 20°cos 20°=2(cos 30°cos 20°+sin 30°sin 20°)-sin 20°cos 20°=3cos 20°cos 20°= 3.【答案】 A5.cos 4π8-sin 4π8等于( )A .0B .22 C .1D .-22【解析】 原式=⎝⎛⎭⎫cos 2π8-sin 2π8⎝⎛⎭⎫cos 2π8+sin 2π8 =cos 2π8-sin 2π8=cos π4=22.【答案】 B6.已知函数y =tan(2x +φ)的图象过点⎝⎛⎭⎫π12,0,则φ的值可以是( ) 【导学号:70512045】A .-π6B .π6C .-π12D .π12【解析】 由题得tan ⎝⎛⎭⎫2×π12+φ=0, 即tan ⎝⎛⎭⎫π6+φ=0,π6+φ=k π,k ∈Z , φ=k π-π6,k ∈Z ,当k =0时,φ=-π6,故选A .【答案】 A7.若θ∈⎝⎛⎭⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( ) A .32B .-32C .±32D .±12【解析】 由sin θ-cos θ=22两边平方得,sin 2θ=12, 又θ∈⎝⎛⎭⎫0,π2,且sin θ>cos θ, 所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B . 【答案】 B8.已知sin ⎝⎛⎭⎫π4-x =45,则sin 2x 的值为( ) A .1925B .725C .1425D .-725【解析】 sin 2x =cos ⎝⎛⎭⎫π2-2x =cos 2⎝⎛⎭⎫π4-x =1-2sin 2⎝⎛⎭⎫π4-x =1-2×⎝⎛⎭⎫452=-725. 【答案】 D9.已知cos ⎝⎛⎭⎫x +π6=35,x ∈(0,π),则sin x 的值为( ) A .-43-310B .43-310C .12D .32【解析】 由cos ⎝⎛⎭⎫x +π6=35,且0<x <π, 得π6<x +π6<π2, 所以sin ⎝⎛⎭⎫x +π6=45, 所以sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π6-π6=sin ⎝⎛⎭⎫x +π6cos π6-cos ⎝⎛⎭⎫x +π6sin π6 =45×32-35×12=43-310. 【答案】 B10.函数y =sin x +cos x +2⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最小值是( ) A .2- 2 B .2+ 2 C .3D .1【解析】 由y =2sin ⎝⎛⎭⎫x +π4+2,且0≤x ≤π2, 所以π4≤x +π4≤34π,所以22≤sin ⎝⎛⎭⎫x +π4≤1, 所以3≤y ≤2+2. 【答案】 C11.y =sin ⎝⎛⎭⎫2x -π3-sin 2x 的一个单调递增区间是( ) A .⎣⎡⎦⎤-π6,π3 B .⎣⎡⎦⎤π12,7π12 C .⎣⎡⎦⎤5π12,13π12D .⎣⎡⎦⎤π3,5π6【解析】 y =sin ⎝⎛⎭⎫2x -π3-sin 2x =sin 2x cos π3-cos 2x sin π3-sin 2x=-12sin 2x -32cos 2x=-sin ⎝⎛⎭⎫2x +π3. y =-sin ⎝⎛⎭⎫2x +π3的递增区间是y =sin ⎝⎛⎭⎫2x +π3的递减区间, π2+2k π≤2x +π3≤3π2+2k π,k ∈Z , ∴π12+k π≤x ≤7π12+k π,k ∈Z , 令k =0,得x ∈⎣⎡⎦⎤π12,7π12. 【答案】 B12.已知a =(sin α,1-4cos 2α),b =(1,3sin α-2),α∈⎝⎛⎭⎫0,π2,若a ∥b ,则tan ⎝⎛⎭⎫α-π4=( )A .17B .-17C .27D .-27【解析】 因为a ∥b ,所以有sin α(3sin α-2)-(1-4cos 2α)=0, 即3sin 2 α-2sin α-1+4cos 2α=0 ⇒5sin 2 α+2sin α-3=0,解得sin α=35或-1,又α∈⎝⎛⎭⎫0,π2, 所以sin α=35,cos α=45,tan α=34,所以tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=34-11+34=-17. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上) 13.函数f (x )=sin x -3cos x (x ∈R )的最小正周期为________,最大值为________. 【解析】 因为f (x )=2sin ⎝⎛⎭⎫x -π3, 所以f (x )=2sin ⎝⎛⎭⎫x -π3的最小正周期为T =2π,最大值为2. 【答案】 2π 214.tan ⎝⎛⎭⎫π6-θ+tan ⎝⎛⎭⎫π6+θ+3tan ⎝⎛⎭⎫π6-θ·tan ⎝⎛⎭⎫π6+θ的值是________. 【解析】 ∵tan π3=tan ⎝⎛⎭⎫π6-θ+π6+θ=tan ⎝⎛⎭⎫π6-θ+tan ⎝⎛⎭⎫π6+θ1-tan ⎝⎛⎭⎫π6-θtan ⎝⎛⎭⎫π6+θ=3,∴3=tan ⎝⎛⎭⎫π6-θ+tan ⎝⎛⎭⎫π6+θ+ 3tan ⎝⎛⎭⎫π6-θtan ⎝⎛⎭⎫π6+θ. 【答案】315.已知tan α=-2,tan(α+β)=17,则tan β的值为________.【解析】 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.【答案】 316.已知A ,B ,C 皆为锐角,且tan A =1,tan B =2,tan C =3,则A +B +C 的值为________. 【解析】 ∵tan(A +B )=tan A +tan B 1-tan A tan B =1+21-2=-3<0,①又0<A <π2,0<B <π2,∴0<A +B <π,②由①②知,π2<A +B <π,又tan[(A +B )+C ]=tan (A +B )+tan C 1-tan (A +B )tan C =-3+31-(-3)×3=0.又∵0<C <π2,∴π2<A +B +C <32π,∴A +B +C =π. 【答案】 π三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 【解】 (1)因为f (x )=sin x +3cos x - 3 =2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3. 18.(本小题满分12分)已知锐角α,β满足tan(α-β)=sin 2β,求证:tan α+tan β=2tan 2β.【证明】 因为tan(α-β)=sin 2β, tan(α-β)=tan α-tan β1+tan αtan β,sin 2β=2sin βcos β=2sin βcos βsin 2β+cos 2β=2tan β1+tan 2β, 所以tan α-tan β1+tan αtan β=2tan β1+tan 2β,整理得:tan α=3tan β+tan 3β1-tan 2β.所以tan α+tan β=3tan β+tan 3β+tan β-tan 3β1-tan 2β=2×2tan β1-tan 2β=2tan 2β.19.(本小题满分12分)已知函数f (x )=sin ⎝⎛⎭⎫π2-x ·sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 【解】 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32 =sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 20.(本小题满分12分)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 【解】 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数, 且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12. 21.(本小题满分12分)如图1所示,已知α的终边所在直线上的一点P 的坐标为(-3,4),β的终边在第一象限且与单位圆的交点Q 的纵坐标为210.图1(1)求tan(2α-β)的值;(2)若π2<α<π,0<β<π2,求α+β.【解】 (1)由三角函数的定义知tan α=-43,∴tan 2α=2×⎝⎛⎭⎫-431-⎝⎛⎭⎫-432=247.又由三角函数线知sin β=210. ∵β为第一象限角,∴tan β=17,∴tan(2α-β)=247-171+247×17=16173.(2)∵cos α=-35,∵π2<α<π,0<β<π2,∴π2<α+β<3π2. ∵sin(α+β)=sin αcos β+cos αsin β=45×7210-35×210=22.又∵π2<α+β<3π2,∴α+β=3π4.22.(本小题满分12分)已知向量a =(2cos ωx,1),b =⎝⎛⎭⎫2sin ⎝⎛⎭⎫ωx +π4,-1⎝⎛⎭⎫其中14≤ω≤32,函数f (x )=a ·b ,且f (x )图象的一条对称轴为x =5π8. (1)求f ⎝⎛⎭⎫34π的值;(2)若f ⎝⎛⎭⎫α2-π8=23,f ⎝⎛⎭⎫β2-π8=223,且α,β∈⎝⎛⎭⎫-π2,π2,求cos ()α-β的值. 【解】 (1)∵向量a =(2cos ωx,1),b =⎝⎛⎭⎫2sin ⎝⎛⎭⎫ωx +π4,-1=(2(sin ωx +cos ωx ),-1),∴函数f (x )=a ·b =2cos ωx (sin ωx +cos ωx )-1=2sin ωx cos ωx +2cos 2ωx -1=sin 2ωx +cos 2ωx=2sin ⎝⎛⎭⎫2ωx +π4. ∵f (x )图象的一条对称轴为x =5π8,∴2ω×5π8+π4=π2+k π(k ∈Z ).又14≤ω≤32,∴ω=1,∴f (x )=2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫34π=2sin ⎝⎛⎭⎫2×34π+π4=-2cos π4=-1.(2)∵f ⎝⎛⎭⎫α2-π8=23,f ⎝⎛⎭⎫β2-π8=223, ∴sin α=13,sin β=23.∵α,β∈⎝⎛⎭⎫-π2,π2, ∴cos α=223,cos β=53,∴cos(α-β)=cos αcos β+sin αsin β=210+29.。
阶段质量检测(四)(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等式12+22+32+…+n 2=12(5n 2-7n +4)( )A .n 为任何正整数时都成立B .仅当n =1,2,3时成立C .当n =4时成立,n =5时不成立D .仅当n =4时不成立解析:选B 分别用n =1,2,3,4,5验证即可.2.用数学归纳法证明不等式1+123+133+…+1n 3<2-1n (n ≥2,n ∈N +)时,第一步应验证不等式( )A .1+123<2-12B .1+123+133<2-13C .1+123<2-13D .1+123+133<2-14解析:选A 第一步验证n =2时不等式成立,即1+123<2-12.3.用数学归纳法证明1+a +a 2+…+a n +1=1-an +21-a(a ≠1),在验证n =1时,左端计算所得的项为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3解析:选C 左端为n +2项和,n =1时应为三项和,即1+a +a 2.4.用数学归纳法证明2n >n 2(n ∈N +,n ≥5)成立时,第二步归纳假设的正确写法是( ) A .假设n =k 时命题成立 B .假设n =k (k ∈N +)时命题成立 C .假设n =k (k ≥5)时命题成立 D .假设n =k (k >5)时命题成立 解析:选C k 应满足k ≥5,C 正确.5.数列{a n }中,已知a 1=1,当n ≥2时,a n -a n -1=2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .3n -2B .n 2C.3n-1D.4n-3解析:选B 计算出a1=1,a2=4,a3=9,a4=16,可猜想a n=n2.6.平面内原有k条直线,它们的交点个数记为f(k),则增加一条直线l后,它们的交点个数最多为( )A.f(k)+1 B.f(k)+kC.f(k)+k+1 D.k·f(k)解析:选B 第k+1条直线与前k条直线都相交且有不同交点时,交点个数最多,此时应比原先增加k个交点.7.用数学归纳法证明34n+1+52n+1(n∈N+)能被8整除时,若n=k时,命题成立,欲证当n=k+1时命题成立,对于34(k+1)+1+52(k+1)+1可变形为( )A.56×34k+1+25(34k+1+52k+1)B.34×34k+1+52×52kC.34k+1+52k+1D.25(34k+1+52k+1)解析:选A 由34(k+1)+1+52(k+1)+1=81×34k+1+25×52k+1+25×34k+1-25×34k+1=56×34k+1+25(34k+1+52k+1).8.已知f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的关系是( )A.f(k+1)=f(k)+(2k+1)2+(2k+2)2B.f(k+1)=f(k)+(k+1)2C.f(k+1)=f(k)+(2k+2)2D.f(k+1)=f(k)+(2k+1)2解析:选A f(k+1)=12+22+32+…+(2k)2+(2k+1)2+[2(k+1)]2=f(k)+(2k+1)2+(2k+2)2,故选A.9.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”,第二步归纳假设应该写成( )A.假设当n=k(k∈N+)时,x k+y k能被x+y整除B.假设当n=2k(k∈N+)时,x k+y k能被x+y整除C.假设当n=2k+1(k∈N+)时,x k+y k能被x+y整除D.假设当n=2k-1(k∈N+)时,x k+y k能被x+y整除解析:选D 第k个奇数应是n=2k-1,k∈N+.10.已知f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”,那么,下列命题总成立的是( )A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立B.若f(4)≥16成立,则当k≥4时,均有f(k)<k2成立C .若f (7)≥49成立,则当k <7时,均有f (k )<k 2成立 D .若f (4)=25成立,则当k ≥4时,均有f (k )≥k 2成立 解析:选D ∵f (k )≥k 2成立时f (k +1)≥(k +1)2成立, 当k =4时,f (4)=25>16=42成立. ∴当k ≥4时,有f (k )≥k 2成立.二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.用数学归纳法证明1+2+3+4+…+n 2=n 4+n 22(n ∈N +),则n =k +1时,左端应为在n =k 时的基础上加上____________________.解析:n =k +1时,左端=1+2+3+…+k 2+(k 2+1)+…+(k +1)2. 所以增加了(k 2+1)+…+(k +1)2. 答案:(k 2+1)+…+(k +1)212.设f (n )=⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+1n +1…⎝ ⎛⎭⎪⎫1+1n +n ,用数学归纳法证明f (n )≥3,在假设n =k时成立后,f (k +1)与f (k )的关系是f (k +1)=f (k )·________________.解析:∵f (k )=⎝ ⎛⎭⎪⎫1+1k ⎝ ⎛⎭⎪⎫1+1k +1·…·⎝ ⎛⎭⎪⎫1+1k +k ,f (k +1)=⎝ ⎛⎭⎪⎫1+1k +1⎝ ⎛⎭⎪⎫1+1k +2·…·⎝ ⎛⎭⎪⎫1+1k +k ·⎝ ⎛⎭⎪⎫1+1k +k +1·⎝ ⎛⎭⎪⎫1+1k +k +2 ∴f (k +1)=f (k )·⎝ ⎛⎭⎪⎫1+12k +1⎝ ⎛⎭⎪⎫1+12k +2k k +1. 答案:⎝ ⎛⎭⎪⎫1+12k +1⎝ ⎛⎭⎪⎫1+12k +2k k +113.设数列{a n }满足a 1=2,a n +1=2a n +2,用数学归纳法证明a n =4·2n -1-2的第二步中,设n =k 时结论成立,即a k =4·2k -1-2,那么当n =k +1时,应证明等式________成立.答案:a k +1=4·2(k +1)-1-214.在数列{a n }中,a 1=1,且S n ,S n +1,2S 1成等差数列,则S 2,S 3,S 4分别为__________,猜想S n =__________.解析:因为S n ,S n +1,2S 1成等差数列. 所以2S n +1=S n +2S 1,又S 1=a 1=1.所以2S 2=S 1+2S 1=3S 1=3,于是S 2=32=22-12,2S 3=S 2+2S 1=32+2=72,于是S 3=74=23-122,由此猜想S n =2n-12n -1.答案:32,74,158 2n-12n -1三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)用数学归纳法证明,对于n ∈N +,都有11×2+12×3+13×4+…+1nn +=nn +1.证明:(1)当n =1时,左边=11×2=12,右边=12,所以等式成立.(2)假设n =k (k ≥1,k ∈N +)时等式成立, 即11×2+12×3+13×4+…+1kk +=kk +1,当n =k +1时, 11×2+12×3+13×4+…+1k k ++1k +k +=k k +1+1k +k +=k k ++1k +k +=k +2k +k +=k +1k +2. 即n =k +1时等式成立.由(1)(2)可知,对于任意的自然数n 等式都成立.16.(本小题满分12分)用数学归纳法证明:对一切大于1的自然数,不等式⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12n -1>2n +12均成立. 证明:(1)当n =2时,左边=1+13=43,右边=52.∵左边>右边,∴不等式成立.(2)假设当n =k (k ≥2,且k ∈N +)时不等式成立, 即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1>2k +12. 则当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+1k +-1 >2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=k ++12.∴当n =k +1时,不等式也成立.由(1)(2)可知,对于一切大于1的自然数n ,不等式都成立.17.(本小题满分12分)如果数列{a n }满足条件:a 1=-4,a n +1=-1+3a n2-a n (n =1,2,…),证明:对任何自然数n ,都有a n +1>a n 且a n <0. 证明:(1)由于a 1=-4,a 2=-1+3a 12-a 1=-1-122+4=-136>a 1.且a 1<0,因此,当n =1时不等式成立. (2)假设当n =k (k ≥1)时,a k +1>a k 且a k <0,那么a k +1=-1+3a k2-a k<0, a k +2-a k +1=-1+3a k +12-a k +1--1+3a k2-a k=a k +1-a k-a k +1-a k>0.这就是说,当n =k +1时不等式也成立, 根据(1)(2),不等式对任何自然数n 都成立. 因此,对任何自然数n ,都有a n +1>a n ,且a n <0.18.(本小题满分14分)已知数列{a n }满足a 1=2,a n +1=2a n +λa 2n +μ-1a n(n ∈N +).(1)若λ=μ=1,证明数列{lg(a n +1)}为等比数列,并求数列{a n }的通项公式; (2)若λ=0,是否存在实数μ,使得a n ≥2对一切n ∈N +恒成立?若存在,求出μ的取值范围;若不存在,请说明理由.解:(1)∵λ=μ=1,则a n +1=a 2n +2a n , ∴a n +1+1=(a n +1)2,lg(a n +1+1)=2lg(a n +1), ∴{lg(a n +1)}是公比为2的等比数列,且首项为lg 3, ∴lg(a n +1)=2n -1lg 3,∴a n +1=32n -1,∴a n =32n -1-1(n ∈N +).(2)由a 2=2a 1+μ-1a 1=4+μ-12≥2,得μ≥-3,猜想μ≥-3时,对一切n ∈N +,a n ≥2恒成立.①当n =1时,a 1=2,猜想成立. ②假设当n =k (k ≥1且k ∈N +)时,a k ≥2,则由a n +1=2a 2n +μ-1a n ,得a k +1-2=2a 2k -2a k +μ-1a k=2⎝ ⎛⎭⎪⎫a k -122+μ-32a k ≥2×⎝ ⎛⎭⎪⎫322+μ-32a k =μ+3a k≥0,∴n =k +1时,a k +1≥2,猜想成立.由①②可知,当μ≥-3时,对一切n ∈N +,恒有a n ≥2.。
阶段质量检测(四)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.要描述一个工厂某种产品的生产步骤,应用( ) A .程序框图 B .工序流程图 C .知识结构图D .组织结构图解析:选B 工序流程图用来描述工业生产的流程. 2.下图是一个结构图,在框①中应填入()A .空集B .补集C .子集D .全集解析:选B 集合的运算包括交集、并集、补集.3.把平面内两条直线的位置关系填入下面结构图中的M ,N ,E ,F 处,顺序较为恰当的是()①平行 ②垂直 ③相交 ④斜交 A .①②③④ B .①④②③ C .①③②④D .②①③④解析:选C 平面内两直线位置关系有平行、相交,其中相交包含垂直与斜交,故选C. 4.在下面的图示中,是结构图的为( ) A.(A 卷 学业水平达标)C.D.解析:选B 选项A 表示流程图;选项C 表示频率分布直方图;选项D 表示从B 到A 的路径图;选项B 表示结构图.5.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 解析:选B a =14,b =18.第一次循环:14≠18且14<18,b =18-14=4; 第二次循环:14≠4且14>4,a =14-4=10; 第三次循环:10≠4且10>4,a =10-4=6; 第四次循环:6≠4且6>4,a =6-4=2; 第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a =b =2,跳出循环,输出a =2,故选B. 6.右图所示的流程图中,输出d 的含义是( )A .点(x 0,y 0)到直线Ax +By +C =0的距离B .点(x 0,y 0)到直线Ax +By +C =0的距离的平方 C .点(x 0,y 0)到直线Ax +By +C =0的距离的倒数D .两条平行线间的距离解析:选A 由流程图,得d =|Ax 0+By 0+C |A 2+B 2表示点(x 0,y 0)到直线Ax +By +C =0的距离.7.商家生产一种产品,需要先进行市场调研,计划对北京、上海、广州三地进行市场调研,待调研结束后决定生产的产品数量,下列四种方案中可取的是( )解析:选D 到三个地方去调研没有严格顺序,但可同时进行,这样可以缩短调研周期,从而尽快决定产品数量.8.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是( )A .11时B .13时C .15时D .17时解析:选A 组装工序可以通过三个方案分别完成:A →B →E →F →G ,需要2+4+4+2=12(时);A →E →F →G ,需要5+4+2=11(时);A →C →D →F →G ,需要3+4+4+2=13(时).因此组装该产品所需要的最短时间是11时.9.某程序框图如图所示,现执行该程序,输入下列函数f (x )=sin 2π3x ,f (x )=cos 2π3x ,f (x )=tan4π3x ,则可以输出的函数是( )A .f (x )=sin 2π3xB .f (x )=cos 2π3xC .f (x )=tan 4π3xD .三个函数都无法输出解析:选B 若输入函数f (x )=cos 2π3x ,则f (x )+f ⎝ ⎛⎭⎪⎫-32-x =cos 2π3x +cos ⎣⎢⎡⎦⎥⎤2π3⎝ ⎛⎭⎪⎫-32-x =cos 2π3x +cos ⎝ ⎛⎭⎪⎫-π-2π3x=cos 2π3x -cos 2π3x =0,f (x )+f ⎝⎛⎭⎪⎫32+x =cos 2π3x +cos ⎣⎢⎡⎦⎥⎤2π3⎝ ⎛⎭⎪⎫32+x=cos 2π3x +cos ⎝⎛⎭⎪⎫π+2π3x =0. 故函数f (x )=cos 2π3x 可由题中程序框图输出.易验证函数f (x )=sin 2π3x 和f (x )=tan 4π3x 均无法输出,故选B.10.在如图所示的程序框图中,输入A =192,B =22,则输出的结果是( )A.0 B.2 C.4 D.6解析:选B 输入后依次得到:C=16,A=22,B=16;C=6,A=16,B=6;C=4,A=6,B=4;C=2,A=4,B=2;C=0,A=2,B=0.故输出的结果为2,选B.二、填空题(本大题共4小题,每小题5分,共20分)11.如图所示的是某公司的组织结构图,则后勤部的直接领导是________.解析:由组织结构图可知,后勤部的直接领导是专家办公室.答案:专家办公室12.下图是向量运算的知识结构图,如果要加入“向量共线的充要条件”,则应该是在________的下位.解析:向量共线的充要条件是其中一个向量能用另一个非零向量的数乘形式表示.答案:数乘13.在平面几何中,四边形的分类关系可用以下框图描述:则在①中应填入____________,在②中应填入_____________.解析:一组邻边相等的平行四边形是菱形,一条腰和底边垂直的梯形是直角梯形.答案:菱形直角梯形14.某工程由A,B,C,D四道工序组成,完成它们需用时间依次为2,5,x,4天.四道工序的先后顺序及相互关系是:A,B可以同时开工;A完成后,C可以开工;B,C完成后,D 可以开工.若完成该工程共需9天,则完成工序C需要的时间最多为________天.解析:由题意可画出工序流程图如下图所示.∵总工期为9天,∴2+x≤5,∴x≤3.∴完成工序C的最长时间为3天.答案:3三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤)15.(本小题满分12分)汽车保养流程是:顶起车辆、更换机油、润滑部件、调换轮胎、放下车辆、清洁打蜡,试画出汽车保养的流程图.解:流程图如图所示.16.(本小题满分12分)某公司做人事调整:设总经理一名,配有经理助理一名;设副经理两人,直接对总经理负责,设有6个部门,其中副经理A管理生产部、安全部和质量部,副经理B管理销售部、财务部和保卫部;生产车间由生产部和安全部共同管理,公司配有质检中心和门岗.请根据以上信息设计并画出该公司的人事结构图.解:人事结构图如图所示.17.(本小题满分12分)画出“直线与方程”这一部分的知识结构图.解:18.(本小题满分14分)某车队有4辆汽车,担负A,B,C,D,E,F六个分厂的运输任务(图中标出的数是各分厂所需装卸工人数目),若各分厂自派装卸工,则共需4+6×2+5×2+7=33(人),若让一部分人跟车装卸,在需要装卸工人数较多的分厂再配备一个或几个装卸工,那么如何安排才能保证各分厂所需工人数,又使装卸工人数最少?最少安排多少人?解:由逐步调整法可得:(1)将各点上的人数由大到小排列得7,6,6,5,5,4;(2)车数为4,上列数中第四个数是5;(3)跟车人数应为5,此时所需的搬运工总数为5×4+2+1+1=24(人).所以每辆车上安排5人跟车,各分厂安排的装卸工人数如图所示,这样所需人数最少,最少要安排24名装卸工人.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.下面是图书印刷成书的流程图,表示正确的是( )A.装订→印刷→制版→编审B.编审→制版→印刷→装订C.制版→编审→装订→印刷D.印刷→装订→编审→制版解析:选B 出版一本图书,应首先编审,然后制版,制版后方能印刷,印刷后才能装订,故选B.2.下列说法正确的是( )A.流程图只有1个起点和1个终点B.程序框图只有1个起点和1个终点C.工序图只有1个起点和1个终点D.以上都不对解析:选B 程序框图只有1个起点“开始”和1个终点“结束”.3.复数集是由实数集和虚数集构成的,而实数集又可分为有理数集和无理数集两部分;虚数集也可分为纯虚数集和非纯虚数集两部分,此段叙述可选用________来描述之.( ) A.流程图B.结构图C.流程图或结构图中的任意一个D.流程图和结构图同时使用解析:选B 结构图描述的是静态的系统结构,故选B.4.如图所示的框图中“幂函数的定义”“幂函数的图象与性质”与“幂函数”的关系是( )A .并列关系B .从属关系C .包含关系D .交叉关系解析:选B 从知识结构图中可判断为从属关系.5.程序框图如下图所示,当A =0.96时,输出的k 的值为( )A .20B .22C .24D .25解析:选C 由程序框图可知当k =n 时,s =11×2+12×3+13×4+…+1n ×(n +1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+1n -1n +1=1-1n +1=nn +1≥0.96, 解得n ≥24,所以选C.6.下图所示的是“导数”一章的知识结构图,其中最合理的是( )解析:选C A 选项中没有涉及导数的运算和应用,B 选项中把导数的几何意义忽略了,D 选项中导数前面的三个要素有先后顺序,不是并列的.7.给出下列框图:①细胞→细胞膜→细胞核;②空间几何体→三视图和直观图→三视图; ③平面向量→空间向量→几何向量;④插电源→向洗衣机中放入脏衣服→放水→洗 衣→脱水其中是流程图的有________个.( ) A .1 B .2 C .3D .4解析:选A ④是洗衣机洗衣服的工序流程图,而①②③不是流程图. 8.如图所示的框图是结构图的是( )解析:选C 选项C 为组织结构图,选项A 、B 、D 均为流程图.故选C.9.(新课标全国卷Ⅱ)执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7解析:选D k =1≤2,执行第一次循环,M =11×2=2,S =2+3=5,k =1+1=2;k =2≤2,执行第二次循环,M=22×2=2,S=2+5=7,k=2+1=3;k=3>2,终止循环,输出S=7.故选D.10.执行如图所示的程序框图,若输入的N的值为6,则输出的p的值为( )A.120 B.720C.1 440 D.5 040解析:选B 由程序框图,可得k=1,p=1,1<6;k=2,p=2,2<6;k=3,p=6,3<6;k=4,p=24,4<6;k=5,p=120,5<6;k=6,p=720,6=6,不满足条件.故输出的p的值为720.二、填空题(本大题共4小题,每小题5分,共20分)11.如下图,某人拨通了电话,准备手机充值,须按怎样的顺序操作________(填序号).①1—5—1—1 ②1—5—1—5③1—5—2—1 ④1—5—2—3解析:根据流程图的特点可以判断.答案:③12.如图,程序输出的结果s=132,则判断框中应填________.解析:由题意,s 表示从12开始的逐渐减小的若干个整数的乘积,由于12×11=132,故此循环体需要执行两次,所以每次执行后i 的值依次为11,10,由于i 的值为10时,就应该退出循环,所以判断框中应填“i ≥11?”或“i >10?”.答案:i ≥11?(或i >10?)13.已知三次函数f (x )=ax 3+bx 2+cx +d (a ≠0)的图象必有一个对称中心.判断其图象的对称中心的流程图如下图所示:对于函数f (x )=13x 3-12x 2+3x -512, (1)其对称中心为________;(2)计算f ⎝ ⎛⎭⎪⎫12 016+f ⎝ ⎛⎭⎪⎫22 016+f ⎝ ⎛⎭⎪⎫32 016+f ⎝ ⎛⎭⎪⎫42 016+…+f ⎝ ⎛⎭⎪⎫2 0152 016=________. 解析:(1)f ′(x )=x 2-x +3, 即g (x )=x 2-x +3,g ′(x )=2x -1,即h (x )=2x -1,令h (x )=0,解得x =12, 又f ⎝ ⎛⎭⎪⎫12=1, 故函数f (x )的对称中心为⎝ ⎛⎭⎪⎫12,1.(2)由(1)可知f ⎝⎛⎭⎪⎫12 016+f ⎝ ⎛⎭⎪⎫2 0152 016 =f ⎝ ⎛⎭⎪⎫22 016+f ⎝ ⎛⎭⎪⎫2 0142 015 =…=f ⎝⎛⎭⎪⎫1 0082 016+f ⎝ ⎛⎭⎪⎫1 0092 016=2, 故f ⎝ ⎛⎭⎪⎫12 016+f ⎝ ⎛⎭⎪⎫22 016+f ⎝ ⎛⎭⎪⎫32 016+f ⎝ ⎛⎭⎪⎫42 016+…+f ⎝ ⎛⎭⎪⎫2 0152 016=2 016. 答案:(1)⎝ ⎛⎭⎪⎫12,1 (2)2 016 14.某学校组织结构图如下图所示,其中“团委”的直接领导是________.解析:由结构图的特征可知,“书记”与“团委”是直接从属关系.答案:书记三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)下图是某单位冷空调的工作流程图.某一时刻,空调没有工作.试分析其可能的原因.(空调无故障)解:空调不工作的原因可能有①电源没有开启;②室温偏低.16.(本小题满分12分)一家新技术公司计划研制一个名片管理系统,希望系统能够具备以下功能:(1)用户管理:能够修改密码,显示用户信息,修改用户信息;(2)用户登录;(3)名片管理:能够对名片进行添加、删除、修改、查询;(4)出错信息处理.根据这些要求,试画出该系统的结构图.解:设计的结构图如图:17.(本小题满分12分)某药厂生产某产品工艺过程:(1)备料、前处理、提取、制粒、压片、包衣、颗粒分装、包装.(2)提取环节经检验合格,进入下一工序,否则返回前处理.(3)包衣、颗粒分装两环节检验,合格进入下一工序,否则为废品.画出生产该产品的工序流程图.解:该产品工序流程图如图:18.(本小题满分14分)某市公交车票价按下列规则规定:①5公里以内(包括5公里)票价2元;②5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知两个相邻的公共汽车站间距约1公里,如果沿途(包括起点站和终点站)共有16个汽车站,请设计一个算法求出某人坐车x 公里所用的票价,画出程序框图.解:据题意,可得某人坐车x 公里所用票价y =⎩⎪⎨⎪⎧ 2,0<x ≤5,3,5<x ≤10,4,10<x ≤15.程序框图:。
高中一年级质量检测数学科试题本试卷分选择题和非选择题两部分,共 4 页,满分150分.考试时间120分钟. 注意事项:1.答选择题前,考生务必将自己的姓名、座位号、考试科目填写在答题卷上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将非选择题的解答写在答题卷的框线内,框线外的部分不计分. 4.考试结束后,监考员将选择题的答题卡和非选择题的答题卷都收回,试卷由考生自己保管.参考公式:柱体的体积公式V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么)()()(B P A P B A P +=+.一.选择题:本大题共有10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡中. 1. 已知直线l 的倾斜角为300,则直线的斜率k 值为( ).A .33B .21 C .3D .23 2. 如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的体积为( ) A . π B . 4π C .23πD .34π3. 已知函数3)1(+-=x m y 在R 上是增函数,则m 的取值范围是( )A . ),1(+∞B .)0,(-∞C .),0(+∞D .)1,(-∞4. 右面为一个求20个数的平均数的程序,在横线上应填充的语句为A . i>20B. i<20C. i>=20D. i<=205.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组: 第一组,成绩大于等于13秒且小于14秒;第二组, 成绩大于等于14秒且小于15秒;……第六组,成绩 大于等于18秒且小于等于19秒.右图是按上述分组 方法得到的频率分布直方图.设成绩大于等于15秒且 小于17秒的学生人数为x ,则从频率分布直方图中可 分析出x 为( )A. 48B. 27C. 35D. 326.调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定:驾驶员在驾驶机动车时血液中酒精含量不得超过ml mg 2.0。
1.4.2 正弦函数、余弦函数的性质(一)学习目标 1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.知识点一 函数的周期性思考1 如果函数f (x )满足f (x +3)=f (x ),那么3是f (x )的周期吗?答案 不一定.必须满足当x 取定义域内的每一个值时,都有f (x +3)=f (x ),才可以说3是f (x )的周期.思考2 所有的函数都具有周期性吗?答案 不是.只有同时符合周期函数定义中的两个条件的函数才具有周期性. 思考3 周期函数都有最小正周期吗?答案 周期函数不一定存在最小正周期.例如,对于常数函数f (x )=c (c 为常数,x ∈R ),所有非零实数T 都是它的周期,而最小正周期是不存在的,所以常数函数没有最小正周期. 梳理 函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.知识点二 正弦函数、余弦函数的周期性思考1 证明函数y =sin x 和y =cos x 都是周期函数. 答案 ∵sin(x +2π)=sin x ,cos(x +2π)=cos x ,∴y =sin x 和y =cos x 都是周期函数,且2π就是它们的一个周期.思考2 证明函数f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))(Aω≠0)是周期函数. 答案 由诱导公式一知,对任意x ∈R ,都有A sin [(ωx +φ)+2π]=A sin(ωx +φ), 所以A sin[ω⎝⎛⎭⎫x +2πω+φ]=A sin(ωx +φ), 即f ⎝⎛⎭⎫x +2πω=f (x ), 所以f (x )=A sin(ωx +φ)(ω≠0)是周期函数,2πω就是它的一个周期.同理,函数f (x )=A cos(ωx +φ)(ω≠0)也是周期函数.梳理 由sin(x +2k π)=sin x ,cos(x +2k π)=cos x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π (k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π.知识点三 正弦函数、余弦函数的奇偶性思考 对于x ∈R ,sin(-x )=-sin x ,cos(-x )=cos x ,这说明正弦函数、余弦函数具备怎样的性质? 答案 奇偶性.梳理 (1)对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称.(2)对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.类型一 三角函数的周期性 例1 求下列函数的最小正周期. (1)y =sin(2x +π3)(x ∈R );(2)y =|sin x |(x ∈R ).解 (1)方法一 令z =2x +π3,因为x ∈R ,所以z ∈R .函数f (x )=sin z 的最小正周期是2π, 即变量z 只要且至少要增加到z +2π, 函数f (x )=sin z (z ∈R )的值才能重复取得.而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,所以函数f (x )=sin ⎝⎛⎭⎫2x +π3(x ∈R )的最小正周期是π. 方法二 f (x )=sin ⎝⎛⎭⎫2x +π3的最小正周期为2π2=π. (2)因为y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π)(k ∈Z ). 其图象如图所示,所以该函数的最小正周期为π.反思与感悟 对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解.跟踪训练1 求下列函数的周期. (1)y =sin ⎝⎛⎭⎫-12x +π3;(2)y =|cos 2x |. 解 (1)T =2π|-12|=4π.(2)T =π2.类型二 三角函数的奇偶性 例2 判断下列函数的奇偶性. (1)f (x )=sin ⎝⎛⎭⎫-12x +π2; (2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2x1+sin x.解 (1)显然x ∈R ,f (x )=cos 12x ,∵f (-x )=cos ⎝⎛⎭⎫-12x =cos 12x =f (x ), ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为{x |x ∈R 且x ≠k π+π2,k ∈Z }.∴f (x )的定义域关于原点对称. 又∵f (x )=lg(1-sin x )-lg(1+sin x ), ∴f (-x )=lg [1-sin(-x )]-lg [1+sin(-x )] =lg(1+sin x )-lg(1-sin x )=-f (x ). ∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1, ∴x ∈R 且x ≠2k π-π2,k ∈Z .∵定义域不关于原点对称, ∴该函数是非奇非偶函数.反思与感悟 判断函数奇偶性应把握好两个关键点: 关键点一:看函数的定义域是否关于原点对称; 关键点二:看f (x )与f (-x )的关系.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.跟踪训练2 判断下列函数的奇偶性. (1)f (x )=cos ⎝⎛⎭⎫32π+2x +x 2sin x ; (2)f (x )=1-2cos x +2cos x -1. 解 (1)f (x )=sin 2x +x 2sin x ,∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x ) =-sin 2x -x 2sin x =-f (x ), ∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧1-2cos x ≥0,2cos x -1≥0,得cos x =12.∴f (x )=0,x =2k π±π3,k ∈Z .∴f (x )既是奇函数又是偶函数.类型三 三角函数的奇偶性与周期性的综合应用例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,求f ⎝⎛⎭⎫5π3的值. 解 ∵f (x )的最小正周期是π, ∴f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫5π3-2π=f ⎝⎛⎭⎫-π3. ∵f (x )是R 上的偶函数, ∴f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32. ∴f ⎝⎛⎭⎫5π3=32.反思与感悟 解决此类问题的关键是运用函数的周期性和奇偶性,把自变量x 的值转化到可求值区间内.跟踪训练3 若f (x )是以π2为周期的奇函数,且f ⎝⎛⎭⎫π3=1,求f ⎝⎛⎭⎫-5π6的值. 解 因为f (x )是以π2为周期的奇函数,所以f ⎝⎛⎭⎫-5π6=f ⎝⎛⎭⎫-5π6+π2=f ⎝⎛⎭⎫-π3=-f ⎝⎛⎭⎫π3=-1. 类型四 函数周期性的综合应用例4 已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2 020)的值.解 ∵f (1)=cos π3=12,f (2)=cos 2π3=-12,f (3)=cos π=-1,f (4)=cos 4π3=-12,f (5)=cos 5π3=12,f (6)=cos 2π=1,∴f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=0. 同理,可得每连续六项的和均为0. ∴f (1)+f (2)+f (3)+…+f (2 020) =f (2 017)+f (2 018)+f (2 019)+f (2 020) =cos 2 017π3+cos 2 018π3+cos 2 019π3+cos 2 020π3=cos π3+cos 2π3+cos π+cos 4π3=12+(-12)+(-1)+(-12)=-32. 反思与感悟 当函数值的出现具有一定的周期性时,可以首先研究它在一个周期内的函数值的变化情况,再给予推广求值.跟踪训练4 设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 015)=.答案 0解析 ∵f (x )=sin π3x 的周期T =2ππ3=6,∴f (1)+f (2)+f (3)+…+f (2 015)=335[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015) =335⎝⎛⎭⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π +f (335×6+1)+f (335×6+2)+f (335×6+3)+ f (335×6+4)+f (335×6+5)=335×0+f (1)+f (2)+f (3)+f (4)+f (5) =sin π3+sin 23π+sin π+sin 43π+sin 53π=0.1.函数f (x )=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2 B.π C.2π D.4π 答案 D2.下列函数中最小正周期为π的偶函数是( ) A.y =sin x2B.y =cos x2C.y =cos xD.y =cos 2x答案 D3.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A.最小正周期为π的奇函数 B.最小正周期为π的偶函数 C.最小正周期为π2的奇函数D.最小正周期为π2的偶函数答案 B解析 ∵sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ), ∴f (x )是最小正周期为π的偶函数.4.函数y =sin(ωx +π4)的最小正周期为2,则ω的值为.答案 ±π解析 ∵T =2π|ω|=2,∴|ω|=π,∴ω=±π.5.若函数f (x )的定义域为R ,最小正周期为3π2,且满足f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x <0,sin x ,0≤x <π,则f ⎝⎛⎭⎫-15π4=. 答案22解析 f ⎝⎛⎭⎫-154π=f ⎝⎛⎭⎫-15π4+3π2×3 =f ⎝⎛⎭⎫3π4=sin 3π4=22.1.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T ,如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω.2.判断函数的奇偶性,必须坚持“定义域优先”的原则,准确求函数定义域和将式子合理变形是解决此类问题的关键.如果定义域关于原点对称,再看f (-x )与f (x )的关系,从而判断奇偶性.课时作业一、选择题1.下列函数中,周期为π2的是( )A.y =sin x2B.y =sin 2xC.y =cos x4D.y =cos(-4x )答案 D解析 T =2π|-4|=π2.2.函数f (x )=sin ⎝⎛⎭⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A.5 B.10 C.15 D.20 答案 B3.已知a ∈R ,函数f (x )=sin x -|a |(x ∈R )为奇函数,则a 等于( ) A.0 B.1 C.-1 D.±1 答案 A解析 因为f (x )为奇函数,所以f (-x )=sin(-x )-|a |=-f (x )=-sin x +|a |, 所以|a |=0,从而a =0,故选A.4.下列函数中是奇函数,且最小正周期是π的函数是( ) A.y =cos|2x | B.y =|sin x | C.y =sin ⎝⎛⎭⎫π2+2x D.y =cos ⎝⎛⎭⎫3π2-2x 答案 D解析 y =cos|2x |是偶函数,y =|sin x |是偶函数,y =sin ⎝⎛⎭⎫π2+2x =cos 2x 是偶函数,y =cos ⎝⎛⎭⎫3π2-2x =-sin 2x 是奇函数,根据公式求得其最小正周期T =π. 5.函数y =cos ⎝⎛⎭⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( ) A.10 B.11 C.12 D.13 答案 D解析 ∵T =2πk 4≤2,即k ≥4π,∴正整数k 的最小值是13.6.函数y =|sin x |(1-sin x )1-sin x 的奇偶性为( )A.奇函数B.既是奇函数也是偶函数C.偶函数D.非奇非偶函数 答案 D解析 由题意知,当1-sin x ≠0, 即sin x ≠1时,y =|sin x |(1-sin x )1-sin x=|sin x |,所以函数的定义域为{x |x ≠2k π+π2,k ∈Z },由于定义域不关于原点对称, 所以该函数是非奇非偶函数. 7.函数f (x )=3sin(23x +15π2)是( )A.周期为3π的偶函数B.周期为2π的偶函数C.周期为3π的奇函数D.周期为4π3的偶函数答案 A 二、填空题8.若0<α<π2,g (x )=sin(2x +π4+α)是偶函数,则α的值为.答案 π4解析 要使g (x )=sin(2x +π4+α)为偶函数,则需π4+α=k π+π2,k ∈Z ,∴α=k π+π4,k ∈Z .∵0<α<π2,∴α=π4.9.函数f (x )=2sin ⎝⎛⎭⎫5π2+2x +1的图象关于对称.(填“原点”或“y 轴”)答案 y 轴解析 f (x )=2sin ⎝⎛⎭⎫5π2+2x +1=2cos 2x +1, ∵f (-x )=f (x ),∴f (x )是偶函数. ∵偶函数的图象关于y 轴对称, ∴f (x )的图象关于y 轴对称.10.关于x 的函数f (x )=sin (x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数; ③存在φ,使f (x )是奇函数; ④对任意的φ,f (x )都不是偶函数. 其中错误的是.(填序号) 答案 ①④解析 当φ=0时,f (x )=sin x 是奇函数. 当φ=π2时,f (x )=cos x 是偶函数.三、解答题11.判断下列函数的奇偶性. (1)f (x )=cos(π2+2x )cos(π+x );(2)f (x )=1+sin x +1-sin x ; (3)f (x )=e sin x +e -sin xe sin x -e-sin x .解 (1)∵x ∈R ,f (x )=cos(π2+2x )cos(π+x )=-sin 2x ·(-cos x )=sin 2x cos x . ∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x =-f (x ), ∴y =f (x )是奇函数.(2)∵对任意x ∈R ,-1≤sin x ≤1, ∴1+sin x ≥0,1-sin x ≥0,∴f (x )=1+sin x +1-sin x 的定义域是R . 又∵f (-x )=1+sin (-x )+1-sin (-x ), =1-sin x +1+sin x =f (x ), ∴y =f (x )是偶函数. (3)∵e sin x -e-sin x≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z . ∴定义域关于原点对称. 又∵f (-x )=e sin (-x )+e -sin (-x )e sin (-x )-e-sin (-x )=e -sin x +e sin xe -sin x -esin x =-f (x ), ∴y =f (x )是奇函数.12.已知f (x )是以π为周期的偶函数,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎡⎦⎤52π,3π时,f (x )的解析式.解 当x ∈⎣⎡⎦⎤52π,3π时,3π-x ∈⎣⎡⎦⎤0,π2, ∵当x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x . 又∵f (x )是以π为周期的偶函数, ∴f (3π-x )=f (-x )=f (x ),∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎡⎦⎤52π,3π.13.已知函数f (x )满足f (x +2)=-1f (x ),求证:f (x )是周期函数,并求出它的一个周期.证明 ∵f (x +4)=f (x +2+2)=-1f (x +2)=f (x ),∴f (x )是周期函数,且4是它的一个周期. 四、探究与拓展14.若函数f (x )=2cos ⎝⎛⎭⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为. 答案 6解析 ∵T =2πω,1<2πω<4,则π2<ω<2π.∴ω的最大值是6.15.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,求ω的最小值. 解 函数y =A sin ωx 的最小正周期为2πω,因为在每一个周期内,函数y =A sin ωx (A >0,ω>0)都只有一个最小值,要使函数y =A sin ωx 在闭区间[0,1]上至少出现50个最小值,则y 在区间[0,1]内至少含4934个周期,即⎩⎨⎧ T =2πω,4934T ≤1,解得ω≥199π2,所以ω的最小值为199π2.。
阶段质量检测(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30° 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎫α+π2=( ) A .-63B .-12C.12D.633.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( ) A .2 B.2sin 1C .2sin 1D .sin 24.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π25.化简1+2sin (π-2)·cos (π-2)得( ) A .sin 2+cos 2 B .cos 2-sin 2 C .sin 2-cos 2 D .±cos 2-sin 26.函数f (x )=tan ⎝⎛⎭⎫x +π4的单调增区间为( )A.⎝⎛⎭⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎫k π-3π4,k π+π4,k ∈ZD.⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z7.已知sin ⎝⎛⎭⎫π4+α=32,则sin ⎝⎛⎭⎫3π4-α的值为( )A.12B .-12 C.32 D .-32 8.设α是第三象限的角,且⎪⎪⎪⎪cosα2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.函数y =cos 2x +sin x ⎝⎛⎭⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32B .2 C .0 D.3410.将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝⎛⎭⎫12x -π2C .y =sin ⎝⎛⎭⎫12x -π6 D .y =sin ⎝⎛⎭⎫2x -π611.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎫2x -π4B .y =2sin ⎝⎛⎭⎫2x -π4或y =2sin ⎝⎛⎭⎫2x +3π4C .y =2sin ⎝⎛⎭⎫2x +3π4D .y =2sin ⎝⎛⎭⎫2x -3π412.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,且f ⎝⎛⎭⎫-14=-a ,那么f ⎝⎛⎭⎫94等于( )A .aB .2aC .3aD .4a二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 14.设f (n )=cos ⎝⎛⎭⎫n π2+π4,则f (1)+f (2)+f (3)+…+f (2 015)等于________.15.定义运算a *b 为a *b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),例如1*2=1,则函数f (x )=sin x *cos x 的值域为________.16.给出下列4个命题:①函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝⎛⎭⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tanα=-34;④函数y =cos(2-3x )在区间⎝⎛⎭⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 18.(12分)已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的单调递增区间. 19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象; (2)写出f (x )的值域、最小正周期、对称轴,单调区间.20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝⎛⎭⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合.21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3.(1)求函数f (x )的解析式;(2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎡⎦⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,求实数m的取值范围.22.(12分)如图,函数y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ⎭⎫≤π2的图象与y 轴交于点(0,3),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A ⎝⎛⎭⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是P A 的中点,当y 0=32,x 0∈⎣⎡⎦⎤π2,π时,求x 0的值.答 案1. 解析:选B 因为-510°=-360°×2+210°,因此与-510°终边相同的角是210°.2. 解析:选A ∵sin ⎝⎛⎭⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3. 解析:选B 如图,由题意知θ=1,BC =1,圆的半径r 满足sin θ=sin 1=1r ,所以r =1sin 1,弧长AB =2θ·r =2sin 1.4. 解析:选C f (x )=sin ⎝⎛⎭⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4, 当k =-1时,则其中一条对称轴为x =-π4.5. 解析:选C1+2sin (π-2)·cos (π-2)=1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.6. 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7. 解析:选C ∵⎝⎛⎭⎫π4+α+⎝⎛⎭⎫3π4-α=π, ∴3π4-α=π-⎝⎛⎭⎫π4+α, ∴sin ⎝⎛⎭⎫3π4-α=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4+α=32. 8. 解析:选B ∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z .∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪cosα2=-cos α2,∴cos α2<0.∴α2是第二象限的角.9. 解析:选A f (x )=1-sin 2x +sin x =-⎝⎛⎭⎫sin x -122+54,∵-π6≤x ≤π6, ∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10. 解析:选C 将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即将x 变为12x ,即可得y =sin ⎝⎛⎭⎫12x -π3,然后将其图象向左平移π3个单位,即将x 变为x +π3.∴y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +π3-π3=sin ⎝⎛⎭⎫12x -π6.11. 解析:选C 由图象可知A =2,因为π8-⎝⎛⎭⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝⎛⎭⎫-π8·2+φ=2,即sin ⎝⎛⎭⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎫2x +3π4.12. 解析:选A 由f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,得f (x +1)=f ⎝⎛⎭⎫⎝⎛⎭⎫x +12+12=f ⎝⎛⎭⎫x +12-12=f (x ), 即1是f (x )的周期.而f (x )为奇函数, 则f ⎝⎛⎭⎫94=f ⎝⎛⎭⎫14=-f ⎝⎛⎭⎫-14=a . 13. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32, 所以cos α-sin α=-1+32.答案:-1+3214. 解析:f (n )=cos ⎝⎛⎭⎫n π2+π4的周期T =4,且f (1)=cos ⎝⎛⎭⎫π2+π4=cos 3π4=-22,f (2)=cos ⎝⎛⎭⎫π+π4=-22,f (3)=cos ⎝⎛⎭⎫3π2+π4=22, f (4)=cos ⎝⎛⎭⎫2π+π4=22.所以f (1)+f (2)+f (3)+f (4)=0, 所以f (1)+f (2)+f (3)+…+f (2 015) =f (1)+f (2)+f (3)=-22. 答案:-2215. 解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎡⎦⎤-1,22. 答案:⎣⎡⎦⎤-1,22 16. 解析:函数y =sin ⎝⎛⎭⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期为π2,故①正确.对于②,当x =7π12时,2sin ⎝⎛⎭⎫3×7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确.对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝⎛⎭⎫23,3长度73>2π3,显然④错误.答案:①②③17. 解:由tan αtan α-1=-1,得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=12-312+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos α+2(cos 2α+sin 2α) =3sin 2α+sin αcos α+2cos 2αsin 2α+cos 2α=3tan 2α+tan α+2tan 2α+1=3⎝⎛⎭⎫122+12+2⎝⎛⎫122+1=135.18. 解:(1)f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫13×5π4-π6=2sin π4=2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝⎛⎭⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19. 解:(1)列表如下:(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎡⎦⎤π4+2k π,5π4+2k π(k ∈Z ).20. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z , 即-23+2k ≤x ≤13+2k ,k ∈Z 时, y =2sin ⎝⎛⎭⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎫πx +π6的单调递增区间为⎣⎡⎦⎤-23+2k ,13+2k ,k ∈Z .(3)由y ≥1,得sin ⎝⎛⎭⎫πx +π6≥12, 所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z , 即2k ≤x ≤23+2k ,k ∈Z , 所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z . 21. 解:(1)由题意,A =3,T =2⎝⎛⎭⎫7π12-π12=π,ω=2πT =2. 由2×π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z , 又因为-π<φ<π,所以φ=π3. 所以f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z , 得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π(k ∈Z ). (3)由题意知,方程sin ⎝⎛⎭⎫2x +π3=m -16在⎣⎡⎦⎤-π3,π6上有两个根. 因为x ∈⎣⎡⎦⎤-π3,π6,所以2x +π3∈⎣⎡⎦⎤-π3,2π3. 所以m -16∈⎣⎡⎭⎫32,1. 所以m ∈[33+1,7). 22. 解:(1)把(0,3)代入y =2cos(ωx +θ)中, 得cos θ=32. ∵0≤θ≤π2,∴θ=π6. ∵T =π,且ω>0,∴ω=2πT =2ππ=2. (2)∵点A ⎝⎛⎭⎫π2,0,Q (x 0,y 0)是P A 的中点,y 0=32, ∴点P 的坐标为⎝⎛⎭⎫2x 0-π2,3. ∵点P 在y =2cos ⎝⎛⎭⎫2x +π6的图象上,且π2≤x 0≤π, ∴cos ⎝⎛⎭⎫4x 0-5π6=32, 且7π6≤4x 0-5π6≤19π6. ∴4x 0-5π6=11π6或4x 0-5π6=13π6. ∴x 0=2π3或x 0=3π4.。