2017年新苏教版六年级数学上册知识点归纳总结
- 格式:doc
- 大小:105.00 KB
- 文档页数:5
一、整数的认识1. 整数的概念2. 整数的比较3. 整数的加减法4. 整数的乘法5. 整数的除法6. 整数的实际应用二、分数的认识1. 分数的基本概念2. 分数的大小比较3. 分数的加减法4. 分数的乘法5. 分数的除法6. 分数的实际应用三、小数的认识1. 小数的基本概念2. 小数的大小比较3. 小数的加减法4. 小数的乘法5. 小数的除法6. 小数的实际应用四、约数和倍数1. 约数的概念2. 倍数的概念3. 最大公约数和最小公倍数4. 约数和倍数在日常生活中的应用五、形状与图形1. 四边形的认识2. 三角形的认识3. 直角三角形、等腰三角形、等边三角形的特点4. 四边形和三角形的周长和面积计算5. 图形的对称性六、数学中的单位1. 长度单位2. 重量单位3. 容积单位4. 时间单位5. 金钱单位七、图表的应用1. 图形的读取与分析2. 柱状图的绘制和分析3. 折线图的绘制和分析4. 饼图的绘制和分析5. 数据的收集和整理八、数学逻辑与推理1. 命题的概念2. 命题的联结词3. 命题的真值表4. 命题的等价变换5. 逻辑推理与实际问题分析以上是苏教版六年级上册数学知识点的主要内容归纳。
在学习这些知识点时,希望同学们能够多加思考和练习,掌握基本概念的同时要能够将其应用到实际问题中去,培养良好的数学思维和解决问题的能力。
祝愿同学们在学习数学的过程中取得优异的成绩,为未来的学习打下坚实的基础。
在学习整数的认识时,我们需要理解整数的概念,掌握整数的比较、加减法、乘法和除法,以及整数在实际应用中的运用。
整数包括正整数、负整数和0,它们构成了数轴上的整数集合。
比较整数大小时,我们可以利用数轴或大小的规律进行推测,从而判断整数的大小关系。
在处理整数的加减法时,我们需要理解负数与正数相加减的规律,了解同号两数相加时数值变大,异号两数相加时数值相减的原理。
而乘法和除法涉及了整数的相乘和相除运算,需要掌握负数相乘的规律以及除法中负数的特殊处理方式。
2017 苏教版六年级数学上册期中复习知识点【同步教育信息】一、本周教学内容:期中复习及考前模拟二、期中复习要点:(一)数的运算分数乘除法计算:1、理解分数乘法的意义,掌握分数乘法的计算法则,会计算分数乘法。
2、理解分数除法的意义,掌握分数除法的计算法则,能够比较熟练地进行计算。
3、能够比较熟练地进行分数连乘、连除和乘除混合运算。
4、理解倒数的意义,掌握求倒数的方法。
(二)式与方程解方程:掌握形如ax±b=c、ax+b=c、ax± bx=c方程的解答方法,能够熟练运用等式的性质解这类方程(三)解决问题分数乘除法问题:能够正确解答“求一个数的几分之几是多少”与“已知一个数的几分之几是多少,求这个数”的相关实际问题。
列方程解决问题:会列形如ax±b=c、ax + b=c、ax± bx=c的方程解决需要两、三步计算的实际问题。
(四)认识图形长方体和正方体的认识:认识长方体和正方体及其展开图,知道长方体和正方体的面、棱、顶点以及长、宽、高(棱长)的含义,掌握长方体和正方体的特征。
(五)测量体积(容积)的意义和体积单位:了解体积(容积)的意义及其常用的计量单位,具有 1 立方米、 1 立方分米、 1 立方厘米实际大小的观念,会进行相邻体积(容积)单位的换算。
长方体、正方体表面积和体积的意义与计算:掌握长方体和正方体的表面积与体积的计算方法,能解决与表面积或体积有关的一些简单实际问题。
(六)综合应用表面积的变化:引导发现表面积的变化规律。
三、知识点梳理(一)数的运算: 分数乘除法计算1、分数乘法的意义与计算法则①意义:分数与整数相乘的意义既可以表示 求几个几分之几相加的和是多少 ?又可以表示求一个数的几分之几是多少 ?分数与分数相乘的意义是求一个数的几分之几是多少 ?例1、2X6既表示 (6个2相加的和是多少?)又表示(6的2是多少?)分数和整数相乘, 用分数的分子和整数相乘的积作分子,分母不变分数和分数相乘, 用分子相乘的积作分子,分母相乘的积作分母。
苏教版六年级数学上册(全册)知识点(一)长方体和正方体长方体和正方体的特征:长方体和正方体的表面积:概念:长方体或正方体 6 个面的总面积,叫做它们的表面积计算公式:长方体表面积=(长×宽+长×高+宽×高)×2正方体表面积=棱长×棱长×6注:不足 6 个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:1 立方米=1000 立方分米 1 立方分米=1000 立方厘米1m³=1000dm³1dm³=1000cm³1 升=1000 毫升 1 立方分米=1 升 1 立方厘米=1 毫升1L=1000mL 1dm=1L 1cm³=1mL长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:长方体体积公式=长×宽×高正方体体积公式=棱长×棱长×棱长长方体和正方体的体积=底面积×高(二)分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是 1 的分数】2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位 1 的量,想单位 1 的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
分数与分数相乘及连乘:1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
2.分数连乘:通过几个分数的分子与分母直接约分再进行计算3.一个数与比 1 小的数相乘,积小于原数;一个数与比 1 大的数相乘,积大于原数。
倒数的认识:1.乘积是 1 的两个数互为倒数。
六年级上册苏教版数学知识点归纳一、整数1. 整数的基本概念在数轴上的整数,正整数、零、负整数,绝对值。
2. 整数的加减法同号两数相加、异号两数相加、同号两数相减、异号两数相减,绝对值的概念。
3. 整数的乘除法正整数的乘除、负整数的乘除,零的乘除。
4. 整数的应用温度的表示、海拔的表示、负数的概念、整数的应用问题。
二、有理数1. 有理数的概念整数与分数的概念,有理数的大小比较。
2. 正数、负数、零正数的概念、负数的概念,有理数的分类。
3. 有理数的加减法有理数的加法、有理数的减法,被减数、减数、差的关系。
4. 有理数的乘法有理数的乘法法则,有理数的乘法性质。
5. 有理数的除法有理数的除法法则,有理数的除法性质。
6. 有理数的应用实际问题中的有理数运算,应用题。
三、代数式1. 代数式的概念代数式的组成、代数式的值、代数式的运算。
2. 代数式的加减法同类项、异类项,代数式的加法、代数式的减法。
3. 代数式的乘法单项式的乘法,多项式的乘法。
4. 代数式的负数有理数的乘法性质,有理数的除法性质。
5. 代数式的应用实际问题中的代数式运算,应用题。
四、方程1. 一元一次方程一元一次方程的基本概念,解方程的步骤。
2. 一元一次方程的解法等式的基本性质,一般方程的解法。
3. 一元一次方程的应用实际问题中的一元一次方程的应用,应用题。
五、图形的初步认识1. 点、线、面图形的基本元素,点、线、面的概念。
2. 多边形多边形的概念,边、角的关系。
3. 三角形三角形的分类,三角形的性质。
4. 四边形四边形的分类,四边形的性质。
5. 圆圆的概念,圆的性质。
六、数学课外拓展1. 数学游戏数学游戏的基本概念,数学游戏的分类。
2. 数学思维训练数学思维的培养,数学思维方法。
3. 数学趣味知识数学趣味知识的介绍,数学趣味知识的应用。
以上便是六年级上册苏教版数学知识点的归纳总结,通过深入理解和掌握这些知识点,有助于学生在数学学习中建立坚实的基础,提高数学成绩,培养解决问题的能力。
2017苏教版六年级数学上册期中复习知识点【同步教育信息】一、本周教学内容:期中复习及考前模拟二、期中复习要点:(一)数的运算分数乘除法计算:1、理解分数乘法的意义,掌握分数乘法的计算法则,会计算分数乘法。
2、理解分数除法的意义,掌握分数除法的计算法则,能够比较熟练地进行计算。
3、能够比较熟练地进行分数连乘、连除和乘除混合运算。
4、理解倒数的意义,掌握求倒数的方法。
(二)式与方程解方程:掌握形如ax±b=c、ax÷b=c、ax±bx=c方程的解答方法,能够熟练运用等式的性质解这类方程(三)解决问题分数乘除法问题:能够正确解答“求一个数的几分之几是多少”与“已知一个数的几分之几是多少,求这个数”的相关实际问题。
列方程解决问题:会列形如ax±b=c、ax÷b=c、ax±bx=c的方程解决需要两、三步计算的实际问题。
(四)认识图形长方体和正方体的认识:认识长方体和正方体及其展开图,知道长方体和正方体的面、棱、顶点以及长、宽、高(棱长)的含义,掌握长方体和正方体的特征。
(五)测量体积(容积)的意义和体积单位:了解体积(容积)的意义及其常用的计量单位,具有1立方米、1立方分米、1立方厘米实际大小的观念,会进行相邻体积(容积)单位的换算。
长方体、正方体表面积和体积的意义与计算:掌握长方体和正方体的表面积与体积的计算方法,能解决与表面积或体积有关的一些简单实际问题。
(六)综合应用表面积的变化:引导发现表面积的变化规律。
三、知识点梳理(一)数的运算:分数乘除法计算1、分数乘法的意义与计算法则①意义:分数与整数相乘的意义既可以表示求几个几分之几相加的和是多少?又可以表示求一个数的几分之几是多少?分数与分数相乘的意义是求一个数的几分之几是多少?例1、92×6 既表示 (6个92相加的和是多少?)又表示(6的92是多少?) 31×52表示(31的52是多少?) ②计算法则:分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变;分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
苏教版六年级数学上册知识点归纳总结(一)长方体和正方体长方体和正方体的特征:长方体和正方体的表面积:概念:长方体或正方体6个面的总面积,叫做它们的表面积计算公式:长方体表面积=(长×宽+长×高+宽×高)×2或=)2S a b a c b c ⨯+⨯+⨯⨯表(正方体表面积=棱长×棱长×6或2=66S a a a ⨯⨯=表注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:1立方米=1000立方分米 1立方分米=1000立方厘米3311000m dm = 3311000dm cm =1升=1000毫升 1立方分米=1升 1立方厘米=1毫升 1L=1000m L 31dm =1L 31cm =1m L长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:长方体体积公式=长×宽×高 或 V a b h =⨯⨯正方体体积公式=棱长×棱长×棱长 或 3V a a a a =⨯⨯=长方体和正方体的体积=底面积×高或×V S h底(二)分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位1的量,想单位1的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
分数与分数相乘及连乘:1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
2.分数连乘:通过几个分数的分子与分母直接约分再进行计算3.一个数与比1小的数相乘,积小于原数;一个数与比1大的数相乘,积大于原数。
2017最新苏教版六年级数学上册知识点总结(一)长方体和正方体 长方体和正方体的特征:长方体和正方体的表面积:概念:长方体或正方体6个面的总面积,叫做它们的表面积 计算公式:长方体的棱长总和=(长+宽+高)×4长方体表面积=(长×宽+长×高+宽×高)×2或=)2S a b a c b c ⨯+⨯+⨯⨯表( 正方体的棱长总和=棱长×12正方体表面积=棱长×棱长×6或2=66S a a a ⨯⨯=表注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:1立方米=1000立方分米 1立方分米=1000立方厘米3311000m dm = 3311000dm cm =1升=1000毫升 1立方分米=1升 1立方厘米=1毫升 1L=1000m L 31dm =1L 31cm =1m L 长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:长方体体积公式=长×宽×高 或 V a b h =⨯⨯ 正方体体积公式=棱长×棱长×棱长 或 3V a a a a =⨯⨯=长方体和正方体的体积=底面积×高 或 ×V S h =底 正方体棱上分割表面涂色:三面涂色有8个,两面涂色有(n-2)×12个一面涂色有(n-2)2×6个 没有涂色有(n-2)3个 (二)分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位1的量,想单位1的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
全新苏教版六年级数学上册1-6单元知识点汇总(全册)以下是格式修正后的文章:全新苏教版六年级数学上册1-6单元知识点汇总(全册)班级:______________ 姓名:______________第一单元长方体和正方体1.两个面相交的线叫做棱,三条棱相交的点叫做顶点。
2.长方体和正方体的相同点和不同点如下:相同点:面的形状:长方形(长方体)或正方形(正方体)。
棱的数量:12 条。
顶点数量:8 个。
相对的面的面积相等。
棱长:平行的四条棱长度相等。
正方体是特殊的长方体。
不同点:面的大小:长方体的相对面的面积不一定相等,正方体的六个面的面积相等。
棱长:长方体的棱长不一定相等,正方体的六条棱长都相等。
长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。
长方体的 12 条棱有 3 组,每组的四条棱长度相等。
长方体的棱长总和为 (长+宽+高)×4.长方体放在桌面上,最多只能看到 3 个面。
3.正方体的展开方式有以下几种:141型”,中间一行 4 个图,作侧面,上下两个各作为上下底面,共有 6 种基本图形。
231型”,中间 3 个作侧面,共 3 种基本图形。
222”型,两行只能有 1 个正方形相连。
33”型,两行只能有 1 个正方形相连。
4.长方体和正方体的表面积计算方式如下:长方体的表面积为 (长×宽+长×高+宽×高)×2.正方体的表面积为棱长×棱长×6.5.在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
例如,一个抽屉有 5 个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这 5 个面的面积就可以了。
通风管顾名思义是通风用的,没有底面。
所以只要算四个侧面就可以了。
(注意:一般是最小的口通风)以下是一些长方体和正方体物品的面数:具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等。
(新)苏教版六年级上册重点知识总结第一单元:长方体和正方体1.长方体和正方体的特征:2.特殊长方体:当长方体中出现相对的两个面是正方形时,其余4个面是完全相同的长方形。
3.表面积概念及计算:(1)长方体或正方体6个面的总面积,叫做它们的表面积。
(2)表面积计算公式:长方体的表面积=(长×宽+长×高+宽×高)×2 用字母表示:S=(ab+ah+bh)×2(3) 正方体的表面积=棱长×棱长×6用字母表示:S=a×a×6=6a²注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等计算5个面(少一个上面--底×高)、通风管少算2个小面。
4. 体积概念及计算5. 求占地面积是计算底面积;求框架、铁丝就是计算棱长总和;求所用铁皮、纸板是计算表面积;求所占空间大小计算体积。
6. 长方体内放正方体或长方体切正方体:(长÷棱长)×(宽÷棱长)×(高÷棱长)=个数(商取整数)7. 长方体的长、宽、高同时扩大n倍,表面积扩大n²倍,体积扩大n³倍。
8. 正方体的棱长扩大n倍,表面积扩大n²倍,体积扩大n³倍。
9. 正方体表面涂色后切成小正方体,每条棱分n份。
三面涂色:数顶点(8个)两面涂色:数棱(n-2)×12一面涂色:数面(n-2)²×610. 长方体上放小正方体(或长方体)(1)表面积=下图表面积+上图四周的面积(2)体积=下图体积+上图体积11. 拼大正方体至少需要8块小正方体。
12. 长方体中最多有2个正方形;最多有4个面完全相同;最多有8条棱长度相等。
最少有2个面完全相同;最少有4条棱长度相等。
13. 长方体中出现相邻的两个面是正方形时是正方体。
14. 扎彩带数长、宽、高各有几条,再计算总和。
苏教版小学六年级上册数学知识点总结
- 1 -
第五单元 解决问题的策略
用“替换”策略解决实际问题
用“假设”策略解决实际问题
可能性
用分数来表示可能性的大小:量所有可能出现的情况数规定出现的情况数量
P
第六单元 认识百分数
百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫百分比或百分率。
百分数的读写:百分数不写成分数形式,先写分子,再写百分号。
注:百分数后面不带单位名称。
(常出现在判断题中)
百分数、分数、小数的互化:
分数怎样化成小数:把分数化成小数,只要用分数的分子除以分母,除不尽时一般保留三位小数。
小数怎样化成分数:把小数化成分数,先看小数的小数部分有几位小数,就在1后面写几个0作为分数的分母,把小数的小数点去掉作为分子,能约分的要约成最简分数。
小数怎样化成百分数:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
百分数怎样化成小数:把百分数化成小数,只要把把小数点向左移动两位,同时去掉百分号。
分数怎样化成百分数:把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
百分数怎样化成分数:把百分数化成分数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
一般解题方法:求一个数是另一个数的百分之几,用除法计算。
注:理解生活中常见的一些百分率。
例如:出勤率、发芽率、成活率、合格率、含盐率、普及率等等。
1
2017最新苏教版六年级数学上册知识点总结
(一)长方体和正方体 长方体和正方体的特征:
长方体和正方体的表面积:
概念:长方体或正方体6个面的总面积,叫做它们的表面积 计算公式:长方体的棱长总和=(长+宽+高)×4
长方体表面积=(长×宽+长×高+宽×高)×2
或=)2S a b a c b c ⨯+⨯+⨯⨯表( 正方体的棱长总和=棱长×12
正方体表面积=棱长×棱长×6或2=66S a a a ⨯⨯=表
注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:
1立方米=1000立方分米 1立方分米=1000立方厘米
3
3
11000m dm = 3
3
11000dm cm =
1升=1000毫升 1立方分米=1升 1立方厘米=1毫升 1L=1000m L 31dm =1L 31cm =1m L 长方体和正方体的体积(容积):
概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:
长方体体积公式=长×宽×高 或 V a b h =⨯⨯ 正方体体积公式=棱长×棱长×棱长 或 3V a a a a =⨯⨯=
长方体和正方体的体积=底面积×高 或 ×
V S h =底 正方体棱上分割表面涂色:三面涂色有8个, 两面涂色有(n-2)×12个 一面涂色有(n-2)2×6个 没有涂色有(n-2)3个 (二)分数乘法
分数与整数相乘及实际问题:
1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】
2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位1的量,想单位1的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
分数与分数相乘及连乘:
1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
2.分数连乘:通过几个分数的分子与分母直接约分再进行计算
3.一个数与比1小的数相乘,积小于原数;一个数与比1大的数相乘,积大于原数。
倒数的认识:
1.乘积是1的两个数互为倒数。
2.求一个数(不为0)的倒数,只要将这个数的分子与分母交换位置。
【整数是分母为1的分数】
3.1的倒数是1,0没有倒数。
4.假分数的倒数都小于或等于1(或者说不大于1);真分数的倒数都大于1。
(三)分数除法
分数除法:
1.分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。
2.分数连除或乘除混合计算:可以从左向右依次计算,但一般是遇
到除以一个数,把它改写成乘这个数的倒数来计算。
【转化成分数的连乘来计算】
3.除数大于1,商小于被除数;除数小于1,商大于被除数;除数等
于1,商等于被除数。
4.分数除法的意义:已知一个数的几分之几是多少,求这个数?可
以用列方程的方法来解,也可以直接用除法。
注:在单位换算中,要弄清需要换算的单位之间的进率是多少
比的认识:
1.比的意义:比表示两个数相除的关系。
2.比与分数、除法的关系::(0)
a
a b a b b
b
=÷=≠
3.比值:比的前项除以比的后项,所得的商就叫比值。
注:比值是一个数,可以是整数、分数、小数,不带单位名称。
4.比的基本性质:比的前项和后项同时乘或除以一个相同的数(0
除外),比值不变。
5.最简整数比:比的前项和后项是互质数。
也就是比的前项和后项
2
除了1意外没有其它公因数。
6.化简:运用比的基本性质对比进行化简,方法:先把比的前、后项变成整数,再除以它们的最大公因数。
注:化简比和求比值是不同的两个概念【意义不同,方法不同,
结果不同】
7.按比例分配问题:将一个数量按照一定比例,分成几个部分,求每个部分是多少,这类问题称为按比例分配问题。
解决方法:先求出总份数,再求各部分数占总数的几分之几,转化
成分数乘法来计算。
(四)解决问题的策略
用“替换”策略解决实际问题:
问题:小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满,
已知小杯的容量是大杯的1
3
,小杯和大杯的容量各是多少毫升?
如果把720毫升果汁全部倒入小杯,需要(6+3)个小杯。
如果把720毫升果汁全部倒入大杯,需要(1+2)个大杯。
用“假设”策略解决实际问题:
问题:在1个大盒和5个同样的小盒中装满球,正好是80个,每个大盒比每个小盒多装8个,大盒里装了多少个球?小盒呢?
分析:假设6个全是小盒⇒球的总数比80小,把1个大盒换成小盒球的总数比80少8个⇒小盒:(80-8)÷6=12大盒:12+8=20⇒检验
先假设⇒再比较(与条件不符)⇒进行调整⇒得出结果⇒检验(五)分数四则混合运算
分数四则混合运算的顺序:
分数四则混合运算的顺序与整数相同。
先算乘除法,后算加减法;
有括号的先算括号里面的,后算括号外面的。
分数四则混合运算的运算律:
加法的交换律:a b b a
+=+
加法的结合律:()()
a b c a b c
++=++
乘法的交换律:a b b a
⨯=⨯
乘法的结合律:()()
a b c a b c
⨯⨯=⨯⨯
乘法的分配律:()
a b c a c b c
+⨯=⨯+⨯
稍复杂的分数乘法实际问题:
1.甲占(是)乙的几分之几
几分之几=甲÷乙;甲=乙×几分之几;乙=甲÷几分之几;
2.甲占(是)总量的几分之几,求乙?
乙=总量-甲×几分之几
3.甲比乙多(增加、上升、提高)几分之几
几分之几=(甲-乙)÷乙;甲=乙×(1+几分之几);
乙=甲÷(1+几分之几)
3
4.乙比甲少(减少、下降、降低)几分之几
几分之几=(甲-乙)÷甲;甲=乙÷(1-几分之几);
乙=甲×(1-几分之几)
(六)百分数
百分数的意义及读写:
1.百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫百分比或百分率。
2.百分数的读写:百分数不写成分数形式,先写分子,再写百分号。
注:百分数后面不带单位名称。
(常出现在判断题中)
百分数与小数的互化:
百分数与分数的互化:
求一个数是另一个数的百分之几的实际问题:
公式:(一个数÷另一个数)×100%
生活中常见的一些百分率:
合格率=合格产品数÷产品总数×100%
出勤率=实际出勤人数÷应出勤人数×100%
发芽率=发芽种子数÷试验种子总数×100%
成活率=成活棵数÷种植总棵数×100%
出油率=油的重量÷油料重量×100%
命中率=命中次数÷总次数×100%
及格率=及格人数÷参加考试人数×100%
纳税问题:
求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额。
利息问题:利息=本金×利率×存期
折扣问题:折扣=实际售价÷原售价×100%
列方程解决稍复杂的百分数实际问题:
1.解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同。
2.用字母或含有字母的式子表示题中两个未知的数量,找出数量间的相等关系。
根据求一个数的百分之几是多少用乘法列方程求解,或者根据除法的意义,直接解答。
4
3.“已知比一个数多(少)百分之几的数是多少,求这个数”的实
际问题,可以根据数量间的相等关系列方程求解;或者根据除法的
意义,直接解答。
4.灵活运用本单元所学知识,解决稍复杂的百分数实际问题,沟通
分数、百分数应用题之间的联系。
5。