孤岛运行方式下微电网有功功率优化策略研究
- 格式:pdf
- 大小:255.92 KB
- 文档页数:5
微电网孤岛运行模式下的协调控制策略一、概述随着分布式发电技术的不断发展,微电网作为一种新型电力系统结构,以其灵活的运行方式和较高的能源利用效率,逐渐成为解决能源问题的有效途径。
微电网孤岛运行模式是指在主电网故障或需要独立运行时,微电网能够脱离主电网并维持自身稳定运行的状态。
孤岛运行模式下的微电网面临着电源输出功率波动、负荷需求变化以及多源协调控制等诸多挑战。
研究微电网孤岛运行模式下的协调控制策略具有重要的理论价值和实践意义。
在孤岛运行模式下,微电网需要依靠内部的分布式电源和储能系统来满足负荷需求,并实现功率平衡。
分布式电源如风力发电、光伏发电等具有间歇性和随机性,导致输出功率不稳定;负荷需求也会随着时间和场景的变化而波动。
这些不确定性因素给微电网的稳定运行带来了极大的挑战。
为了应对这些挑战,需要设计一种有效的协调控制策略,以实现微电网孤岛运行模式下的稳定运行和优化管理。
该策略需要综合考虑分布式电源的出力特性、储能系统的充放电策略以及负荷需求的变化规律,通过合理的控制算法和优化方法,实现微电网内部的功率平衡、电压稳定和频率稳定,同时提高能源利用效率和经济性。
本文将围绕微电网孤岛运行模式下的协调控制策略展开研究,首先分析微电网的基本结构和孤岛运行的特点,然后探讨协调控制策略的设计原则和关键技术,最后通过仿真实验验证策略的有效性和优越性。
1. 微电网的基本概念与特点作为现代电力系统的一个重要组成部分,是指由分布式电源、储能装置、能量转换装置、负荷、监控和保护装置等构成的小型发配电系统。
它既可以与外部电网并网运行,也可以在孤岛模式下独立运行,实现自我控制、自我保护和能量管理,形成一个高度自治的电力网络。
微电网具备几个显著的特点。
它具备微型化的特征,电压等级低,系统规模小,通常服务于特定区域或用户群体。
这种小规模的发配电系统使得微电网更加灵活和易于部署。
微电网的电源多样,以可再生能源为主,如太阳能、风能等分布式电源,同时也可包括传统的小型发电机组和储能装置。
并网运行模式下,微电网系统对微源的可靠性要求不高;孤岛运行模式下,则需要依靠可靠的DG和储能系统来保证微电网平稳运行。
为此,本文以风光储多种微源低压微电网作为研究对象,采用基于主从控制的源荷平衡控制策略,确保在孤岛运行模式下微电网功率保持平衡、电压和频率保持稳定。
通过MATLAB建立微电网模型,仿真结果验证了低压微电网在孤岛运行模式下,采用该控制策略的可行性和有效性。
01.低压微电网的系统组成本文的研究对象是风光储低压微电网系统,该系统如图1所示。
图1低压微电网系统图微电网系统由风机、光伏电源、储能电池、变流器、负荷、配电网控制系统等组成。
发电侧包含风机、光伏电源、储能电池等,通过变流器将微源的输出转换为满足并网条件的电能;用电侧根据负荷优先级的不同,分为重要负荷与可控负荷。
为了能与配电网友好融合,微电网包含三个层级的控制系统,即配网级的能量管理系统(EMS)、微电网级的微电网中央控制器(MicroGridCentralController,MGCC)单元级的微源和负荷的就地控制器,三者互为联系协调配合,保障微电网稳定运行。
微源控制器包含在逆变器中,将微源的运行状况实时地送往MGCC;负荷控制器为低压测控装置,一方面可将负荷用电情况送往MGCC,另一方面可根据MGCC的指令投切负荷;MGCC根据单元级控制系统上送的电气信息对微电网进行统一协调控制,同时接收EMS下发的调控指令。
另一方面,微电网的运行与各微源特性、负荷特性密切相关,为了平抑DG的出力波动以及负荷的需求波动,对储能系统进行有效的能量管理至关重要。
同时,微电网的孤岛运行亟需解决电压和频率的管理、微源和负荷的平衡等问题,因此,需要可靠的储能系统充放电策略和源荷协调控制策略保证微电网的平稳运行。
02.孤岛模式下低压微电网的控制策略2.1微源控制策略光伏、风机、储能电池等DG经过电能变换装置接入微电网,其基本控制方法包括V/f(恒压/恒频)控制、PQ(恒功率)控制和Droop(下垂)控制等[9]。
摘要摘要微网系统是由各种微源、负荷、储能系统和控制装置等组成的小型电网,是一组能够实现自我管理、保护和控制的自治系统。
微网既可以独立运行,也可以并网运行,一定程度促进了分布式电源与可再生能源的大规模投入,是实现主动式配电网的一种有效方式。
微网具有供电灵活、供电质量高和安全可靠等诸多优点,但微网在运行过程中,如果控制策略采取不当,将会引起系统损耗增加、系统稳定性变差等问题。
本文在对比分析现有最大功率点追踪、孤岛运行、并网运行等控制策略的基础上,提出了微网孤岛/并网运行优化方案,具体研究内容包括以下几个方面:首先,构建了风机、蓄电池和光伏电池等微源的数学模型,并进行了模型搭建和仿真,结合逆变器拓扑结构,分析了分布式电源的传统控制方法;其次,在常用MPPT 算法的基础上,针对光伏输出最大功率在多峰值情况下会陷入局部最优的问题,采用了灰狼算法进行最大功率点跟踪的策略,并结合系统特点对算法进行了优化,进一步提高了最大功率点的搜索精度和收敛速度;接下来,针对下垂控制策略不适用低压微网孤岛运行的缺点,提出了基于虚拟阻抗的改进下垂控制策略,有效地实现了有功功率和无功功率的耦合,改善了系统的稳定性,仿真结果验证了所提方法的有效性;最后,针对采用传统PI进行并网控制时存在的坐标变换复杂、抗干扰能力弱的弊端,提出了改进PR的控制策略,优化了计算过程。
仿真结果表明,优化后的控制策略有效减少了并网谐波电流的产生,提高了系统的稳定性。
关键词:微网优化下垂控制灰狼算法改进PR控制AbstractMicrogrid system is a small power grid composed of various micro-sources,loads, energy storage systems and control devices.It is an autonomous system capable of self-management,protection and control.The micro grid can be operated independently or connected to the grid,which promotes the large-scale investment of distributed power supply and renewable energy to a certain extent,and is an effective way to realize the active distribution network.Microgrid has many advantages such as flexible power supply, high power supply quality,safety and reliability,etc.However,if the control strategy is not adopted properly during the operation of microgrid,the system loss will increase and the system stability will vary.Based on the comparative analysis of the existing control strategies such as maximum power point tracking,island operation and grid-connected operation,this paper proposes the optimization scheme of microgrid island/grid-connected operation.The specific research contents include the following aspects:Firstly,the mathematical models of microsources such as fans,accumulators and photovoltaic cells are constructed,and the model construction and simulation are carried out.The traditional control methods of distributed power supply are analyzed based on the inverter topology.Secondly,on the basis of the common MPPT algorithm,aiming at the problem that the maximum power of photovoltaic output will fall into the local optimization under the condition of multiple peaks,the gray Wolf algorithm is adopted for the maximum power point tracking strategy,and the algorithm is optimized according to the characteristics of the system,which further improves the search accuracy and convergence speed of the maximum power point.Next,aiming at the disadvantage that the droop control strategy is not suitable for low-voltage microgrid island operation,an improved droop control strategy based on virtual impedance is proposed,which effectively realizes the coupling of active power and reactive power and improves the stability of the system.Simulation results verify the effectiveness of the proposed method.Finally,aiming at the disadvantages of complex coordinate transformation and weak anti-interference ability in grid-connected control with traditional PI,an improved control strategy for PR is proposed and the calculation process is optimized.Simulation results show that the optimized control strategy can effectively reduce the generation of grid-connected harmonic current and improve the stability of the system.Key words:Microgrid Optimization Droop control Grey wolf algorithm Improved PR control目录摘要 (I)Abstract (II)第1章绪论 (1)1.1课题研究背景及意义 (1)1.2国内外研究现状 (2)1.2.1国外研究现状 (2)1.2.2国内研究现状 (3)1.3微网的分类 (4)1.3.1交流微网 (4)1.3.2直流微网 (5)1.3.3交直流微网 (6)1.4论文研究的主要内容 (7)第2章风光储微源模型的建立及仿真 (9)2.1风机模型的建立及仿真 (9)2.1.1风机模型的建立 (9)2.1.2风机模型的仿真 (12)2.2蓄电池模型的建立及仿真 (13)2.2.1蓄电池模型的建立 (13)2.2.2蓄电池模型的仿真 (15)2.3光伏电池模型的建立及仿真 (16)2.3.1光伏电池模型的建立 (16)2.3.2光伏电池模型的仿真 (18)2.4本章小结 (19)第3章微网逆变器的数学模型及控制方法 (20)3.1微网逆变器的数学建模及其拓扑结构 (20)3.1.1微网逆变器的数学建模 (20)3.1.2微网逆变器的拓扑结构 (20)3.2微网分布式电源传统控制方法 (21)3.2.1恒功率控制策略 (22)3.2.2恒压恒频控制策略 (23)3.2.3传统下垂控制策略 (24)3.3本章小结 (26)第4章基于改进灰狼算法的光伏系统最大功率点跟踪 (27)4.1常用最大功率点跟踪算法 (27)4.1.1恒定电压法 (27)4.1.2扰动观测法 (28)4.1.3电导增量法 (29)4.1.4常用MPPT算法的局限性 (30)4.2最大功率点跟踪算法的优化 (31)4.2.1灰狼算法 (31)4.2.2改进灰狼算法 (33)4.3改进灰狼算法仿真结果分析 (35)4.3.1模型的搭建 (35)4.3.2仿真结果分析 (35)4.4本章小结 (37)第5章基于改进下垂控制的微网孤岛运行控制策略研究 (38)5.1微网逆变器输出功率特性 (38)5.2基于虚拟阻抗改进下垂控制策略的研究 (39)5.2.1下垂控制策略原理 (39)5.2.2改进下垂控制策略的研究 (40)5.3.3基于虚拟阻抗的改进下垂控制策略 (42)5.3逆变器电压电流双闭环设计 (42)5.4微网离网仿真结果分析 (44)5.4.1模型的搭建 (44)5.4.2仿真结果分析 (47)5.5本章小结 (50)第6章基于改进PR控制的微网并网运行控制策略研究 (51)6.1PI控制策略 (51)6.2PR控制策略研究 (53)6.3改进PR控制策略 (54)6.4微网并网仿真结果分析 (56)6.4.1模型的搭建 (56)6.4.2仿真结果分析 (57)6.5本章小结 (59)第7章结论与展望 (60)7.1结论 (60)7.2展望 (60)致谢 (61)参考文献 (62)作者简介 (66)攻读硕士学位期间研究成果 (67)第1章绪论1.1课题研究背景及意义随着人们生活水平的提高,经济飞速的发展,全世界共同面对两大问题是能源和环境问题。
第1章前言第1章前言1.1选题的背景及研究的目的和意义由于煤、石油和天然气等一次能源的日益枯竭,以及人们对能源的依赖程度日益增大,能源问题越来越制约着我国电力系统的发展。
而燃煤为主的火力发电造成大气环境污染、化石燃料大量排放造成的温室效应导致气候变暖等问题已经成为了全球性的难题。
因此如何保证电力能够安全与稳定的供应成为了亟待解决的问题。
电力生产在最初阶段的方式是集中发电、远距离输电、大电网之间相互联系,其过程存在三个特点:即电力生产的整体性、同时性与随机性。
整体性与同时性即发电、输电和供配电的过程是不可分割的并且同时进行的,其中任何一个环节出现问题,电力生产都将难以完成。
而电力生产的随机性则指负荷、设备异常情况以及电能质量等都在随时变化着,因此在电力生产中需要做到实时调度与安全监控,能够跟踪随机事件的动态情况,以确保电网的安全运行。
但是电力建设成本高,运行难度比较大,已经越来越难以满足当今社会对电力的可靠性和安全性的需求。
近几年来,我国多个地区出现罕见的用电高峰,期间的多次事故给国家和人民造成了重大的经济损失。
美欧地区也有很多国家发生过多次大面积停电事故,致使大电网的脆弱性日益暴漏出来。
现如今,一次能源日益枯竭,环境污染问题也日益严重,传统大电网的脆弱性日益暴漏,致使全球化电力市场改革进程加快,在此背景下有学者提出了分布式发电系统这个概念。
分布式发电被认为是减少环境污染、提高能源的利用效率、增强电能供应的可靠性以及可以满足社会发展对电力日益增长的需求等的一种有效的解决途径。
分布式电源经常分散布置在用户的周围,其发出功率为数千瓦到百兆瓦不等。
相比于传统的集中式供电,分布式电源的安装位置比较灵活,并且比较分散,能更好的利用当地的资源分布,更能适应电力的需求;并且分布式电网与大电网之间又可以相互备用,有效地提高了电能的利用率,供电可靠性明显增强;输电和变电的过程中又可以减轻故障对其造成的影响,可以有效的提高电能质量;能够避免各地区电网之间由于电压和频率波动而相互造成的影响,从而可以防止由于局部电力故障而造成电网大面积的停-1 -电事故,等等。
微电网的孤岛检测与孤岛划分1. 本文概述随着全球能源需求的不断增长和电网结构的日益复杂,微电网作为一种新型的分布式能源系统,其发展受到了广泛关注。
微电网能够整合多种分布式能源资源,如太阳能、风能、储能设备等,以实现高效、可靠的能源供应。
微电网在运行过程中可能会遇到“孤岛”现象,即部分微电网在主电网故障或计划中断时,未能及时从主电网中脱离,形成独立运行的孤岛。
本文旨在深入探讨微电网的孤岛检测与孤岛划分问题。
本文将介绍微电网的基本概念、运行原理以及孤岛现象的定义和分类。
随后,我们将重点分析现有的孤岛检测方法,包括被动检测和主动检测两大类,并评估这些方法在实际应用中的优缺点。
进一步地,本文将探讨孤岛划分的策略和方法。
孤岛划分是指将微电网划分为若干个子系统,以优化能源管理、提高系统稳定性和效率。
我们将分析不同的孤岛划分算法,包括基于遗传算法、粒子群优化算法和人工智能方法的划分策略,并讨论这些方法在实际操作中的适用性和效果。
本文将结合案例分析,探讨孤岛检测与划分在实际微电网中的应用,以及这些技术对提高微电网运行效率和可靠性的贡献。
通过本文的研究,我们期望为微电网的孤岛检测与划分提供理论支持和实践指导,促进微电网技术的进一步发展和应用。
2. 微电网的基本原理微电网(Microgrid)是一种小型电网,它能够集成多种分布式能源资源,包括可再生能源如太阳能、风能,以及传统能源如小型燃气轮机等。
微电网的主要特点是能够在与主电网连接或孤立状态下运行,为局部区域提供稳定和高效的电力供应。
本节将详细探讨微电网的基本原理,包括其结构、运行模式及关键技术。
微电网的结构通常包括四个主要部分:分布式能源(DERs)、能量存储系统、负荷和控制系统。
分布式能源是微电网的核心,负责发电能量存储系统如电池用于平衡供需波动负荷则指微电网服务的用户和设备控制系统则负责监控和优化微电网的运行。
微电网主要有三种运行模式:并网模式、孤岛模式和混合模式。
孤岛式交流微电网储能系统的控制策略摘要:随着新能源技术的快速发展,微电网作为一种灵活的供电模式获得广泛关注。
其中,储能系统是微电网的重要组成部分,对于提高微电网的可靠性、供能质量、经济性和环保性等方面具有重要意义。
本文研究了孤岛式交流微电网储能系统的控制策略,主要包括控制目标、控制策略和控制方法等方面,针对储能系统中常见的电池组进行深入分析,提出了基于状态反馈的PID控制算法,设计了仿真实验和实验验证,分析了不同场景下的控制效果和应用前景。
研究结果表明,基于状态反馈的PID控制算法可以有效提高储能系统的动态响应和控制精度,降低系统能量损耗和电池寿命消耗,提高系统性能稳定性和可靠性,具有良好的实际应用价值。
关键词:微电网;储能系统;控制策略;电池组;PID控制算法Abstract: With the rapid development of new energy technologies, microgrids have gained widespread attention as a flexible power supply mode. Among them, energy storage system is an important part of microgrid, which plays an important role in improving the reliability, power quality, economy and environmental protection of microgrid. This paper studies the control strategy of energy storage systemin isolated AC microgrid, including control objectives, control strategies and control methods. Aiming at the common battery group in energy storage system, a state feedback PID control algorithm is proposed, and simulation experiments and experimental verification are designed to analyze the control effect and application prospect in different scenarios. Theresults show that the state feedback PID control algorithm can effectively improve the dynamic response and control accuracy of the energy storage system, reduce the system energy loss and battery life consumption, improve the performance stability and reliability of the system, and has good practical application value.Keywords: microgrid; energy storage system; control strategy; battery group; PID control algorithmWith the increasing development of renewable energy sources such as solar and wind power, microgrids have become an important research and application field in recent years. However, the fluctuation andintermittent nature of renewable energies pose great challenges to the stability and reliability of microgrids. Energy storage systems, as an important component of microgrids, can effectively compensatefor the intermittent characteristics of renewableenergy sources, improve the power supply stability and quality, and reduce the energy loss in the system.To ensure the effective operation of energy storage systems in microgrids, it is essential to develop appropriate control strategies. Among various control algorithms, the PID control algorithm is widely used due to its simple structure, easy implementation, and good control effect. In recent years, researchers have conducted a lot of research on the PID control algorithm for energy storage systems in microgrids and achieved promising results.One of the advantages of the state feedback PIDcontrol algorithm is that it can effectively improve the dynamic response and control accuracy of the energy storage system. By accurately detecting the state of the system, the PID controller adjusts the corresponding control parameters in real-time, which can effectively reduce the response time and overshoot of the system, and improve the control accuracy. Moreover, the PID control algorithm can suppress the system's steady-state error and ensure the stability of the system's output.Another advantage of the state feedback PID control algorithm is that it can reduce the energy loss andbattery life consumption of the energy storage system. By adjusting the charge and discharge status of the battery group based on the system state information, the PID controller can effectively prevent overcharging and over-discharging of the battery, prolong the battery life, and reduce the energy loss caused by unnecessary charging and discharging.In addition, the state feedback PID control algorithm can improve the performance stability and reliability of the energy storage system. The PID controller can adjust the control parameters in real-time based on the system state information, which can ensure the stability of the system's output and reduce the impact of external disturbances on the system. Moreover, the PID control algorithm can also improve the system's fault tolerance and reduce the probability of system failures.Overall, the state feedback PID control algorithm has good practical application value in the control of energy storage systems in microgrids. It caneffectively improve the dynamic response and control accuracy of the system, reduce the energy loss and battery life consumption, improve the performance stability and reliability of the system, and has broad application prospects in different scenariosContinuing on the topic of energy storage systems in microgrids, one of the main challenges that such systems face pertains to the integration of renewable energy sources such as solar and wind power. These sources are intermittent in nature and subject to fluctuations, making it difficult for the energy storage system to effectively balance supply and demand.One potential solution to this challenge is to implement predictive control algorithms in the energy storage system. These algorithms are designed to anticipate changes in renewable energy output and adjust the energy storage system accordingly, allowing it to more effectively manage energy flow and balance supply and demand.In addition to improving the operational efficiency of the energy storage system, predictive control algorithms can also help to extend the lifespan of batteries used in the system. By better managing the charge and discharge cycles of the batteries, predictive control algorithms can reduce the strain on the batteries and help to prevent premature failure.Another area of research in energy storage systems for microgrids is the use of advanced monitoring andcontrol technologies. These technologies can help to improve the accuracy and reliability of system performance, while also providing greater insight into energy flow and usage patterns.For example, the use of real-time monitoring and control systems can provide instant feedback on system performance, allowing operators to quickly identify and address any issues that may arise. This can help to reduce downtime and minimize the risk of system failures in the event of unexpected events such as equipment malfunctions or extreme weather conditions.Overall, the field of energy storage systems for microgrids is rapidly evolving, with new technologies and approaches being developed and implemented on a regular basis. As renewable energy sources continue to play an increasingly important role in the global energy landscape, it is likely that energy storage systems will become ever more important in providing stable and reliable energy supply to communities and businesses around the worldIn addition to technological advancements, there are also policy and regulatory challenges that affect the deployment of energy storage systems in microgrids. One of the main barriers is the lack of clear andconsistent regulations that govern the use of energy storage systems in local energy systems. This is particularly challenging in developing countries where regulatory frameworks are often weak or nonexistent.Another issue is the lack of financial incentives for energy storage systems, especially in regions where electricity prices are low or subsidies are providedto fossil fuel-based generation sources. As a result, the economic benefits of energy storage systems arenot always clear, making it difficult for investors to justify the upfront costs of these systems.Despite these challenges, there are some successstories of microgrids with energy storage systems that have provided reliable and affordable energy to communities, businesses, and institutions. For example, in India, a remote village in the state of Bihar was electrified using a solar-powered microgrid with battery storage, providing reliable electricity to the community for the first time. Similarly, the Rockefeller Foundation has launched a program thataims to promote the adoption of renewable energy and energy storage systems in rural villages in Africa and Asia, with a goal of providing reliable electricity to over 1 billion people by 2030.In conclusion, energy storage systems are vital forthe development of sustainable and reliable microgrids. Advances in technology, such as improved battery chemistries and control systems, are making energy storage systems more efficient, affordable, and scalable. However, policy and regulatory challenges remain, and more work is needed to create an enabling environment for the deployment of energy storage systems in microgrids. With the continued growth of renewable energy sources and the increasing demand for reliable electricity, energy storage systems are setto play an increasingly important role in powering the world's communities and businessesIn conclusion, energy storage systems have a critical role in the transition towards a more sustainable energy future. The advancements in technology,including battery storage and control systems, have made energy storage systems more practical and cost-effective. Despite these improvements, there are still policy and regulatory hurdles that need to be addressed to ensure widespread deployment of energy storage systems in microgrids. As renewable energy sources continue to grow, energy storage systems will become increasingly important in meeting the demandfor reliable electricity in communities and businesses。