当前位置:文档之家› 三相继保仪差动试验举例

三相继保仪差动试验举例

三相继保仪差动试验举例
三相继保仪差动试验举例

三相继保测试仪测试采用 Y →? 转换变压器保护装置举例

变压器差动保护调试一直是我们工作中的一个难题,在此通过试验举例使用三相电流继保仪来详细说明差动比率制动调试方法,希望此方法对大家有所帮助。

一)保护相关设置:

(1) 保护定值设置:

某220kV 变电站,高中低压侧额定容量为240MVA ,电压等级为220kV/110kV/35kV ,CT 变比分别为600/1、1200/1、3000/1,主变接线方式为Y/Y0-△11。差动门槛值0.5Ie ,差动速断值6Ie ,拐点1为3Ie ,拐点2为6Ie ,斜率1为0.5,斜率2为0.75。

(2) 保护压板设置:

在“整定定值”里,把“纵差保护”、“速断保护” 投入,其他保护均退出。在保护屏上,仅投“差动保护”硬压板。

二)采用 Y →?变化的变压器保护,下面以三相继保测试仪继保之星806“交流试验”界面来介绍差动保护及比率系数的试验方法。

1、试验接线:

当测试高对中压侧时由于是星形对星形方式,试验

的接线很简单:测试A 相时,测试仪IA 接保护高压侧的A

相,测试仪的IB 接保护低压侧的a 相,保护高、低压侧的

中性线短接后,接测试仪的IN ,不存在补偿电流问题。

测试变压器B 、C 相时,接线与上述类似。

当测试高对低压侧时由于是星形对三角形方式,常

见的接线为:测试变压器A 相时,测试仪IA 接保护高压侧

的A 相,测试仪的IB 接保护低压侧的a 相,测试仪的IC 接

低压侧的c 相,保护高、低压侧的中性线短接后,接测试

仪的IN ,其中IC 作为补偿电流。但如果要求测试变压器

的B 相或C 相时,又该如何接线呢?

由右图所示向量图可以看出,高压侧转换后的电流

应为:

()3/'IB IA A I -=,

()3/

'IC IB B I -=, ()3/

'IA IC C I -=, 图1 变压器高低压侧转换图

如果只给高压侧A 相通入一个电流,B 、C 相不加电流,则转换后的高压侧三相电流为: ()()3/3/03/'IA IA IB IA A I =-=-=,

()()03/003/'=-=-=IC IB B I ,

()()3/3/03/'IA IA IA IC C I -=-=-=

所以高压侧C 相上有了电流,并且与A 相上的电流大小相等,方向相反。试验时,为了平衡高压侧C 相上的电流,就在低压侧的c 相上加一补偿电流,并且所加的补偿 电流应与加在低压侧a 相上的电流大小相等,方向相反。

同理,如果测试变压器的B 相,即只给高压侧的B 相加电流,A 、C 两相不加电流,依据上述公式得:

()()3/3/03/'IB IB IB IA A I -=-=-=,

()()3/3/03/'IB IB IC IB B I =-=-=,

()()03/003/'=-=-=IA IC C I

由此看出,高压侧的A 相上有了一个大小相等、方向相反的电流,试验时应补偿低压侧的a 相。因此,正确的接线为:测试仪IA 接保护高压侧的B 相,测试仪的IB 接保护低压侧的b 相,测试仪的IC 接低压侧的a 相,保护高、低压侧的中性线短接后,接测试仪的IN ,其中IC 作为补偿电流。

由以上分析可得,以A 相为例,接线方式应为

图2 差动保护星形-三角形两侧接线图(三相电流)

由上述分析不难发现,加在保护低压侧对应相的电流应与加在高压侧的电流反相,加在低压侧的补偿电流由要与加在低压侧对应相的电流反向。所以在测试变压器A 相时,当测试

仪IA 的电流设为0o,则测试仪IB 的电流应为180o,测试仪IC 的电流应为0o。仔细分析发现低压侧a 相与c 相电流大小相等方向相反,所以接线时我们也可以从测试仪IB 相流出到低压侧a 相进c 相出,电流流入测试仪IN 相。

2、高、低压侧电流与差动电流、制动电流的关系

值得注意的是,试验期间,通过改变测试仪某一相电流至保护动作,此时测试仪输出的电流并非动作电流或制动电流,更不能受差动继电器的动作原理影响,认为加在高压侧的就是动作电流,加在低压侧的就是制动电流。微机差动保护并不是直接比较高低压侧的电流大小动作的,而是判断是否满足上述的动作方程。那高、低压侧电流与差动电流、制动电流的关系是怎样的呢? 一般,国内保护的差动电流均采用:Il Ih Id +=,可表述为:差动电流等于高、低压侧电流矢量和的绝对值,因此必须注意加在保护高低压侧电流的方向。

制动电流的方程则各个品牌和型号的保护往往不同,国内保护最常见的公式有以下三种: 1. {}Il Ih Ir ,max =,正确的表述为:制动电流等于高、低压侧电流幅值的最大值; 2. (K Il Ih Ir /+=,正确的表述为:制动电流等于1/K 倍的高低压侧电流幅值之和; 3. Il Ir =,正确的表述为:制动电流等于低压侧电流的幅值。

公式 2 中的K 值大部分保护为2,个别保护为1。 另外两个公式有的保护也会采用:()K Il Ih Id Ir K Il Ih Ir //--=-=,。 实际上,试验时记录下的保护临界动作时测试仪输出的IA 、IB 的电流值都不能等同与上述的高、低压侧电流,因为还得考虑高低压侧的平衡系数。假设测试仪IA 输出给高压侧,IB 输出给低压侧,高低压侧的平衡系数分别为 K1、K2,则高低压侧的电流为:IB K Il IA K Ih ?=?=21,。再代入差动电流和制动电流的公式去求出相应的差动电流和制动电流。

3、差动保护试验及斜率的校验:

计算高低压侧二次额定电流:

Ie1=240000/(1.732*220*600)=1.05A ,

Ie2=240000/(1.732*35*3000)=1.32A ,

高压侧平衡系数为1,低压侧平衡系数K=1.05/1.32=0.795, 制动公式为()

K Il Ih Ir /+=

1)交流试验参数设置

初始值设置IA为1.05A,相位0°,IB为1.32A,相位180°,IC为1.32A,相位0°。此时的制动电流Ir=(1.05+0.795*1.32)/2=1.05=Ie,Id=1.05-0.795*1.32=0,即保护肯定不会动作。以0.01A步长减小IB相电流值直到差动保护动作记下动作时IB相电流为1.20A。注意,在选择变化相别时最好不要变化IA相电流,因为IA相电流变化的同时会在高压侧C相产生一个差流导致C相差动也会动作,所以最好变化IB相电流也就是低压侧A相电流值。

观察比率制动曲线其中Ie与2Ie刚好在同一段斜率曲线内,所以可将高低压侧的输出电流同时放大2倍,即设置IA为2.10A,相位0°,IB为2.64A,相位180°,IC为2.64A,相位0°。此时的制动电流Ir=2.10A=2Ie,Id=0,即保护肯定不会动作。再以0.01A步长减小IB相电流值直到差动保护动作记下动作时的IB相电流为1.99A。

由于这两组电流值的的制动电流Ie与2Ie在同一段曲线内因此它们的斜率必定相同,动作边界上的测试仪显示两组电流值分别为(1.05,1.20)与(2.10,1.99),计算Ir1=

(1.05+0.795*1.20)/2=1.0,Id1=|1.05-0.795*1.20|=0.1,Ir2=(2.10+0.795*1.99)

/2=1.84,Id2=|2.10-0.795*1.99|=0.52,斜率K1=(Id2-Id1)/(Ir2-Ir1)=(0.52-0.1)/(1.84-1)=0.5。

第二段斜率建议取制动电流4Ie和5Ie,试验方法类似在此不叙述。此试验仅仅校验了A 相差动,BC相差动的方法同样注意改接线,考虑清楚补偿问题。

用三相电流做曲线一定要弄清楚补偿问题,并确定出制动公式计算方法。用交流试验多取几个点即可手动描绘出比率制动曲线,此方法相对来说比较复杂但是能够非常清楚的理解差动保护的整个试验流程及动作原理。六相电流做差动方法比较简单都是由软件计算。初学者建议还是用三相电流做差动。

——技术支持部 2014.10.15

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

差动放大器实验报告

差动放大器实验报告 以下是为大家整理的差动放大器实验报告的相关范文,本文关键词为差动,放大器,实验,报告,篇一,实验,差动,放大器,南昌大学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。 篇一:实验五差动放大器 南昌大学实验报告 实验五差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器Rp用来调节T1、T2管的静态工作点,使得输入信号ui=0时,双端输出电压uo=0。Re为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较

强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1差动放大器实验电路 1、静态工作点的估算典型电路Ic1=Ic2=1/2Ie恒流源电路Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出:Re=∞,Rp在中心位置时, Ad? 单端输出 △uoβRc ?? △ui Rb?rbe??β)Rp 2 Ad1? △uc11?Ad △ui2 Ad2? △uc21 ??Ad △ui2 当输入共模信号时,若为单端输出,则有 △uc1?βRcR

Ac1?Ac2????c △uiR?r?(1?β)(1R?2R)2Re bbepe 3、共模抑制比cmRR2 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比AA cmRR?d或cmRR?20Logd?db? AcAc 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、典型差动放大器性能测试 按图5-1连接实验电路,开关K拨向左边构成典型差动放大器。 1)测量静态工作点2)①调节放大器零点 信号源不接入。将放大器输入端A、b与地短接,接通±12V直流电源,用直流电压表测量输出电压uo,调节调零电位器Rp,使uo=0。调节要仔细,力求准确。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻Re两端电压uRe,记入表5-1。

动三轴实验步骤(带拉伸帽)

动三轴基本操作步骤 一、仪器介绍 基本配置: (1)驱动装置:2/5/10HZ;5/10/20/40KN (2)压力室 (3)水下荷重传感器 (4)DCS数字控制系统 颜色/通道传感器固定DTI 增益(DTI 传感器满量程) ?黑色(Ch 0) - 荷重传感器x333.33 (30mV) ?棕色(Ch 1) - 轴向霍尔效应传感器1 x10 (1000mV) ?红色(Ch 2) - 轴向霍尔效应传感器2 x10 (1000mV) ?橙色(Ch 3) - 径向霍尔效应传感器x10 (1000mV) ?黄色(Ch 4) - 孔隙水压力1 x100 (100mV) ?绿色(Ch 5) - 孔隙水压力2 x100 (100mV) ?灰色(Ch 6) - 备用A/D 通道1 x1 (10000mV) ?白色(Ch 7) - 备用A/D 通道2 x1 (10000mV)

(5)围压和反压控制器 控制器基本操作主要是充水、排水和施加目标压力。其操作可以通过软件控制,也可采用智能键盘操作。控制器打开电源之后,按命令键CMD ,会出现上图所示的快捷菜单,点击相应按键即可操作。 Tareget Pressure=7:设置目标压力,按“7”之后按照提示输入目标压力值并按绿色确认键开始加载; Fast Fill=6:快速填充,按“6”之后控制器将开始吸水; Fast Empty=3:快速排空,按“3”之后控制器将开始排水; (6)平衡锤:平衡锤的主要功能就是在加载过程中保持围压的恒定。 平衡锤配置图

二、安装试样 1.控制器充排水:试验之前先将控制器中的水排出一部分然后再吸水,确保控 制器中水装满2/3且无气泡,在排控制器水时将控制器管路这端抬升以便气泡充分被排除; 2.排气泡:通过控制器排除顶帽、底座以及设备管路中的气泡; 3.安装试样:安装试样时小心土颗粒,特别是砂子掉入压力时内部,试样两端 都需要垫放浸湿的透水石和滤纸,安装试样尽量采用三半模以减小对试样的扰动,安装顶帽之前用软毛刷轻轻刷橡皮膜以排除橡皮膜与土样之间的气泡,两端用O型圈或者橡皮筋扎紧; 4.安装喇叭口:将喇叭口内壁涂一层硅脂,切记不可涂太多,将平口那端安装 到试样帽上; 5.安装外压力室:安装压力室之前确保轴向力传感器处于最上位置,安放压力 室时观察拉伸帽是否压住试样,螺栓需要对称拧紧; 6.荷重传感器清零:通过软件对力传感器清零; 点击左侧Object Diisplay,出现右侧的的硬件显示窗口。 点击力传感器上部的眼睛,然后点击Advanced选项,单击右下角Set Zero 清零。

差动保护试验

谈差动保护试验 差动保护在电力系统中被广泛采用在变压器、母线、短线路保护中。差动保护模拟试验起来比较难,主要有以下原因:第一,差动保护的电流回路比较多,两卷变压器需要高、低压两侧电流,三卷变压器需要高、中、低压三侧电流,母线保护需要更多;第二、差动保护的核心是提供给差动继电器或自动化系统差动保护单元差电流, 要求各电流回路的极性一定要正确,否则极性接错即变成和电流; 第三,差动保护的特性测试比较难。 传统的检验极性的方法是做六角图,但新投运的变压器负荷一般较小,做六角图有难度,还有,即便是六角图对也不能保证保护屏内接就正确(笔者曾发现过屏内配线错误,做六角图时,保护动作不正确)。曾经看到用人为加大变压器负荷的方法来准确地做出六角图的文章.如用投电容器来人为加大主变负荷,还有用两台变比不同的主变并列后产生环流来人为加大主变负荷。笔者认为以上方法与有关运行规程有矛盾:变压器并列变比相同,负载轻时不许投电容器都是运行规程明确规定的,就是试验没问题,在与运行人员的工作协调中也有难度。因此,以上方法不便采用。下面介绍我们的经验,我们只在二次回路上试验,不必人为加大主变负荷即可全面、系统地验证差动保护的正确性。

一、用试验箱从保护屏端子排加电流,检查保护屏内及保护单元的接线正确性 变压器的差动保护电流互感器接线,传统上都是和变压器绕组接线相对应的,即变压器绕组接成星形,相应电流互感器接成角形; 变压器绕组接成角形,相应电流互感器接成星形。这样,变压器各侧电流回路正好反相。现在的自动化系统差动保护单元有的继承了原来的接法,有的为了简化接线则要求各侧均为星形,这样对一般Y,D-11接线的变压器高压侧电流超前低压侧150°,接线系数为√3,这些差异由计算机来处理,最后差电流为零。 上面讨论了电流互感器接线类型,下面就做对保护屏加模拟电流来验证其接线是否正确的试验。如果为传统的接线方式,可以加反相的两路模拟电流(从一侧头进尾出后从另一侧尾进头出即可实现),如果各侧均是星接,则加高压侧超前低压侧150°的电流来模拟。现在的自动化系统差动保护单元都有差动电流显示,根据显示数据即可判定其接线正确性——若为两电流有效值之差则接线正确,若为两电流有效值之和电流则有极性接反,若为两电流和与差之间的数值则相位处理有错误。如果无差电流显示则只能靠动作与否来判断接线正确与否了,即不动作为正确,动作为不正确,试验时一定要吃透图纸,注意接线极性,可规定从某相(头)流入保护屏,从地(尾)流出保护屏为正方向。这样A、B、

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下

1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的差动放大器 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 100.43-? 双出 A m 100.43-? 单出 A m 100.43-? 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 109.83-? 双出 A m 109.83-? 单出 A m 100.93-? 分析内容 u A i R o R CMR K 空载 -189 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω 分析内容 u A i R o R CMR K 空载 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω

变压器差动保护试验方法

我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电XX自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该XX小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1

土动力学动三轴液化试验报告

泥质粉砂岩液化动三轴试验报告 一 实验器材 振动三轴仪(包括控制部分,加载部分),泥质粉砂岩,托盘天平,游标卡尺,击实仪,真空泵等。 二 实验原理 当土体同时受到纵向和横向荷载作用时,土层中土单元应力状态可看为如下图一所示的简化。异向荷载被看为由自下而上的剪切波引起的,是一种幅值,频率不断变化的不规则运动。当在振动三轴仪上模拟这种应力状态时,将不规则振动简化为等效常幅有限循环次数的振动,即在试件上模拟两种应力状态,有效覆盖压力引起的静应力0γσ和00K γσ,均匀循环剪应力为hv τ。 图一 水平土层土单元应力状态 试件本身应在密度,饱和度和结构等方面尽可能模拟现场土层的实际状况。除取原状土做实验外,在实验室内也须准备重塑试件。考虑荷载作用过程时间短暂,产生的超孔压来不及消失,所以实验室在不排水条件下进行的试验。 为实现上述模拟,本实验采用不排水循环载荷三轴试验来实现上述模拟。假如在试件上先施加各项均等固结压力0σ,后在垂直方向施加2d σ± 循环载荷的同时,横向也施加2 d σ 的荷载,如下图二所示,试件45度斜面上的应力状态与图一相似,其初始法向应力为0σ,初始剪应力为零,与前单元水平面承受的0γσ相当,双向循荷载2 d σ作用并不该变45度倾斜面上的法向应力0σ值,而只产生循环剪应力2 d d στ= ,相当于图一中右图的受力情况, 即图二中第(1)栏所示在三轴试验中为了模拟所要求的应力状态。 σ0 τσ

显然,双向振动三轴仪能方便地实现这种应力状态。而在饱和不排水情况下,单项振动的三轴试验通过空压修正也能获得同样的应力状态。此时,施加的应力状态如同图二中(4)栏所示,只在垂直方向施加动荷载d σ±,当轴向增加d σ时,设想各向均等压力减少 2 d σ,所构成的等效应力状态恰好与所要求的相同;于此相似,轴向减少d σ时应当增加各向均等压力 2 d σ,由于是饱和不排水的,各向均等压力的变化只能引起试件中空隙水压力的相应变化,对有效应力,也即对试件的强度和变形并无影响。换句话说,可以获得与双向振动三轴仪试验完全相同的强度和变形值。对单项振动三轴试验中的实测孔压值进行修正即可获得双向振动时的相应孔压值,轴向加d σ时的修正值为 2d σ,减d σ时修正值为2 d σ -。但是,实际上很少作这种修正,因人们关心的主要是强度和变形值。 不难看出,只是在三轴试件45度斜面上才大体模拟了现场应力状态。实际上还存在若干重要的区别,例如现场土层静测压力系数0k 一般取0.4(随土的性质而变),最大和最小主应力方向分别为垂直和水平方向,振动时主应力方向的摆动不超过40度等,但在振动三轴试验中,试样的0k 等于1,主应力方向不断作90度变换。因此,在应用此试验结果于现场时,必须考虑这种差别而做相应的修正,此外,完全可以不拘泥于上述应力状态的模拟,而把单项振动液化试验只看做是在这种特定状态下的一种液化过程,进而着重研究这种液化过程与其他条件下液化过程的异同。 图二 轴实验中土单元应力状态的模拟 三 试验条件

差动保护试验方法

差动保护试验方法 国测GCT-100/102差动保护装置采用的是减极性判据,即规定各侧均已流出母线侧为正方向,从而构成180度接线形式。 1. 用继保测试仪差动动作门槛实验: 投入“比率差动”软压板,其他压板退出,依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流0.90A ,步长+0.01A ,观察差流,缓慢加至差动保护动作,记录动作值。 说明: 注意CT 接线形式对试验的影响。 若CT 接为“Y-△,△-Y 型”,则在系统信息——变压器参数项目下选择“Y/D-11”,此时高侧动作值为:定值×√3,即1.73动作,低测动作值为定值,即1.00动作 若CT 接为“Y-Y 型”,则在系统信息——变压器参数项目下选择“无校正”,此时高低侧动作值均为定值,即1.00动作 2. 用继保测试仪做比率差动试验: 分别作A ,B ,C 相比率差动,其他相查动方法与此类似。 以A 相为例,做比率差动试验的方法:在高,低两侧A 相同时加电流(测试仪的A 相电流接装置的高压侧A 相,B 相电流接装置的低压侧A 相),高压侧假如固定电流,角度为0度,低压侧幅值初值设为x ,角度为180度,以0.02A 为步长增减,找到保护动作的临界点,然后将x 代入下列公式进行验证。 0Ir Ir Id Id k --= 其中: Id :差动电流,等于高侧电流减低侧电流 Id0:差动电流定值 Ir :制动电流,等于各侧电流中最大值 Ir0:制动电流定值 K :制动系数 例如: 定值:Id0=1(A ); Ir0=1(A ); K =0.15 接线:测试仪的Ia 接装置的高压侧A 相,Ib 接装置的低压侧A 相 输入:Ia =∠0 o5A Ib =∠180 o5A 步长Ib =0.02A 试验:逐步减小Ib 电流,当Ib=3.4A 时装置动作。 验证:Id =5-3.4=1.6A Id0=1A Ir =5A Ir0=1A 15.04 6.0151)4.35(==---=k 3. 用继保测试仪做差动速断试验 投入“差动速断”压板,其他压板退出。依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流9.8A ,每次以0.01A 为步长缓慢增加电流值至动作,记录动作值。 例如:

差动放大器

实验四 差动式直流放大器 一、 实验目的 1. 了解差动放大器的性能特点和调试方法. 2. 学会测量差动放大器的放大倍数和共模抑制比. 二、实验仪器 直流稳压电源(双路), GDM —8045数字万用表, 模拟电路实验箱 三、实验原理 差动式直流放大器(简称差放)的原理图如图,1T 、2T 的性能相同,21C C R R =,21R R =,21S S R R =,发射极共用一只电阻e R .由图可见,它由两个共发射极放 大器联体而成,与单管放大器比较,有以下三点不同: 1. 输入信号i U 对地对称,叫差模信号,1T 、2T 两管基极得到的信号是大小相等、方向相反的信号.在无线电技术中称这种输入形式为“平衡输入”或“对称输入”. 2. 输出信号o U 在两管的集电极上取出,对地也是对称的,所以也叫“平衡输出”“对称输出”,也叫“双端输出”. 3. 两晶体管共用一只发射极电阻e R 由于这三点不同,使差放具有了零点漂移小,能够放大频率低至直流的信号的特点.它广泛用于测量技术中,在集成电路中应用更普遍. 当输入差模信号i U 时,1T 的集电极电位下降1C U '?,2T 的集电极电位上升2C U '?,而且因电路对称,='?1C U 2C U '?,输出电压21C C O U U U '?+'?=?.差放双端输出时的差模放大倍数dd A 为:

21212222d d i C i C i o dd A A U U U U U U A =='?='?=?= , 21d d A A ,是单端输出时的差模电压放大倍数. 当1T 、2T 的基极上加大小相等,相位相同的共模信号i U 时,两管集电极电位同 时上升或下降1C U ''?和2C U ''?且1C U ''?=2C U ''?,此时若采用单端输出,则O U ?=1C U ''?=2C U ''?,差放单端输出时的共模电压放大倍数i C CS U U A 11''?=,i C CS U U A 22''?= ,它们均大于0;若采用双端输出,则共模电压放大倍数021=''?-''?=?= i C C i O cd U U U U U A ,差放的这一特点,就是它能消除“零点漂移”的原理.因为象温度变化、外界干扰那样的信号,都是同时同相等量的加在差放的两只晶体管上的,相当于共模信号. 在实际应用中,电路不可能完全对称,所以cd A 也不可能完全为0.另外,差放也经常采用单端输出的方式,即使电路完全对称,1CS A 、2CS A 也不可能等于0,所以在两管发射极上接公用电阻e R .该电阻对差模信号不起作用,但对共模信号有负反馈作用,使1CS A 、2CS A 下降,从而起到抑制漂移的作用.显然,e R 越大,这种抑制作用越大,在数量上,e C e C CS CS R R R R A A 222121-=- ==,但e R 也不能太大. 四、实验内容 实验电路如图所示,检查实验电路板,接好+12v 和-12v 电源,将①接①’,②接②’,开始实验。 1. 典型差动放大器性能测试 开关K 拨向1,构成典型差动放大器。 (1) 测量静态工作点 ①调节放大器零点

实验五 差动放大器

南昌大学实验报告 实验五 差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。 它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。R E 为两管共用的发射极电阻, 它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1 差动放大器实验电路 1、静态工作点的估算 典型电路 Ic1=Ic2=1/2IE 恒流源电路 Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (121r R βR △U △U A +++- == 单端输出 d i C1d1A 2 1△U △U A ==

d i C2d2A 21 △U △U A -== 当输入共模信号时,若为单端输出,则有 3、 共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 或 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、 典型差动放大器性能测试 按图5-1连接实验电路,开关K 拨向左边构成典型差动放大器。 1) 测量静态工作点 2) ①调节放大器零点 信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压U O ,调节调零电位器R P ,使U O =0。 调节要仔细,力求准确。 E C E P be B C i C1C2C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-====d c A CMRR A () =d c A CMRR 20Log dB A

动三轴试验操作步骤

动三轴试验操作步骤 1 开机 1.1 开电脑 1.2 开控制器(黑色机箱中红色按钮),打开控制程序,在参数选项中选择“动态试验”;将调整部分改为变形、位移控制,如已经为此种状态,则改为负荷、围压控制,然后再改回(以防开油源时侧向活塞突然升高,水喷出)。 1.3 预热15~30分钟。 1.4 开油源,按“启动”按钮,10秒后按下“高压”按钮,然后缓慢调节调压阀(油源)至5~6Mpa(可根据需要调更高),开冷却水。 2 安装试样 说明:试样必须饱和。试样饱和按照试验规程可以有多种方法,一般选用真空饱和,具体试验步骤见试验规程。如试验需要,可再进行反压饱和或者水头饱和。 2.1 控制区,调整轴向及侧向为变形、缸位置控制;拖动轴向及侧向平均值调整,使其居于最左或最低以便装样; 开上下孔压阀排除管路中气体 进行负荷、围压、上孔压、下孔压清零,变形不清零。 2.2 将饱和好的试样套好橡皮膜,两端分别放滤纸、透水石,然后将两端的橡皮膜翻转。微开下孔压阀,使试样安装底座有一层水膜,将试样平推放在底座上,翻下下端橡皮膜,缠2-3 条橡皮条,每条3-4 圈(橡皮条先缠在底座上)。 2.3 升底座,确认轴向控制方式为变形控制,缓缓拉动轴向调整,右移,约-30mm左右,看试样是否与上底座接触,快要接触时,鼠标点轴向调整,使缓缓上升,接触时负荷具体值与土样软硬程度 相关。 2.4 翻上端橡皮膜,微开下孔压阀,向试样中缓缓注入水,以赶出试样与橡皮膜之间的气泡,可使用刷子轻轻驱赶,当无气泡时,可抽出下孔压体变管中的水,然后关下孔压阀。 2.5 盖压力室,依次拧紧6个螺丝,打开压力室右侧的进出水开关。向压力室注水,当压力室注满水时(上部排气阀出水)关闭进水阀和压力室右侧的进出水开关。拧紧排气阀。清理顶盖多余的水。 3 设置参数 3.1 调用固结参数 菜单区选择设置,选择固结方案,一般为围压、固结比、加载时间和固结时间,修改口令为 213t,修改后另存在原目录下,再次调用。 菜单区选择设置,选择试验方案,一般为频率、次数、动态轴力等,选择静、动态试验,修改口令为213t,修改后另存在原目录下,再次调用。 3.2 打开固结方案,打开试验方案(否则默认为上次所用固结方案,试验方案),新建文件夹,选择目录,输入文件名,如不输入,则默认为当前日期时间。 3.3,系统参数可设置单位,保护等,采样间隔可根据试验要求设置,一般为2~20ms,可选择是否记录孔压耗散。系统参数,一般不更改; 3.4 设置原始数据,包括密度、含水率、干密度等基本的指标; 3.5 根据提示,安装主机背后的小变形传感器,接触良好,数据显示区小变形为-3mm左右,(若土样较软,加载时土样的变形较大,不易控制,有可能超量程),确认轴向为变形控制。可在侧向位置控制下缓慢加围压至10KPa 左右,侧向转为围压控制。 {3.6-3.7加压,固结操作替代方法:轴向保持位移控制不变,侧向转为围压控制,设定围压加载目标及加载速度。

差动保护试验方法

变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT 变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1 而微机保护要求接入保护装置的各侧CT均为Y型接线,显而易见移相是通过软件来完成的,下面来分析一下微机软件移相原理。ND300系列变压器差动保护软件移相均是移

浅谈差动保护的试验

龙源期刊网 https://www.doczj.com/doc/8818659185.html, 浅谈差动保护的试验 作者:王娟平 来源:《科学与财富》2016年第13期 摘要:牵引变压器的主保护是瓦斯保护和差动保护,瓦斯保护是非电量保护,直观易懂 且出错可能性不大;差动保护是电量保护,且涉及3到5个电流互感器,对极性要求很严,二次接线复杂难懂,很容易出错。对于新牵引变电所、综合自动化改造、更换110KV电流互感器后的差动保护试验非常重要,本文主要讨论通过差动保护试验确保其运行的正确性。 关键词:牵引变压器;差动保护;比率差动;差动速断;试验 引言:对保护装置进行试验就是人为的加电流、电压量,使得保护装置动作,从而看装置动作值与整定值之间存在哪些误差,根据此误差可以对保护装置进行改进或将整定值进行重新核定,这样可使用保护装置满足可靠供电的要求。试验方法过简会使一些参数未能得到验证,试验方法过于复杂,又大大增加了工作量,因此科学的办法才是既能准确的了解装置性能又大大地节省人力物力。 一、牵引变电所差动保护 定义:差动保护(包括差动速断和比率差动)是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。 动作原理:差动保护是由变压器两侧的电流互感器二次绕组串联形成环路,差动继电器并接在环路上,因此,根据基尔霍夫电流定律,流入差动继电器的电流等于两侧电流互感器二次绕组电流之差。在正常情况或差动保护范围外发生故障时,两侧电流互感器二次绕组电流大小相等,相位相同,因此流经继电器的差动电流为零,但如果在差动保护区内发生短路故障,流经继电器的差动电流大于零,继电器动作,使断路器跳闸,从而起到保护作用。 差动保护接线方式:差动保护的接线是根据牵引变压器的不同接线方式和保护装置的厂家不同而变化,综合目前在牵引变电所中使用的差动保护接线方式主要有以下六种: 二、差动保护流互极性试验 1.电流互感器 电流互感器按精度要求不同,分为不同的等级:①0.2 级:指一次电流在额定电流附近时,二次绕组电流误差不超过2%,用于计量;②0.5 级:指一次电流在额定电流附近时,二次绕组电流误差不超过5%,用于测量;③P级:指一次电流为额定电流的30倍时,二次绕组的电流误差不超过5% 用于保护。

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

非饱和试验步骤-动三轴

非饱和土试验步骤 1.控制器充排水:试验之前先将控制器中的水排出一部分然后再吸水,确保控制器中水装满2/3且无气泡; 2.饱和陶土板::施加不超过50kPa的反压,打开孔压传感器端阀门,排出管路和底座内部的气泡,然后关闭阀门,当发现陶土板上表面完全被水覆盖表明陶土板基本饱和; 3.安装试样:安装试样时小心土颗粒,特别是砂子掉入压力时内部,安装试样尽量采用三半模以减小对试样的扰动; 4.内压力室和参照管注水:试样装好之后安装内压力室,将差压传感器的两根管道分别与内压力室和参照管相连,给内压力室和参照管注水,打开湿湿差压传感器上部的堵头,排出管路中的气泡,气泡排完后保证参照管水位大约在2/3位置,内压力室水位在细管中间位置; 5.安装外压力室:安装压力室之前确保轴向力传感器处于最上位置,安放压力室时观察拉伸帽是否压住试样,螺栓需要对称拧紧; 6.荷重传感器清零:通过软件对力传感器清零; 7.调接触:调节荷重传感器位置,观察荷重传感器读数,当读数达到0.005左右时锁紧轴向加载杆; 8.压力室充水:打开压力室顶部排气孔的堵头,打开进水阀门给压力室注水,装满之后关闭进水阀门和排气孔的堵头; 9.加压检查:通过电脑施加20kPa围压,观察压力室是否漏水,观察孔压传感器读数是否迅速上升到与围压值相等,如果相等则橡皮膜破裂; 10.吸力平衡:吸力平衡阶段主要的目的是给试样施加一个基质吸力让试样由饱 和状态变成非饱和状态。为了保护设备并让试样与压力杆接触,在设置压力时应该遵循一个原则:轴向压力>径向压力>孔隙气压>反压; 11.等吸力固结:等吸力固结也采用应力控制模块。等吸力固结时反压和孔隙气 压保持不变,同步增大围压和轴向压力,过观察反压体积是否稳定来判断固结是否完成; 12.等吸力剪切:剪切包括应力控制和应变控制。剪切过程一定要比较缓慢避免

比率差动试验方法

比率差动保护实验方法 汉川供电公司石巍 主题词比率差动实验方法 随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法。 一、比率差动原理简介: 差动动作方程如下: Id>Icd (IrIcd+k*(Ir-Ird) (Ir>Ird) 式中:Id——差动电流 Ir——制动电流 Icd——差动门槛定值(最小动作值) Ird——拐点电流定值 k——比率制动系数 多数厂家采用以下公式计算差动电流; Id=︱?h+?l︱(1)

制动电流的公式较多,有以下几种: Ir=︱?h-?l︱/2 (2) Ir=︱?h-?l︱(3) Ir=max{︱?1︱,︱?2︱,︱?3︱…︱?n︱}(4) 为方便起见,以下就采用比较简单常用的公式(3)。 由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/?,Y/Y/?,Y/?/?,Y形接线的二次电流与?形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:?A=(?A’—?B’)/1.732/K hp ?B=(?B’—?C’)/1.732/K hp ?C=(?C’—?A’)/1.732/K hp 其中?A、?B、?C为补偿后的二次电流(即保护装置实时显示的电流),?A’、?B’、?C’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流。K hp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1。 这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A、C两相电流;加入B相电流,则保护同时测到B、A两相电流;加入C相电流,则保护同时测到C、B两相电流。 对于绕组为?形接线的二次电流就不需要软件补偿相位,只要对由于CT变比不同引起的二次电流系数进行补偿了,电流计算公式为: ?a=?a’ /K lp ?a’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流;?a为补偿后的二次电流(即保护装置实时显示的电流)。唯一要注意的是保护装置要求低压侧电流与高压侧电流反相位输入,高压侧的A相与低压侧的A相间应相差150度。K lp为低压的平衡系数(有的保护装置采用的是乘上平衡系数),与保护用的CT

实验3.7 差动放大器

108 实验3.7 差动放大器 一、实验目的 (1)理解差动放大器的工作原理,电路特点和抑制零漂的方法。 (2)掌握差动放大器的零点调整及静态工作点的测试方法。 (3)掌握差动放大器的差模放大倍数、共模放大倍数和共模抑制比的测量方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 差动放大器实验电路如图3.7.1所示,其中晶体管T 1、T 2称为差分对管,与电阻R C1、R C2及电位器R W 共同组成差动放大的基本电路。其中R C1=R C2,R W 为调零电位器,若电路完全对称,静态时R W 应处为中点位置,若电路不对称,调节R W ,使U o 两端静态时的电位相等(U o = 0)。 晶体管T 3、D 1与电阻R e3和R 2组成恒流源电路,可以为差动放大器提供恒定电流I 0。两个R 1为均衡电阻,给差动放大器提供对称的差模输入信号。由于电路参数完全对称,当外界温度变化,或电源电压波动时,对电路的影响都是一样的,因此差动放大器能有效的抑制零点漂移。 1、差动放大器的输入输出方式,如图3.7.1所示电路。 根据输入信号和输出信号的不同方式有四种连接方式。 (1)双端输入—双端输出:输入信号U i 加在U i1、U i2两端:U i =U i1-U i2;输出U o 取自U o1、U o2两端:U o =U o1-U o2。 (2)双端输入—单端输出:输入信号U i 加在U i1、U i2两端:U i =U i1-U i2;输出U o 图3.7.1 差动放大器实验电路

109 取自U o1或U o2到地的信号:U o =U o1或U o =U o2。 (3)单端输入—双端输出:输入信号加在U i1上,U i2接地(或U i1接地而信号加在U i2上);输出U o 取自U o1、U o2两端:U o =U o1-U o2。 (4)单端输入—单端输出:输入信号加在U i1上,U i2接地(或U i1接地而信号加在U i2上);输出U o 取自U o1或U o2到地的信号:U o =U o1或U o =U o2。 连接方式不同,电路的性能参数有所不同。 2、静态工作点的计算 具有恒流源的差动放大器静态时(U i = 0),由恒流源电路得 e3 BE D 0R U U I -= (3-7-1) 其中U D 为稳压管D 1的稳压值,U BE 为发射结压降。 差动放大器中的T 1、T 2参数对称,则 I C1 = I C2 = I 0 /2 (3-7-2) 2 C1 0CC C1C1CC C2C1R I U R I U U U - -=== (3-7-3) 由(3-7-3)式可知,具有恒流源的差动放大器的工作点,主要由恒流源I 0决定。 3、差动放大器的主要指标计算 (1)差模放大倍数A ud 由分析可知,差动放大器在单端输入或双端输入方式不同时,它们的差模电压增益相同。但是对双端输出和单端输出方式的不同,差模电压增益不同。在此仅分析双端输入情形,单端输入情形可自行分析。 差动放大器的两个输入端分别输入两个大小相等,极性相反的差模信号U id1、U id2 (U id1=-U id2),差动放大器的差模输入信号U id = U id1-U id2。 双端输入—双端输出时,差动放大器的差模电压增益为 (3-7-4) 式中 L L C ||2 R R R '=。A u1为单管电压增益。 双端输入—单端输出时,差模电压增益为: od1od1L ud1u1W id id1b be 1222((1))2 U U R A A U U R r ββ'≈ === +++ (3-7-5) 式中L C L ||R R R '=。 (2)共模放大倍数A uC 差动放大器的两个输入端同时加上两个大小相等,极性相同的共模信号,即 od od1od2L ud u1W id id1id2 b be (1)2 U U U R A A R U U U R r ββ'-= === -+++

武汉大学差动放大电路实验报告

武汉大学计算机学院教学实验报告 课题名称:电工实验专业:计算机科学与技术2013 年12 月14 日实验名称差动放大电路实验台号实验时数3小时姓名学号年级2013班3班 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识点;实验内容;必要的原理分析) 一、实验目的 1 、熟悉差动放大器工作原理 2、掌握差动放大器的基本测试方法 实验内容 1.计算下列差动放大器的静态工作点和电压放大 倍数电路图见5.1 信号源已替代 5.1 在图5.1的基础上画出单端输入时和共模输入时的电路图 二、实验环境及实验步骤 (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用表 4.TPE-A3模拟电路实验箱 3、实验步骤: 1、将电路图5.1接线 2、测量静态工作点 3、测量差模电压放大倍数 4、测量共模电压放大倍数 5、在实验台上组成单端输入的差动电路进行下列实验

三、实验过程与分析 (详细记录实验过程中发生的故障和问题,进行故障分析,说明故障排除的过程和方法。根据具体实验,记录、整理相应的数据表格、绘制曲线、波形图等) 实验内容及数据记录 1、将电路图5.1接线 2、测量静态工作点 ①调零 将放大器输入端V11、V12接地,接通直流电源,调节调零电位器R P,使V O=0。 ②测量静态工作点:测量V1,V2,V3各极各地电压, 并填入表5.1中。 5.1 对地 电压 Vc1 Vc2 Vc3 Vb1 Vb2 Vb3 Ve1 Ve2 Ve3 测量值 6.29 6.31 -0.74 0 0 - 7.77 -0.61 -0.61 - 8.39 3)测量差模电压放大倍数 在两个输入端各自加入直流电压信号,按有5.2要求测量并记录,由测量得到的数据计算出单端和输出的电压放大倍数。接入到V11t和V12,调节Dc信号源,使其输出为0.1和-0.1. (须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 4) 测量共模电压放大倍数 将输入端b1和b2 短接,接到信号源的输入端,信号源另一端接地。DC信号先后接OUT1和OUT2 测量有关数据后填入表5.32.,由测量得到的数据计算出单端和双端输出的电压放大倍数,并进一步计算出共模抑制比。 5.2 差模输入共模输入抑制 比测量值计算值测量值计算值计算 值Uc1 Uc2 Uo双Ad1 Ad2 Ad双Uc1 Uc2 Uco双Ac1 Ac2 Ac双CMRR +0.1V 10.08 2.55 7.46 -16. 8616.8 6-33. 71 6.29 6.31 -0.02 0.00 5 0.00 5 0 186.5 -0.1V 6.29 6.31 -0.02 0.00 50.00 5 0 186.5

相关主题
文本预览
相关文档 最新文档