当前位置:文档之家› 功能高分子材料知识点

功能高分子材料知识点

功能高分子材料知识点
功能高分子材料知识点

第一章

1.什么是材料的功能,什么是材料的性能,举例说明。第1页

材料的功能,从本质上来说是向材料输入某种能量和信息,经过材料的储存、传输或转换等过程,再向外输出的一种特性。如化学性、导电性、磁性、光敏性、生物活性等。

材料的性能是指材料对外部作用的表征与抵抗的特性,如对外里的抵抗表现为强度、模量,对热的抵抗表现为耐热性,对光、电、化学药品的抵抗表现为材料的耐光性、绝缘性、耐化学药品性等。

2.功能高分子材料的制备方法以及各自的特点。第4页

方法:(1)功能性小分子的高分子化,高分子化学反应引入预期的功能基团。

功能性小分子的高分子化主要优点在于可以使生成的功能高分子功能基团分布均匀,生成的聚合物结构可以通过小分子分析和聚合机理加以预测,产物的稳定性高,但这种方法需在功能性小分子中引入可聚单体,从而使反应较为复杂,同时在反应中反应条件对功能基团会产生一定的影响,需对功能集团加以保护,使材料的成本增加。例如,高吸水性树脂可以通过将亲水性基团的丙烯酸钠进行自由基聚合实现。

利用高分子化学反应制备功能高分子的主要优点在于合成或天然高分子骨架是现成的,可选择的高分子母体多,来源广,价格低廉。但是在进行高分子化学反应时,反应不可能100%完成,尤其是在多不得高分子化学反应中,制的的产物中含有未反应的官能团,即功能集团较少,功能基团在分子链上的分布也不均匀。例如聚苯乙烯、尼龙、淀粉都可以作为高分子母体。

(2)通过特殊加工赋予高分子的功能特性。

许多聚合物通过特定的加工方法和加工工艺,可以较精确地控制其聚集状态结构及宏观状态,从而使之体现出一定的功能性。例如,许多塑料可以经过适当的制膜工艺,制成具有分离功能的多孔膜和致密膜。

(3)通过普通聚合物与功能材料的复合,制成复合型功能高分子材料。

这种制备方法简便快速,不受场地和设备限制,不受聚合物和功能性化合物官能团反应活性的影响,适用范围宽,功能基团的分布较均匀。但其共混体不稳定,在使用条件下(如溶胀、成膜等)功能聚合物易由于功能小分子的流失而逐步失去活性,如固定化酶。例如,将绝缘塑料和导电涂料共混制得导电塑料。

3.功能高分子材料功能与结构的关系。课本第2页

骨架与功能的关系:高分子骨架在功能高分子材料中起承载官能团的作用。线性聚合物呈现线状,在适宜的溶剂中可以形成分子分散溶液,某些线性聚合物玻璃化温度较低,小分子和离子在其中比较容易进行扩散和传导,但是这种易于溶解的性质在某些情况下会降低它的机械性能和稳定性。支化高分子由于支链的存在,其分子链的刚性及结构的规整性受到影响,因此其熔融性能溶液的黏度不同于线性高分子。交联聚合物在高温下不能熔融在溶剂中不能溶解,只能溶胀,交联度影响机械强度,物理、化学稳定性以及其他与材料功能相关的性质。交联聚合物机械强度得到提高,不易加工处理,不易对其进行结构和组成分析。树形高分子具有高度规整的支化结构,具有大量的端基结构,与相同分子量的线性高分子相比,具有较低的溶液粘度和熔体粘度,同时利用端基上的官能团,可以对其进行改性,引入不同的功能。官能团与功能的关系:(1)官能团的性质对高分子的功能其主要作用。如侧链聚合物液晶中的刚性侧链。(2)聚合物与官能团协同作用。如固相合成用高分子试剂。(3)聚合物骨架起作用,如主链型聚合物液晶。(4)官能团起辅助作用,如主链型液晶高分子的芳香环上引入

一定体积的取代,可以降低玻璃化温度从而降低液晶相温度,在高分子膜材料中引入极性基团可以改变润湿性。

第二章

1、吸附树脂和离子交换树脂各自的特点?

答:共同点:都轻度交联,含有多孔性结构。差异:吸附树脂主要是物理作用如氢键,范德华力,偶极偶极相互作用等。离子交换树脂主要是化学作用,功能基团总的可交换离子与外来离子交换来完成作用。

2、树脂单体成球技术:(1)疏水性单体的悬浮聚合,不含极性基团的疏水性单体,如苯乙烯和二乙烯苯(交联剂),通过悬浮聚合直接成球。(2)含极性基团的取代烯烃单体的悬浮聚合,如丙烯酸甲酯、甲基丙烯酸甲酯、丙烯腈、醋酸乙烯酯、丙烯酰胺等含极性官能团烯烃单体也采用悬浮聚合技术合成球形材料,但通常在水相中加入食盐或同时在有机相中加入非极性溶剂,增大它们与水相之间极性差异,减小单体在水中的溶解度,从而避免两相界面上的非成球聚合。采用分解温度低的引发剂(偶氮二异丁腈),交联剂为二乙烯苯、衣康酸-α-单烯丙酯、三聚异氰酸三烯丙酯和甲基丙烯酸甲酯(3)水溶性单体悬浮缩聚反应(4)线性高分子的悬浮交联成球反应。P15

3、成孔技术:(1)惰性溶剂致孔,惰性溶剂致孔是聚合过程中实现的。在悬浮聚合体系的单体相中加入不参与反应、能与单体相溶、沸点高于聚合温度的惰性溶剂,在聚合完成后,溶剂保留在聚合物中,再通过蒸馏或溶剂提取或冷冻干燥处理,除去惰性溶剂,从而得到大孔聚合物球粒。(2)线性高分子致孔,在悬浮聚合单体相加入线性高分子(聚苯乙烯、聚醋酸乙烯酯、聚丙烯酸酯类),在聚合过程中,线性高分子促进相分离的发生,作为线性高分子溶剂的单体减少和消失,使高分子卷曲成团。聚合完成后,采用溶剂抽提出聚合物球粒中的线性高分子,可得到孔径较大的大孔树脂。(3)后交联成孔,先制备低交联度和线性高分子,然后再将其进行化学反应已达到所需的交联度。

4、吸附平衡:在吸附气体时,往往发生多分子层吸附。由于气态分子处于自由运动状态,达到吸附平衡时吸附剂对气体物质的吸附量与气体的压力P有关,当压力增大时,吸吸附继续进行;压力降低时,部分被吸附的分子会脱附,经过足够长的时间又会按照变化了的压力达到新的平衡。在吸附溶液中某物质时,多为单分子层吸附,存在着吸附剂对溶质的吸附和溶剂使对被吸附物质脱附之间的竞争。此外,当温度升高时吸附量降低,普通物理吸附更明显。P20

5、吸附选择性:(1)水溶性不大的有机物易被吸附,且在水中的溶解性越差越易被吸附。(2)吸附树脂难于吸附溶于有机溶剂中的有机物。(3)当化合物的极性基团增加时,树脂对其吸附能力也随之增加,吸附作用也将加强(4)在同一树脂中,树脂对体积较大的化合物的吸附作用较强

补充:吸附树脂的主要品种有:聚苯乙烯型、聚丙烯酸甲酯型以及其他的各类树脂

6、在食品添加剂提取中的应用.看看24页流程图

优点:与人工合成相比,其安全性高,生产过程中环境污染小。缺点:天然产物较为复杂,

难以得到高纯度的产品。

甜叶菊2H O ???→4FeSO 絮凝??→过滤??→AB-8吸附??→废水

2570%C H OH ?????→大孔阳离子交换树脂??→

大孔阴离子交换树脂??

→浓缩??→产品 7、离子交换树脂三种结构:凝胶型,干态和湿态都是均相透明的,在溶胀状态存在聚合物链间的凝胶孔,小分子可以在凝胶孔内扩散。大孔型离子交换树脂内存在海绵状的多孔结构,不透明。孔径从几纳米到几百纳米甚至到微米级。载体型主要做液相色谱的固定相。一般将离子交换树脂包覆在硅胶或玻璃珠表面上制成。

P28四种苯乙烯系离子交换树脂分子式。

8、聚苯乙烯系离子交换树脂合成:(1)交联聚苯乙烯球粒制备,在热引发剂作用下水相中悬浮聚合得到珠状苯乙烯-二乙烯苯共聚物(白球)。(2)交联聚苯乙烯的功能基团化,通过给聚苯乙烯共聚物球粒上引入不同的功能基团,可分别得到阳离子交换树脂和阴离子交换树脂。通过对上述共聚物磺化可得到磺酸型强酸性阳离子交换树脂,常用磺化剂:浓硫酸、发烟硫酸、氯磺酸和三氧化硫。将上述共聚物氯甲基化,然后用不同的胺进行胺化可分别得到聚苯乙烯系强碱性和弱碱性阴离子交换树脂,常用氯甲基化试剂:氯甲醚、二氯甲醚、甲醛和盐酸的混合溶液、多聚甲醛和盐酸的混合溶液和甲醛缩二甲醇,氯甲基化后与叔胺反应形成季铵型强碱性阴离子交换树脂。当与氨、伯胺或仲胺反应时则分别形成弱碱性的伯胺、仲胺或叔胺阴离子交换树脂。氯甲基化聚苯乙烯氧化可得到聚乙烯系苯甲酸树脂,这是一种弱酸性的阳离子交换树脂。(可参考课本30-31页的反应方程式)

9、交换容量是指单位质量或单位体积树脂在一定条件下表现出的可进行离子交换的基团的量。总交换容量:总交换容量与化学结构有关,与树脂上所含离子基团总量一致。工作交换容量:在一定工作条件下测定的交换容量。再生交换容量:当存再生剂时测定的交换容量。离子交换利用率=工作交换容量/再生交换容量。贯流点:离子交换树脂填充在交换柱中,注入被处理液是,在流出液中出现的被交换离子达到一定浓度以上的点。35页

10、离子交换树脂在化学合成中的作用:在水中的离子交换过程可描述为:在水作用下,化合物和离子交换树脂发生解离,化合物解离产生的离子由溶液中逐渐扩散到树脂表面并穿过树脂表面进入树脂内部,与树脂上解离出的反离子发生离子交换反应,化合物中的离子被吸附在树脂上被交换下来的反离子按与上述相反的方向扩散到溶液中。交换反应有中性盐分解反应,中和反应,复分解反应。36页

11、离子交换树脂在水软化中的应用:单纯软化是指脱除水中的Ca 2+、Mg 2+、Al 3+等多价离子,通常采用填充了Na 型阳离子交换树脂的装置。将原水通过Na 型阳离子交换树脂柱时,水中的Ca 2+、Mg 2+等离子与树脂上的Na +进行交换而保留在树脂上,从而将Ca 2+、Mg 2+等离子从水中除去,使水得到软化。(39页)

12、高吸水性树脂的结构特点,常见品种,吸水机理

结构特点,含有强亲水基团并有一定交联度的功能高分子材料。品种,天然淀粉类、纤维素类衍生物和合成树脂(聚丙烯酸盐系、聚乙烯醇系、聚氧化乙烯系)。制备方法分:接枝共聚、羧甲基化以及水溶性高分子交联。按产品性状分类:粉末状、颗粒状、薄片状和纤维状。吸水机理:当水与高分子表面接触时,有三种相互作用,一是水分子与高分子中电负性强的氧原子形成氢键结合;二是水分子与疏水性基团的相互作用;三是水分子与亲水性基团的相互作用。P49图左边的文字即是吸水机理。高吸水性树脂对0.9%的NaCl溶液的吸附能力远低于去离子水。

应用:土壤改良,保水剂;医用材料;化工和油田开发助剂;除臭芳香剂;其他应用。

13、絮凝剂的三种絮凝机理:(1)带电的絮凝剂可以与带相反电荷的微粒作用使电荷中和,降低微粒的双电层厚度促进微粒间的相互碰撞(2)一个分散微粒可以同时吸附两个以上的高分子链,在高分子链间起吸附架桥的作用,由于高分子链包覆使微粒变大而加速降解(3)一个高分子链也可以同时吸附两个以上的微粒,高分子可以在多处与微粒结合一同下降。

第三章

1.什么是膜过程,有哪几种驱动力。61,77页

膜过程就是利用薄膜对混合物组分的选择透过性使之在一定的推动力下进行分离。驱动力可以是压力梯度,浓度梯度,电位梯度,温度梯度。

2.膜分离的特点。62页

优点:(1)低能耗,低成本的分离技术;(2)膜分离过程通常在温和的条件下进行,因而对需进行高温分级、浓缩与富集的物质具有明显的优点(3)膜分离装置简单,操作容易,制造方便,易于其他分离技术结合,其分离技术应用范围光,对无机物、有机物及生物制品可使用,不产生二次污染。

缺点:膜过程容易出现膜污染,降低分解效率,膜的分离选择性较低,膜的使用有一定寿命。

3.多孔膜和致密膜的分离原理。65,66页

多孔膜的分离原理主要是筛分原理,以截留水和非水溶液中不同尺寸的溶质分子,也可以用于气体的分离。

致密膜的传质和分离原理是溶解-扩散机理,,即在膜上游的溶质(溶液中)分子或气体分子(吸附)溶解于高分子膜界面,按扩散定律通过膜层,在下游界面脱溶。

4.高分子分离膜材料。课本68页

了解膜材料的种类,知道各种材料可用于制造那种膜。

5.高分子分离膜的制备。72页

烧结法、拉伸法、径迹蚀刻法只能制备多孔膜,这种膜还可以作为复合膜的支撑层;相转化法可以制备多孔膜,致密膜;涂覆法制备很薄很致密的膜。

6.课本77页表3-6

第四章电功能高分子材料

1 什么是本征型(或称结构型)、复合型导电高分子及其组成部分,包含的种类,各自载流子类型,如何判断载流子类型p87

本征性导电高分子由聚合物组成,复合型导电高分子由导电填料、高分子材料及表面处理剂复合而成。按照材料的结构与组成,可将导电高分子分成结构型导电高分子材料和复合型导电高分子材料。按导电机理可分为三类:离子导电聚合物,电子导电聚合物,氧化还原性导电聚合物。

本征型导电高分子: 本征性导电高分子是本身具有“固有“的导电性,由聚合物结构提供导电载流子(电子、离子或空穴)的导电高分子

复合型导电高分子:复合型导电高分子是在不具备导电性的高分子材料中混入大量导电物质,如炭黑,金属粉(箔)等,通过分散复合、层积复合、表面复合等方法构成的复合材料。

本征型导电高分子载流子类型:电子,离子,空穴。复合型导电高分子载流子类型:电子。

本征型导电高分子材料可分为四类:共轭体系聚合物,高分子电解质,电荷转移络合物和金属螯合物。

判断方法:用电导率的压力依赖性来区分比较简单可靠。离子传导时,分子聚集越密,载流子的转移通道越窄,电导率加大,压力系数为负值。电子传导时,电子轨道的重叠加大,压力系数为正值。

2复合型导电高分子导电机理p89

机理:无限网链—用电子显微镜技术观察导电材料的结构发现,当导电填料浓度较低时填料颗粒分散在聚合物中,相互接触很少。导电性很低,随着填料浓度增加,填料颗粒接触机会增多。电导率逐步上升。当填料浓度达到某一临界值时,体系内的填料颗粒相互接触形成无限网链。这个无限网链就像金属网贯穿于高聚物中,形成导电通道,电导率急剧上升。使聚合物成为导体。再增加导电填料的用量。对聚合物的导电性不会再有更多的贡献了。故电导率变化趋于平缓。在此,发生突变的导电填料浓度称为“渗滤阀值”,

隧道效应—当导电颗粒间不相互接触时,颗粒间存在聚合物的隔离层,使导电颗粒中自由电子的定向运动受到阻碍,这种阻碍可看成一种具有一定势能的势垒。根据量子力学的概念可知,对于一种微观粒子来说,即使其能量小于势垒的能量时,它除了有被反弹的可能性外,也有穿过势垒的可能性。微观粒子穿过势垒的现象称为贯穿效应,也称为“隧道效应”。电子是一种微观粒子,因此它具有穿过导电颗粒间隔离层阻碍的可能性。使导电颗粒间的绝缘隔离层变为导电层。

3为什么注射,压塑成型对导电性能有影响。(即加工方法对导电性的影响)P94 注射,压塑成型时存在高剪切速率及粉碎的作用,在高剪切速率的作用下,填料无限网链在剪切作用下被破坏,而聚合物的高黏度使得这种破坏不能很快恢复,因此导电性下降,经粉碎再生后,无限网链重新建立,电导率得以恢复。

4共轭高聚物导电所具备特点p96

第一,分子轨道能足够强烈离域,第二,分子轨道能够相互重叠。满足这样条件的共轭体系的聚合物,可通过自身的载流子产生和输送电流。

5什么是受阻共轭,无阻共轭,种类有哪些,举例p97

受阻共轭是指共轭分子轨道上存在缺陷。当共轭链中存在庞大的侧基或强性基团时,会引起共轭链的扭曲,折叠等。使∏电子离域受到限制。∏电子离域受阻程度越大,分子链的导电

性能越差。如聚烷基乙炔和脱氯化氢聚氯乙烯,都属受阻共轭高聚物,其主链上有烷基等支链结构,影响了∏电子的离域。

无阻共轭是指共轭链分子轨道不存在“缺陷”,整个共轭链的电子离域不受阻碍,这类聚合物是较好的导电材料或半导体材料,如反式聚乙炔。聚对亚苯。聚并苯,等。

6 导电高分子的参杂,掺杂作用是什么,掺杂过程中可能存在的化学反应及其对导电性能的影响p98,

参杂:因添加电子受体或电子给体来提高导电性能的方法。

掺杂作用:用能带理论解释掺杂是为了在聚合物的空轨道中加入电子,或从占有轨道中拉出电子,进而改变现有电子能带的能级,出现能量居中的半充满能带,减小能带间的能量差,使自由或空穴迁移时的阻碍减小,以提高导电性能。

掺杂过程中可能存在的化学反应及影响:电子转移(影响:电导率增加),分子内交联(影响:聚合度增加,电导率增加),亲电加成(影响:共轭体系消失,呈绝缘体),亲电取代(影响:电导率降低)。

7 影响共轭高聚物导电性能的因素,掺杂共轭高聚物导电性能p99

1掺杂剂的用量及种类2温度的影响。电子导电聚合物的温度系数是正的,即随温度的升高,电阻减小,电导率增加3聚合物电导率与分子中共轭链长度之间的关系。线形共轭导电聚合物的电导率随其共轭链长度的增加而呈指数快速增加。因此,提高共轭链的长度是提高聚合物导电性能的重要手段之一,这一结论对所有类型的嗲子导电聚合物都适用。(此外电导率还与掺杂剂种类,制备及使用时的环境气氛,压力和是否有光照等因素有直接或间接关系)。

8 共轭高聚物的合成方式(三种)p101

从制备方法上来划分,可以将制备方法分为化学聚合法和电化学聚合法两大类,化学聚合法还可以进一步分成直接合成法和间接合成法。直接合成法是直接以单体为原料,一步合成大共轭结构,间接合成法在得到聚合物后需要一个或多个转化步骤,在聚合物链上生成共轭结构。

第五章:光功能高分子材料

1.光化学反应:光聚合、光交联反应,光降解反应和光异构化反应。(126页)

2.光敏剂和光引发剂的作用是提高光子效率,有利于自由基等活性种的产生。

光引发剂的作用机理:光引发剂在吸收适当波长及强度的光能后,发生光物理过程至其某一激发态,若该激发态能量大于断裂键所需的能量,断键产生自由基,从而引发反应,光引发剂被消耗。其作用机理见P127式(5-5)(5-6)

光敏剂的作用机理:光敏剂吸收光能发生光物理过程至它的某一激发态后,发生分子内或分子间能量转移,传递至另一分子(单体或引发剂)产生初级自由基,光敏剂回到基态。光敏剂的作用类似于化学反应的催化剂。其作用机理见P126式(5-7)(5-8)

3.光敏涂料的优点:(1)、固化速率快(2)、不需加热,耗能少(3)、污染少(4)、便于组织自动化光固上漆生产流水作业线.缺点:受紫外线穿透能力的限制,不适于作为形状复杂物体的表面涂层。若采用电子固化,虽然它穿透能力强,但其射线源及固化装置较为昂贵。此外,光敏涂料的价格往往比一般涂料高,在一定程度上限制其应用。129页

4.光敏涂料体系的构成:光敏预聚物、光引发剂、光敏剂、活性稀释剂(单体)以及其他添加剂(如着色剂、流平剂及增塑剂)等构成。(129页)

5.正性光致抗蚀剂:感光高分子属于光分解型,在紫外线作用下,光刻胶的光照部分分解,溶解度增大,用适当溶剂可把光照部分显影后除去,即形成与掩膜一致的图像。

作用机理:当树脂中加入一定量光敏剂时,曝光时光敏剂发生光化学反应,使光致抗蚀剂从油溶性转变为水溶性,在碱水溶液中显影时,受到光照部分溶解,对氧化层失去保护作用。主要品种:聚甲基丙烯酸甲酯、聚甲基异丙烯酮等

负性光致抗蚀剂:感光高分子属于光交联型,在紫外线作用下,光刻胶的光照部分产生交联反应,溶解度变小,用适当溶剂即可把未曝光的部分显影后除去,在被加工表面上形成与曝光掩膜相反的负图像。

作用机理:利用光照使光致抗蚀剂(感光胶)发生光聚合或者光交联反应,生成的聚合物溶解度大大下降,在显影时留在氧化层表面。

主要品种:聚乙烯醇肉桂酸酯、环化橡胶(136-141)

高分子化学重点

第一章 绪论 单体:能通过聚合反应形成高分子化合物的低分子化合物,即合成聚合物的原料。 高分子:一个大分子由许多简单的结构单元通过共价键重复键接而成,并具有一定机械性能。 结构单元:在大分子链中出现的以单体结构基础的原子团称为结构单元。 重复单元:大分子链上化学组成和结构均可重复的最小单元,可能与结构单元相同,也可能由2个或多个结构单元组成。 单体单元:与单体中原子种类及个数相同的结构单元,仅电子结构有所变化。 重复单元或结构单元类似大分子链中的一个环节,故俗称链节 由一种单体聚合而成的高分子称为均聚物; 由两种或两种以上的单体聚合而成的高分子则称为共聚物. 结构单元=单体单元=重复单元=链节 聚合度:聚合度是衡量高分子大小的一个指标。 合成尼龙-66具有另一特征: H 2N(CH 2)6NH 2 + HOOC(CH 2)4COOH H--NH(CH 2)6NH--CO(CH 2)4CO--OH n (2n-1) H 2O + 结构单元 结构单元 重复结构单元 有两种表示法:[1]以大分子链中的结构单元数目表示,记作: [2]:以大分子链中的重复单元数目表示,记作: 单元的分子量 结构单元=重复单元=链节1 单体单元 单体在形成高分子的过程中要失掉一些原子 结构单元 1 重复单元 1 单体单元 重复单元=链节 三大合成材料:橡胶,塑料,纤维 玻璃化温度:聚合物从玻璃态到高弹态的热转变温度。 分子量及其分布 数均分子量:按聚合物中含有的分子数目统计平均的分子量高分子样品中所有分子的总重量除以其分子(摩尔)总数 ∑∑∑∑∑∑= = = =i i i i i i i i i n M x M W W N M N N W M ) ( n x DP n DP x n ==

高分子化学与物理发展前景

高分子化学与物理 星期五, 02/26/2010 - 05:25 — wangting 高分子化学与物理 第一、专业介绍 高分子化学与物理是以高分子材料为基本研究对象的交叉学科,是高分子科学的基础。与化学的其它二级学科相比,它与现代物理学有着更加深刻的连带关系,其发展更加依赖于化学和物理学的进步,同时也对这两大轴心科学的进步产生深刻影响。高分子化学与物理研究的主要目的,是通过研究高分子材料的结构及化学、物理性质,设计、创制出高性能的高分子材料和制品。近年来,工业发展对新材料的大量需求和现代科技尤其纳米科技的飞速进展,从两方面极大地推动了该研究领域的深入发展。具有高强度和耐高温、强辐射等恶劣环境条件的特种高分子材料,具有特殊光、电、磁性能以及高效率能量传递和转化性能的高分子材料,具有对化学和生物多种刺激发生智能反应的高分子材料,环境友好高分子材料,医药高分子材料等不断涌现,为高分子化学与物理研究提出了全新的课题和广阔的研究空间。 第二、培养方案 各研究生招生单位的研究方向有所不同,在此,以北京大学为例: 1、研究方向 01.高分子可控合成与材料制备 02.高分子溶液及凝聚态物理

03.特种与高性能高分子材料 04.生物医用与环境友好高分子材料 05.光电功能高分子材料及相关器件 2、培养目标 掌握马克思主义、毛泽东思想的基本原理,坚持四项基本原则,热爱祖国,遵纪守法,品德良好,具备严谨的科学态度和优良学风,树立愿为社会主义现代化建设做贡献的思想。 具备良好的化学基础知识和实验技能训练,熟练的外语基础,初具独立开展科学研究的能力,能胜任本学科有关教学和解决实际问题。 3、硕士研究生入学考试科目 1)101思想政治理论 2 )201英语一 3 )607综合化学I (无机化学、有机化学) 4 )813综合化学II (分析化学和仪分、物化和结构) (各研究生招生单位的研究方向有所不同,以上以北京大学为例) 第三、推荐院校 全国高校中实力较强招生院校: 吉林大学、复旦大学、南开大学、北京大学、中山大学、南京大学、浙江大学、四川大学、上海交通大学、华南理工大学、中国科学技术大学、北京化工大学、清华大学、武汉大学、兰州大学……

高分子材料论文

高 分 子 材 料 论 文 课题名称:高分子材料导论学院: 班级: 姓名: 学号:

高分子材料回收利用与发展可降解材料现代文明以经济腾飞和生活水平的提高为主要标志。随着经济发展,大规模的物质循环不可避免地引起各种问题,如资源短缺、环境恶化已为全球所关注。科学家预言地球能源(煤、石油、天然气等)不久将消耗完,会发生严重的能源危机;现代工业以及消费业的发展已给大自然带来严重的影响,大气、海洋等受污染,温室效应发生和臭氧层的破坏等等。所有这些已严重影响着自然界的生态平衡,最终必然会阻碍世界经济的高速发展。 材料的制造、加工、应用等均与环境和资源有直接的关系。高分子材料自从上世纪初问世以来,因重量轻、加工方便、产品美观实用等特点,颇受人们欢迎,其应用越来越广,从而使用过的高分子材料日益增加。据统计,2011年,我国塑料制品的产量达5474万吨,同比增长22%。其中,塑料薄膜的产量为844万吨,占总产量的15%;日用塑料制品的产量为458万吨,占总产量的8%;塑料人造革、合成革的产量为240万吨,占总产量的4%。如何处理这些废料已成为非常重要的课题。 处理废旧高分子材料比较科学的方法是再循环利用。循环是废旧高分子材抖利用的有利途径,不仅使环境污染得到妥善的解决,而且资源得到最有效的节省和利用。从资源利用的角度,对废旧高分子材料的利用首先应考虑材料的循环,然后考虑化学循环及能量回收。 回收:我国塑料回收面临的困难是数量大、分布广、品种多、体积大,许多废塑料与其它城市垃圾混在一起。处理废塑料的主要方法是:填埋和简单焚烧,但可供填埋场地不断减少,填埋费用急剧上升以及简单焚烧带来的二次污染等问题也给我们敲响了警钟。国外在废塑料回收方面已积累了不少经验,他们把废塑料的回收作为一项系统工程,政府、企业、居民共同参与。德国于1993年开始实施包装容器回收再利用,1997年回收再利用废塑料达到60万t,是当年消费量(80万t)的75%。目前,德国在全国设立300多个包装容器回收、分类网点,各网点统一将塑料制品分为瓶、薄膜、杯、PS发泡制品及其他制品,并有统一颜色标志[2]。利用:主要有再生利用、热能利用以及分解产物的利用(包括热分解和化学分解)。 1、再生利用:再生利用分简单再生和改性再生两类。 简单再生,指废塑料经过分类、清洗、破碎、造粒后直接进行成型加工,一般只能制成档次较低的产品。 改性再生,指通过化学或机械方法对废塑料进行改性。改性后的再生制品力学性能得到改善,可以做档次较高的制品。在化学添加剂方面,汽巴-嘉基公司生产出一种含抗氧剂、共稳定剂和其他活性、非活性添加剂的混合助剂,可使回收材料性能基本恢复到原有水平;荷兰有人开发了一种新型化学增容剂,能将包含不同聚合物的回收塑料键合在一起。美国报道采用固体剪切粉碎工艺(Solid State Shear Pulverization, S3P)进行机械加工,无须加热和熔融便可将树脂进行分子水平剪切,形成互容的共混物。共混物大部分由HDPE和LLDPE组成,极限拉伸强度和挠曲模量可与HDPE和LLDPE纯料相媲美[5]。 2、焚烧回收热能: 对于难以进行清洗分选回收的混杂废塑料,可以在专门的焚烧炉中焚烧以回收热能。木材的燃烧热为14.65 GJ/kg,聚乙烯为46.63 GJ/kg,聚丙烯为43.95 GJ/kg,聚氯乙烯为18.08 GJ/kg,ABS为35.26 GJ/kg,均高于木材,若能将这部分热能加以回收是很有意义的。废塑料热能回收可最大限度减少对自然环境的污染,不需要繁杂的预处理,也不需与生活垃圾分离,焚烧后废塑料的质量和体积可分别减少80%和90%以上,燃烧后的渣滓密度较大,

最新功能高分子材料复习题(1)

1.功能高分子概述 功能高分子材料是指那些具有独特物理特性(如光,电,磁灯)或化学特性(如反应,催化等)或生物特性(治疗,相容,生物降解等)的新型高分子材料 主要研究目标和内容:新的制备方法研究,物理化学性能表征,结构与性能的关系研究,应用开发研究。 2.构效关系分析 官能团的性质与聚合物功能之间的关系,功能高分子中聚合物骨架的作用,聚合物骨架的种类和形态的影响。 3.什么叫反应型高分子?应用特点? 反应型功能高分子材料是指具有化学活性,并且应用在化学反应过程中的功能高分子材料,包括高分子试剂和高分子催化剂。 应用特点:具有不溶性,多孔性,高选择性和化学稳定性,大大改进了化学反应的工艺过程,且可回收再用。 4.常用的氧化还原试剂,卤代试剂,酰基化试剂分别有哪些? 常用的氧化还原试剂:醌型,硫醇型,吡啶型二茂铁型,多核芳香杂环型。 卤代试剂:二卤化磷型,N-卤代酰亚胺型,三价碘型。 酰基化试剂(分别使氨基,羧基和羟基生成酰胺,酸酐和酯类化合物):高分子活性酯和高分子酸酐。 5.高分子酸碱催化剂的制备及应用 阳离子交换树脂:苯乙烯与少量二乙烯基苯共聚,可得到交联聚苯乙烯,将交联聚苯乙烯制成微孔状小球,再在苯环上引入磺酸基、羧基、氨基等,可得到各种阳离子交换树脂。 CH=CH 2 CH=CH 2 CH=CH 2+CH-CH 2-CH-CH 2 CH-CH 2 CH-CH 2n CH-CH 2 CH-CH 2 CH-CH 2CH-CH 2 CH-CH 2 CH-CH 2 交联苯乙烯 P P SO 3H + H 2SO 4(发烟)+ H 2O 交联苯乙烯强酸性阳离子交换树脂水处理剂、酸性催化剂 阳离子交换树脂还能代替硫酸作催化剂,产率高,污染少,便于分离 阴离子交换树脂:在交联苯乙烯分子中的苯环上引入季铵碱基,则得到阴离子交换树脂

高分子材料化学重点知识点总结只是分享

第一章水溶性高分子 水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格)

功能高分子材料讲义

第三章功能高分子材料 3.1 概述 功能高分子是高分子化学的一个重要领域,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。 3.1.1 功能高分子材料的概念和分类 高分子材料按其使用性能可以分为结构高分子材料和功能高分子材料,结构高分子材料具有较高的比刚度和比强度,可以代替金属作为结构材料,如我们熟知的工程塑料和聚合物基复合材料。 对功能高分子材料,目前尚未有明确的定义,一般认为是指

除了具有一定的力学功能之外还具有特定功能(如导电性、光敏性、化学性和生物活性等)的高分子材料,所谓材料的功能,从根本上说,是指向材料输入某种能量,经过材料的传输转换等过程,再向外界输出的一种作用。材料的这种作用与材料分子中具有的特殊功能的基团和分子结构分不开的。 请注意,不可将功能高分子和功能高分子材料混为一谈,这两者是有明显区别的。功能高分子材料从组成和结构上可以分为结构型和复合型两大类。结构型功能高分子材料是指在高分子链中具有特定功能基团的高分子材料,这种材料所表现的特定功能是由高分子本身的因素决定的。构成结构型功能高分子材料中的高分子叫功能高分子,而复合型功能高分子材料,是指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、导磁)的其它材料进行复合而制得的功能高分子材料,这种材料的特殊功能不是由高分子本身提供的。 功能高分子材料涉及范围广、品种繁多,还未有统一的分类方法,一般按其使用功能来分类,大致可以分为以下几类:(1)化学功能高分子材料 主要包括离子交换树脂,高分子催化剂、高分子试剂、螯合树脂、高分子絮凝剂和高吸水性树脂等。

完整word版,高分子化学与物理习题2

1. 涤纶聚酯属于 ( ) A. 线性饱和脂肪族聚酯 B. 线性芳族聚酯 C. 不饱和聚酯 D. 醇酸树脂 2. 能同时进行自由基聚合,阳离子聚合和阴离子聚合的是 ( ) A. 丙烯腈 B. α—甲基苯乙烯 C. 烷基乙烯基醚 D. 乙烯 3. 在氯乙烯的自由基聚合中,聚氯乙烯的聚合度主要取决于向() 转移的速率常数。 A.溶剂 B.引发剂 C.聚合物 D.单体 4. 两种单体共聚时得到交替共聚物,则它们的竞聚率应是() A. r1=r2=0 B. r1= r2 =1 C. r1﹥1,r2﹥1 D. r1﹤1,r2﹤1 5.同时获得高聚合速率和高相对分子质量聚合物的聚合方法是() A. 溶液聚合 B. 悬浮聚合 C 乳液聚合D. 本体聚合 1. 分子量分布指数 2、竞聚率 3、引发剂效率 4、动力学琏长 5、阻聚作用 三、简单回答下列问题。〖每小题5分,共25分〗 1. 为提高聚甲醛的热稳定性,可以采取的两个措施是什么?简述理由 2. 在自由基聚合反应中,何种条件下会出现反应自动加速现象。采取什么措施可减轻这种现象? 3.分别绘出自由基聚合与缩合聚合这两类反应的分子量与反应时间的关系示意图,简单说明反应特点。 4.欲使逐步聚合成功,必须考虑哪些原则和措施? 5. 解释笼蔽效应和诱导分解,它们对引发效率有什么影响? 四、写出下列聚合反应,并指出其机理。〖每小题2分,共10分〗 1. 3,3′-二(氯亚甲基)丁氧环的开环聚合; 2. 尼龙-66的制备;

3. 聚乙烯醇与甲醛的反应; 4. 有机玻璃的制备; 5. 环氧树脂的制备。 五、写出下列聚合反应的机理。〖每小题10 分,共20 分】 1. 四氢呋喃中用SnCl4 + H2O 引发异丁烯聚合,写出引发,增长,终止的基元反应。 2. 写出用AIBN 引发甲基丙烯酸丁酯聚合的各基元反应。 六、计算题。【每小题10 分,共30 分】 1. 邻苯二甲酸酐(1.5 摩尔)、乙二醇(1.35 摩尔)、甘油(0.1 摩尔)混合体系进行缩 聚。试求 a. p=0.98 时的X b.X = 500 时的p 2. 甲基丙烯酸甲酯由引发剂引发进行自由基聚合,终止后每一大分子含有1.50个引发剂残基,假设无链转移发生,试计算歧化终止与偶合终止的相对数量。 3. 在搅拌下依次向装有四氢呋喃的反应釜中加入0.2mol n-BuLi和20kg苯乙烯。当单体聚合了一半时,向体系中加入1.8g H2O,然后继续反应。假如用水终止的和继续增长的聚苯乙烯的分子量分布指数均是1,试计算 (1)被水终止的聚合物的数均分子量; (2)继续增长所得聚合物的数均分子量; (3)整个体系所得聚合物的数均分子量及其分子量分布指数。 一、选择正确答案填空【每小题1分,共5分】 1—5 : B B D A C 二、解释下列概念:【每小题2分,共10分】 1、诱导分解实际上是自由基向引发剂的转移反应

功能高分子材料论文.

纳米二氧化钛结构及性能 摘要 本文主要通过对纳米二氧化钛结构及性能的介绍,引出其应用,特别是在环境净化方面的应用。纳米二氧化钛是一种新型环境净化材料,有板铁矿、锐铁矿和金红石三种晶体结构,具有良好的光催化性能及亲水性,这也是其在环境净化方面的应用基础,主要用于净化水、空气和杀菌,另外还可做建筑涂料。本文着重介绍了其在废水处理方面的应用,有处理染料废水、处理农业废水和处理含表面活性剂的废水、处理含油废水和处理造纸废水。制备方法主要有:溶胶-凝胶法、化学气相沉积法、钛醇盐的气相水解法以及液相沉淀法其中液相沉淀法又包括直接沉淀法、均匀沉淀法以及共沉淀法。 关键词环境;材料;净化;纳米二氧化钛;结构;性能;应用;光催化技术;综述

目录 1 绪论 (4) 的结构 (5) 2 TiO 2 2.1 晶格结构 (5) 2.2 表面结构 (5) 的性质 (6) 3 纳米TiO 2 3.1 晶型的性质 (6) 3.2 光学性质 (6) 3.3 半导体性质 (6) 的应用 (6) 4 纳米TiO 2 4.1 充当太阳能电池原料 (7) 4.2 防紫外线功能 (7) 4.3 光催化功能 (8) 4.3.1 气体净化 (8) 4.3.2 处理有机废水 (8) 4.3.3 处理无机污水 (8) 4.3.4 防雾及自清洁功能 (8) 4.3.5 杀菌功能 (9) 5纳米TiO 的制备 (10) 2 水解法 (10) 5.1 TiCl 4 5.2 醇盐水解法 (10) 5.3 溶胶-凝胶法 (11) 5.4 水热合成法 (11) 5.5 微乳液法 (11) 6 结语 (12) 参考文献 (13) 致谢 (14)

(完整版)高分子化学重点

1.解释重复单元,结构单元,单体单元,单体含义 单体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子化合物 重复单元:重复组成高分子分子结构的最小的结构单元。 结构单元:构成高分子主链结构组成的单个原子或原子团。 单体单元:高分子分子结构中由单个单体分子衍生而来的 最大的结构单元 2 聚合度:单个聚合物分子中所含单体单元的数目。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以D P 表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以X n 表示 3 阻聚常数即阻聚剂的链转移常数,C s =K t r /K p 4.半衰期:指引发剂分解至起始浓度一半所需时间 5.凝胶点:开始出现凝胶瞬间的临界反应程度 6.凝胶现象:在交联逐步聚合反应过程中,随着聚合反应的进行,体系粘度突然增大,失去流动性,反应及搅拌所产生的气泡无法从体系中逸出,可看到凝胶或不溶性聚合物明显生成的实验现象 7.自动加速效应竞聚率:随着聚合反应的进行,单体转化率(c %)逐步提高,【I 】【M 】逐渐下降,聚合反应速率R p 理应下降,但在许多聚合体系中,R p 不但不下降,反而显著升高,这种现象是没有任何外界因素影响,在反应过程中自动发生的,因而称为自动加速现象;是指聚合反应中期,反应速率自动增加的现象。 8.竞聚率:同一种自由基均聚和共聚链增长速率常数之比,r 1=k 11/k 12 r 2=k 22/k 21 9.乳液聚合:单体在水中分散成乳液状态的聚合。体系有单体、水、水溶性引发剂、水溶性乳化剂组成。 10.引发剂:通常是一些可在聚合温度下具有适当的分解速率,生成自由基,并能引发单体聚合的化合物。 11.胶束:表面活性剂在溶液中的浓度达到某一临界值,如果浓度继续增加,表面活性剂分子中的长链亲油基团通过分子间吸引力相互缔合,自身相互抱成团,而亲水基团则伸向水中,与水分子结合形成聚集体,即胶束。 12.配位聚合:是指采用金属有机化合物与过渡金属化合物的络合体系作为引发剂的聚合反应。 13.交联:是使线型聚合物转化成为具有三维空间网状结构、不溶不熔的聚合物过程。 14.逐步聚合 :通常是由单体所带的两种不同的官能团之间发生化学反应而进行的。 15.时温等效原理 16.缩聚反应:带有两个或者两个以上官能团的单体之间连续、重复进行的缩合反应,称为缩合聚合反应,即缩聚反应。 17.数均分子量:聚合物中用不同分子量的分子数目统计的平均分子量。 18诱导期:在聚合反应初期,引发剂分解产生的初级自由基首先被体系中杂质消耗,使聚合反应速率实际为零,故此阶段称为诱导期 19阻聚剂:能与链自由基反应生成非自由基或不能引发单体聚合的低活性自由基而使聚合反应完全停止的化合物。 20 链转移速率常数是链转移速率常数和增长速率常数之比,代表链转移反应与链增长反应的竞争能力。向单体的链转移常数p M tr M k k C , 21 逐步加成聚合反应:形成大分子的方式如同连锁聚合那样是通过单体反复加成而进行的,而动力学过程如同缩聚那样是随着反应时间的延长聚合物的相对分子质量逐步增大。通常没有小分子副产物生成。 22 悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。 简答题 1.逐步聚合的实施方法 有熔融聚合、溶液聚合、界面缩聚、固相缩聚等 (1)熔融缩聚是单体和聚合产物均处于熔融状态下的聚合反应。是最简单的缩聚方法。只有单体和少量催化剂。优点:产物纯净,分离简单;通常以釜式聚合,生产设备简单;是工业上和实验室常用的方法。 (2)溶液缩聚是单体在溶剂中进行的一种聚合反应.溶剂可以是纯溶剂,也可以是混合溶剂.所用的单体一般活性较高,聚合温度可以较低,副反应也较少。用于一些耐高温高分子的合成,如聚砜、聚酰亚胺聚苯醚 (3)界面缩聚是将两种单体溶于两种互不相溶的溶剂中,混合后在两相界面处进行的缩聚反应。单体活性高,反应快,可在室温下进行;产物分子量可通过选择有机溶剂来控制;对单体纯度和当量比要求不严格,反应主要与界面处的单体浓度有关;原料酰氯较贵,溶剂回收麻烦,应用受限。 (4) 固相缩聚是在玻璃化温度以上、熔点以下的固态所进行的缩聚。它是上述三种方法的补充。 2.连锁聚合和逐步聚合的三个主要区别 答(1)增长方式:连锁聚合总是单体与活性种反应,逐步聚合是官能团之间的反应,官能团可以来自于单体、低聚体、多聚体、大分子 (2)单体转化率:连锁聚合的单体转化率随着反应的进行不断提高,逐步聚合的单体转换率在反应的一开始就接近100% (3)聚合物的分子量:连锁聚合的分子量一般不随时间而变,逐步聚合的分子量随时间的增加而增加。 3 控制线性缩聚反应的分子量可以采取什么措施? 因为缩聚物的分子两端仍保留着可继续反应的官能团,因此控制聚合物反应的分子量可以采取端基封锁的控制方法:在两官能团等当量的基础上使某官能团稍过量或加入少量单官能团物质。官能团的极少过量,对产物分子量就有显著影响;在线形缩聚中,要得到高分子量,必须保持严格的等当量比。

功能高分子材料发展概述

功能高分子材料发展概述 1.速干衣 速干的由来:所谓速干实际上是由英文QUICK-DRY或DRY-EASY等类似单词直译过来的,而速干是指该面料的衣物与毛质或棉质的衣物相比时,在外界条件相同的情况下,更容易将水分挥发出去,干得更快。速干衣顾名思义就是干的比较快的衣服,它并不是把汗水吸收,而是将汗水迅速地转移到衣服的表面,通过空气流通将汗水蒸发,从而达到速干的目的,一般的速干衣的干燥速度比棉织物要快50%。 速干衣物最初的设计理念主要是 基于两个方面的考虑:A、内部因素, 由于从事野外活动的人比较容易出 汗。如果运动量大的时候,全身则会 大汗淋漓。如果此时你穿的是普通的 衣物,那么它们会紧紧贴在你的皮肤 上,特别难受。但速干衣物呢,它们 能使挥发的汗水迅速得以挥发到体 外;B、外部因素,野外行走时,早 晨的露珠或是毛毛细雨都会将你的 衣物打湿,如果裤腿紧贴在腿上,那 会带来不舒服的感觉。如果是速干衣 物,那么它们的速干性能及防泼水性 能就会使你免除这些不必要的麻烦。 速干的面料:市场上的速干衣物 品牌林林总总,所使用的面料也 是数不胜数,更是令人眼花缭 乱。其实常见的户外速干衣物所 采用的面料无非是以下几种常见 面料,COOLMAX这是一种最为常 见,使用范围相对较为广泛的一 种面料,由杜邦公司研制。该面 料的突出特点是具有很强的吸汗 排汗功能,这得归功于COOLMAX 的中空结构,但选购时必须看清 楚COOLMAX在面料中所含的比 例;THEMOLITE这种聚脂纤维的保 暖性能不错,属于中空涤纶纤维 系列,但缺点是排汗性能相对要 差一些;MONI-DRY属于吸湿速干 面料,有COLUMBIA公司研制出品。其主要特点是超强的挥发性和吸水性,比一般的棉布要强2--3倍,从而有效地保持穿着者的舒适干爽;CIBAULTRAPHIL这

全国高分子化学与物理排名

07中国研究生教育分专业排行榜(武汉大学中国科学评价研究中心):070305高分子化学与物理 排名学校等级排名学校等级排名学校等级 1 吉林大学A+ 6 南京大学A 11 中国科学技术大学A 2 复旦大学A+ 7 浙江大学A 12 北京化工大学A 3 南开大学A+ 8 四川大学A 13 清华大学A 4 北京大学A 9 上海交通大学A 14 武汉大学A 5 中山大学A 10 华南理工大学A B+ 等(22 个) :兰州大学、苏州大学、西北工业大学、东华大学、华中科技大学、郑州大学、华东理工大学、湘潭大学、山东大学、湖南大学、青岛科技大学、西北师范大学、大连理工大学、厦门大学、福建师范大学、河北大学、河南大学、安徽大学、福州大学、西北大学、广东工业大学、湖北大学 B 等(22 个) :东南大学、华侨大学、东北大学、河北工业大学、济南大学、哈尔滨工业大学、合肥工业大学、华东师范大学、南京工业大学、江西师范大学、西安交通大学、鲁东大学、北京师范大学、南京理工大学、江苏工业学院、北京航空航天大学、哈尔滨理工大学、上海大学、太原理工大学、华南师范大学、中北大学、陕西师范大学 C 等(15 个) :名单略 国家重点学科 北京大学南开大学中山大学复旦大学吉林大学南京大学 博士点 安徽大学北京大学北京化工大学北京师范大学大连理工大学东北师范大学东华大学福建师范大学福州大学复旦大学河北大学河南大学湖南大学华东理工大学华东师范大学华南理工大学华中科技大学吉林大学兰州大学南京大学南开大学青岛科技大学清华大学山东大学山西大学陕西师范大学上海交通大学四川大学苏州大学天津大学同济大学武汉大学西北大学西北工业大学西北师范大学厦门大学湘潭大学浙江大学郑州大学中国科学技术大学中国科学院研究生院中山大学

高分子材料论文

高分子材料与成形 14商贸2班梅文祥10号 摘要: 高分子,即高分子化合物,是由千百万个原子彼此以共价起来的大分子,因此又称为高聚物或聚合物。髙分子的特点是分子量大,高达104~106,并且分子量具有多分散性,其相对分子质量一般都在几万到几百万。通常把相对分子质量在一万以上的分子称为高子。高分子是用相对分子质量、聚合度(重复的结构单元数)或分子链的长度来描述的。高分子材料的性能不仅与聚合物的化学性质有关,而且还与诸如结晶的程度和分布,高分子链长的分布,添加剂(如填料,增强剂和增塑剂等)的性质和用量等许多因素有关。 关键词:塑料、纤维、增塑剂、聚合物 前言:高分子,即高分子化合物,是由千百万个原子彼此以共价起来的大分子,因此又称为高聚物或聚合物。髙分子的特点是分子量大,高达104~106,并且分子量具有多分散性,其相对分子质量一般都在几万到几百万。通常把相对分子质量在一万以上的分子称为高分子。高分子是用相对分子质量、聚合度(重复的结构单元数)或分子链的长度来描述的。高分子材料的性能不仅与聚合物的化学性质有关,而且还与诸如结晶的程度和分布,高分子链长的分布,添加剂(如填料,增强剂和增塑剂等)的性质和用量等许多因素有关。 高分子材料的分类有:塑料、橡胶、纤维等;

高分子材料的添加剂有:增塑剂、防老剂、填充剂、阻燃剂等。 正文: 1-1 高分子材料的分类 一、塑料 塑料分为热塑性和热固性塑料。热塑性塑料是指在一定温度围具有可反复加热软化、冷却后硬化定型的塑料。常用的热塑性塑料有聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯等。热固性塑料是指经加热(或不加热)就变成永久的固定形状,一旦成形,就不可能再熔融成形的塑料。常用的热固性塑料有酚醛塑料、脲醛塑料等。塑料按使用情况又分为通用塑料、工程塑料及特种塑料。通用塑料价格便宜、产量大、成型性好,广泛用于日用品、包装、农业等领域,如聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、酚醛和脲醛塑料。工程塑料指能承受一定的外力作用,具有较高的强度和刚度并具有较好的尺寸稳定性,如聚甲醛、聚砜、聚碳酸酯、聚酰胺、ABS等。特种塑料具有如耐热、自润滑等特异性能,可用于特殊要求如氟塑料、有机硅塑料、聚酰亚胺等。 二、橡胶 橡胶具有高的弹性、电绝缘性和缓冲减振性。橡胶可分为天然橡胶和合成橡胶。天然橡胶的弹性好、强度高、耐屈挠性好、绝缘性好。这些性能都是合成橡胶所不及。因此,天然橡胶至今仍是最重要的一种橡胶。天然橡胶的加工性、粘合性、混合性良好。合成橡胶的种类很多,按其性能和用途可分为通用合成橡胶和特种合成橡胶。通用合成橡胶一般用以代替天然橡胶来制造轮胎及其它常用橡胶制品,如丁

高分子材料化学重点知识点总结

水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(3H);阴离子交换树脂(3);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10溶液再生;b. 型强碱型阴离子交换树脂则用4溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格) 高吸油树脂类型及制备方法:(1)聚丙烯酸酯类(2)聚烯烃类树酯(3)丙烯酸酯和烯烃共聚物(4)聚氨酯吸油泡沫

高分子材料论文

高分子材料论文 在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 將是21世纪最活跃的材料支柱. 高分子材料是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出來.這样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量, 达到至少1万以上, 或几百万至千万以上, 所以, 人們將其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶(未加工之前称为树脂). 面向21世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21世纪的材料將是一个光辉灿烂的高分子王国. 现有的高分子材料已具有很高的强度和韧性, 足以和金属材料相媲美, 我們日用的家 用器械、家具、洗衣机、冰箱、电视机、交通工具、住宅等, 大部分的金属构造已被高分子材料所代替.工业、农业、交通以及高科技的发展, 要求高分子材料具有更高的强度、硬度、韧性、耐温、耐磨、耐油、耐折等特性, 這些都是高分子材料要解决的重大问题.从理论上推算, 高分子材料的强度还有很大的潜力. 在提高高分子的性能方面, 最重要的还是制成复合材料第一代复合材料是玻璃钢, 是 以玻璃纤维和合成树脂为粘合剂制成.它具有重量轻、强度高、耐高温、耐腐蚀、导热系数低、易於加工等优良性能, 用於火箭、导弹、船只和汽车躯体及电视天线之中.其后, 人們把玻璃纤维换成碳纤维, 其重量更轻, 强度比钢要高3~5倍, 這就是第二代的复合材料.如果改用芳纶纤维, 其强度更高, 为钢丝的5倍.高性能的高分子材料的开拓和创新尚有极大的潜力.科学家预测, 21世纪初, 每年必须比目前多生产1500~2000万吨纤维材料才能满足需要, 所以必须生产大量的合成纤维材料, 而且要具有更轻型、耐火、阻燃、防臭、吸水、杀菌等特性.有许多新型纤维, 如轻型空腔纤维、泡沫纤维、各种截面形状的纤维、多组份纤维材料等纷纷被研制出來, 人們可指望会有耐静电、耐脏、耐油, 甚至不会沾灰的纤维材料问世.這些纤维材料將用於宇航天线、宇航反射器、心脏瓣膜和人体大动脉. 高分子功能材料, 在高分子王国里是一片百花争艳的盛景.由於高分子的功能团能够替代, 所以只要采用极为简便的方法, 就可以制造各种各样的高分子功能材料.常用的吸水性

功能高分子材料论文

生物医用高分子材料 摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。 关键词:功能高分子材料,生物医用高分子材料。 功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50% 所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。 功能高分子材料按照功能特性通常可分成以下几类: (1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。 随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 一般归纳起来医用高分子材料应符合下列要求: 1、化学稳定性好,在人体接触部分不能发生影响而变化; 2、组织相容性好,在人体内不发生炎症和排异反应; 3、不会致癌变;

完整高分子化学知识点

2.名词解释 交替共聚物:两种单体在大分子链上严格交替相间排列。 嵌段聚合:两种或两种以上单体分别聚合成链节(或链段)生成嵌段共聚物的一类共聚合反应。活性聚合:阴离子聚合由链引发、链增长和链终止三个基元反应组成,如聚合体系纯净、无质子供体,阴离子聚合可控制其终止反应,这种无终止;无链转移的聚合反应即为活性聚合。特征为(1)无链终止;(2)无链转移;(3)引发反应比增长反应快,反应终了时聚合链仍是活的。 异构化聚合:指在链增长反应过程中常常发生原子或原子团的重排过程的反应。反应程度:高分子缩聚反应中用以表征高分子聚合反应反应深度的量。计算方法为参加反应的官能团数占起始官能团数的比例。 转化率:进入共聚物的单体量占起始单体量M的百分比。笼蔽效应:在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单体分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。 诱导分解:诱导分解(Induced Decomposition)自由基向引发剂转移的反应为诱导分解。自由基发生诱导分解反应将使引发剂的效率降低,同时也使聚合度降低平均官能度:有两种或两种以上单体参加的混缩聚或共缩聚反应中在达到凝胶点以前的线形缩聚阶段,反应体系中实际能够参加反应的官能团数与单体总物质的量之比。(每一份子平均带的官能度) 凝胶点:开始出现凝胶瞬间的临界反应程度Pc。高分子:由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。计量聚合:指链引发速率在阴离子聚合反应中严格控制条件,以得到接近单分散的聚合物为目的的聚合反应。 配位聚合:单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)链中增长形成大分子的过程。这种聚合本质上是单体对增长链Mt-R键的插入反应,所以又称为插入聚合。(配位聚合具有以下特点:活性中心是阴离子性质的,因此可称为配位阴离子聚合;单体π电子进入嗜电子金属空轨道,配位形成π络合物;π络合物进一步形成四圆环过渡态;单体插入金属-碳键完成链增长;可形成立构规整聚合物。配位聚合引发剂有四种:Z-N催化剂;π烯丙基过渡金属型催化剂;烷基锂引发剂;茂金属引发剂。其中茂金属引发剂为新近的发展,可用于多种烯类单体的聚合,包括氯乙烯。) 线形缩聚:是两种或者以上的双官能团单体聚合最终生成物是长链的线性大分子 理想衡比共聚:不论单体配比和转化率如何,共聚物组成总是与单体组成完全相等,共聚物组成曲线是一条对角线。 动力学链长:是指活性中心(自由基)从产生到消失所消耗的单体数目 立构规整度:是立构规整聚合物占总聚合物的分数,是评价聚合物性能、引发剂定向聚合能力的一个重要指标。 降解:大分子分解成较小的分子。(分子量变小的反应) 老化:聚合物及其制品在加工、贮存及使用过程中,物理化学性质及力学性能逐步变坏,这种现象称老化。PMA聚丙烯酸甲酯PAN 聚丙烯腈PTFE 聚四氟乙烯 SMA 苯乙烯-马来酸酐(顺丁烯二酸酐)AIBN 偶氮二异丁腈ABVN 偶氮二亿庚腈BPO 过氧化二苯甲酰PP 聚丙烯 PS 聚苯乙烯PMMA 聚甲基丙烯酸甲酯PVA 聚乙烯醇PAN 聚丙烯晴PET 聚酯PA66 6 尼龙66PA6 尼龙. PET:聚对苯二甲酸乙二醇酯PVAc聚醋酸乙烯酯ABS 丙烯醇-丁二烯-苯乙烯共聚物3影响线形缩聚聚合物的分子量因素答:反应程度,平衡常数,。Xn=1/1-p=√k+1;

07370420功能高分子材料盛维琛

功能高分子材料 Fun cti onal Polymer Materials 课程编号:07370420 学分:2 学时:45 (其中:讲课学时:30自学学时:15 实验学时:0上机学时:0)先修课程:有机化学、无机化学、分析化学、物理化学、高分子物理、高分子化学适用专业:高分子材料与工程、金属材料工程、无机非金属材料工程、复合材料与工程、化学工程与工艺、化学等专业本科四年级学生选修课 教材:王国建.功能高分子材料?北京:化学工业出版社,2010年第一版开课学院:材料科学与工程学院 一、课程的性质与任务: 功能高分子课程是一门高分子材料专业的专业选修课。它是建立在高分子物理,高分子化学和高分子结构与性能基础上,并与物理学、医学、甚至生物学密切联系的一门学科。它是研究功能高分子材料化学规律的一门科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域,对于设计和制备高性能高分子材料起着指导作用。 功能高分子课程的基本任务: 通过课堂讲授和研究进展介绍,使学生能了解几种重要的功能高分子材料的制备方法、性能与结构的一般关系等,对功能高分子材料科学有一个概括性认识,能理解功能的产生机理,并可根据所需功能设计出一些简单的具有相应功能基团的高分子材料。 本课程主要介绍功能高分子材料的发展状况,功能高分子的种类与功能,功能高分子材料的结构与性能的关系,功能高分子材料的制备策略,并结合近年来国际,国内在功能高分子材料方面的研究成果详细介绍常用的物理化学功能高分子(高吸水性树脂、离子交换树脂、高分子试剂及催化剂等)、电功能高分子(复合导电型、电子导电型、离子导电型等导电高分子材料、电致发光、电致变色等电活性高分子材料)、光功能高分子(感光性树脂、光致变色高分子、光降解、光转换高分子材料等)、生物医用高分子(生物惰性、生物降解、组织工程、药物高分子材料等)、高分子助剂(高分子絮凝剂、高分子电解质、高分子染料、高分子食品添加剂等)其它一些类型功能高分子材料制备方法,机理,应用。 二、课程的基本内容及要求:第一章功能高分子材料概述 1. 教学内容 1)功能高分子材料的研究对象和研究内容 2)功能高分子材料的发展历程

相关主题
文本预览
相关文档 最新文档