当前位置:文档之家› 数控车床的伺服系统介绍

数控车床的伺服系统介绍

数控车床的伺服系统介绍
数控车床的伺服系统介绍

4、简述采用的数控铣床伺服系统的组成、原理及作用

数控机床伺服系统是以机床运动部件的位置和速度作为控制量的自动控制系统,又称位置

随动系统,简称伺服系统。

数控机床伺服系统包括进给伺服系统和主轴伺服系统。

1、进给伺服系统用于控制机床各坐标轴的切削进给运动,是一种精密的位置跟踪、定位

系统,它包括速度控制和位置控制,是一般概念的伺服驱动系统;数控机床的进给伺服系

统与一般的机床的进给系统有本质的差异,它能根据指令信号自动精确的控制执行部件运

动的位移、方向和速度,以及数个执行部件按一定的规律运动以合成一定的运动轨迹。

2、主轴伺服系统用于控制机床主轴的旋转运动和切削过程中的转矩和功率,一般只以速

度控制为主。

伺服控制系统分为开环伺服系统和闭环伺服系统,开环伺服系统由驱动控制单元、执行原

件和机床组成。闭环伺服系统由执行元件、驱动控制单元、机床及反馈检测元件、比较环

节组成。

图4-1数控伺服系统的组成

伺服系统的作用是接受数控系统发出的进给位移和速度指令信号,由伺服驱动电路作一定

的转换和放大后,经伺服驱动装置和机械传动机构,驱动机床的工作台等执行部件进行运动。

5、分析所采用数控铣床所需的主运动、进给运动、换刀与刀库原理结构,并画出数控机

床总体方案草图,简述其尺寸、动力、运动参数范围。

5.1数控机床CK6140主轴运动

主轴部件是机床的重要部件之一,其精度、抗振性和热变形对加工质量有直接影响。特别

是如果数控机床在加工过程中不进行人工调整,这些影响将更为严重。数控机床主轴部件

在结构上要解决好主轴的支承、主轴内刀具自动装夹、主轴的定向停止等问题。

数控机床主轴的支承主要采用图1所示的三种主要形式。图5-1a所示结构的前支承采用

双列短圆柱滚子轴承和双向推力角接触球轴承组合,后支承采用成对向心推力球轴承。这

种结构的综合刚度高,可以满足强力切削要求,是目前各类数控机床普遍采用的形式。图

5-1b所示结构的前支承采用多个高精度向心推力球轴承,后支承采用单个向心推力球轴承。这种配置的高速性能好,但承载能力较小,适用于高速、轻载和精密数控机床。图5-1c所示结构为前支承采用双列圆锥滚子轴承,后支承为单列圆锥滚子轴承。这种配置的径向和

轴向刚度很高,可承受重载荷,但这种结构限制了主轴最高转速和精度,因而仅适用于中

等精度、低速与重载的数控机床主轴。

主轴内部刀具自动夹紧机构是数控机床特别是加工中心的特有机构。图5-2为ZHS-K63加

工中心主轴结构部件图,其刀具可以在主轴上自动装卸并进行自动夹紧,其工作原理如下:当刀具2装到主轴孔后,其刀柄后部的拉钉3便被送到主轴拉杆7的前端,在碟形弹簧9

的作用下,通过弹性卡爪5将刀具拉紧。当需要换刀时,电气控制指令给液压系统发出信号,使液压缸14的活塞左移,带动推杆13向左移动,推动固定在拉杆7上的轴套10,

使整个拉杆7向左移动,当弹性卡爪5向前伸出一段距离后,在弹性力作用下,卡爪5自

动松开拉钉3,此时拉杆7继续向左移动,喷气嘴6的端部把刀具顶松,机械手便可把刀

具取出进行换刀。装刀之前,压缩空气从喷气嘴6中喷出,吹掉锥孔内脏物,当机械手把

刀具装入之后,压力油通人液压缸14的左腔,使推杆退回原处,在碟形弹簧的作用下,

通过拉杆7又把刀具拉紧。冷却液喷嘴1用来在切削时对刀具进行大流量冷却。

图5-1主轴支承配置

(a)高刚度型 (b)高速轻载型 (c)低速重载型

图5-2 加工中写内部刀具夹紧机构

5.2数控机床CK6140进给运动

数控机床的进给运动系统一般有传动机构、运动变换机构、导向机构、执行件等组成。

图5-3进给传动系统简图

5.3数控机床CK6140的刀库和换刀装置

数控机床的刀库作用是储备一定数量的刀具,通过机械手实现与主轴上刀具的互换。刀库的类型有盘式刀库、链式刀库等多种形式。CK6140是盘式刀库。

图5-4盘式刀库

刀具识别方法。目前大多数的数控系统都采用任意选刀的方式,其分为刀套编码、刀具编码和记忆式三种。

自动换刀装置。自动回转刀架是数控车床上使用的一种简单的自动换刀装置,可以根据数控指令进行换刀。

5.4数控机床CK6140相关内容简介

ck6140数控车床采用高强度铸铁、精密滚丝竹杠、优质耐磨片制成,是一种新型数控车床。

图5-5数控机床CK6140结构图表5-1数控机床CK6140参数表

数控机床的伺服系统发展应用

数控机床的伺服系统发展应用 20世纪50年代出现数控机床以来,作为数控机床重要组成部分的伺服系统,随着新材料、电子电力、控制理论等相关技术的发展,经历了从步进伺服系统到直流伺服系统再到今天的交流伺服系统的过程。交流伺服技术的日益发展,交流伺服系统将逐步全面取代直流伺服系统。 数控(Numerical Control)是数控技术的简称。它是利用数字化的信息对机床及加工过程进行控制的一种方法。数控系统是数控机床的重要部分,它随着计算机技术的发展而发展。现在的数控系统都是由计算机完成以前硬件数控所做的工作,为特别强调,有时也称为计算机数字控制系统。计算机数字控制CNC(Computer Numerical Control)系统是以微处理器技术为特征,并随着电子技术、计算机技术、数控技术、通讯技术以及精密测量技术的发展而不断发展完善的一种先进加工制造系统。CNC系统框图见图1所示,它由数控程序、输入输出设备、操作面板、CNC装备、可编程控制器(PLC)、主轴伺服系统、进给伺服系统、检测装备和一些电气辅助装置等组成。 伺服系统是以驱动装置—电机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统,它包括伺服驱动器和伺服电机。数控机床伺服系统的作用在于接受来自数控装置的指令信号,驱动机床移动部件跟随指令脉冲运动,并保证动作的快速和准确,这就要求高质量的速度和位置伺服。数控机床的精度和速度等技术指标往往主要取决于伺服系统。 数控机床的伺服系统发展与分类 数控机床的伺服系统应满足以下基本要求: 精度高 数控机床不可能像传统机床那样用手动操作来调整和补偿各种误差,因此它要求很高的定位精度和重复定位精度。 图1 CNC系统框图 快速响应特性好 快速响应是伺服系统动态品质的标志之一。它要求伺服系统跟随指令信号不仅跟随误差小,而且响应要快,稳定性要好。在系统给定输入后,能在短暂的调节之后达到新的平衡或是受到外界干扰作用下能迅速恢复原来的平衡状态。 调速范围大 由于工件材料、刀具以及加工要求不同,要保证数控机床在任何情况下都能得到最佳的切削条件,伺服系统就必须有足够的调速范围,既能满足高速加工要求,又能满足低速进给要求。调速范围一般大于1:10000。而且在低速切削时,还要求有较大稳定的转矩输出。

数控车床与数控铣床介绍(

数控加工技术实训报告(苏州科技学院机电系慎用) 班级:机械0811 学号:0820116*** 姓名:* *

专业: 机械设计制造及其自动化指导老师:* *

为了提高我们对数控机床的认识,今年暑假特定为我们安排了为期15天的数控实训,围绕数控实训内容,谈谈我在此次实训中学习到的知识。 此次实训就是针对数控机床的一些基本知识和操作,在学习和认识了数控机床的基础上,对机床进行一些简单指令的操作。以下就是我数控实训的具体内容: 1、数控机床基本结构 数控机床是数字控制机床(Computer Numerical Control Machine Tools)的简称,是一种以数字量作为指令信息形式,通过数字逻辑电路或计算机控制的机床。它综合运用了机械、微电子、自动控制、信息、传感测试、电子电力、计算机、接口和软件编程等多种现代技术,是典型的机电一体化产品。 数控机床通常由程序载体(控制介质)、输入装置、数控装置、强电控制装置、伺服控制装置和机床六部分组成。其原理图如下: 1) 程序载体 对数控机床进行控制,首先必须在人与机床间建立某种联系,这种联系的中间媒介物称为程序载体(或称控制介质)。在程序载体上存储了被加工零件所需的全部几何信息和工艺信息。这些信息是在对加工工件进行工艺分析的基础上确定的,它包括工件在坐标系内的相对位置、刀具与工件相对运动的坐标参数、工件加工的工艺路线和顺序、主运动和进给运动的工艺参数以及各种辅助操作。 2) 输入装置 输入装置的作用是将程序载体上的数控代码信息转换成相应的电脉冲信号并传送至数控装置的存储器。根据程序控制介质的不同,输入装置可以是光电阅读机、录放机或软盘驱动器。最早使用光电阅读机对穿孔纸带进行阅读,之后大量使用磁带机和软盘驱动器。有些数控机床不用任何程序存储载体,而是将程序清单的内容通过数控装置上的键盘,用手工的方式输入。也可以用通信方式将数控程序由编程计算机直接传送至数控装置。 3) 数控装置 数控装置(即CNC装置)是数控机床的核心,包括微型计算机、各种接口电路、显示器等硬件及相应的软件。它能完成信息的输入、存储、变换、插补运算以及各种控制功能。 数控装置接受输入装置送来的脉冲信号,经过编译、运算和逻辑处理后,输出各种信号和指令来控制机床的各个部分,并按程序要求实现规定的、有

数控机床中伺服系统现状

数控机床中伺服系统的现状分析 一、概述 伺服系统是以机械运动的驱动设备,电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。这类系统控制电动机的转矩、转速和转角,将电能转换为机械能,实现运动机械的运动要求。具体在数控机床中,伺服系统接收数控系统发出的位移、速度指令,经变换、放调与整大后,由电动机和机械传动机构驱动机床坐标轴、主轴等,带动工作台及刀架,通过轴的联动使刀具相对工件产生各种复杂的机械运动,从而加工出用户所要求的复杂形状的工件。 作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。数控机床中的伺服系统种类繁多,本文通过分析其结构及简单归分,对其技术现状及发展趋势作简要探讨。 二、伺服系统的结构及分类 从基本结构来看,伺服系统主要由三部分组成:控制器、功率驱动装置、反馈装置和电动机(图1)。控制器按照数控系统的给定值和通过反馈装置检测的实际运行值的差,调节控制量;功率驱动装置作为系统的主回路,一方面按控制量的大小将电网中的电能作用到电动机之上,调节电动机转矩的大小,另一方面按电动机的要求把恒压恒频的电网供电转换为电动机所需的交流电或直流电;电动机则按供电大小拖动机械运转。 图1 伺服系统的结构 图1 伺服系统的结构 图1中的主要成分变化多样,其中任何部分的变化都可构成不同种类的伺服系统。如根据驱动电动机的类型,可将其分为直流伺服和交流伺服;根据控制器实现方法的不同,可将其分为模拟伺服和数字伺服;根据控制器中闭环的多少,可将其分为开环控制系统、单环控制系统、双环控制系统和多环控制系统。考虑伺服系统在数控机床中的应用,本文首先按机床中传动机械的不同将其分为进给伺服与主轴伺服,然后再根据其它要素来探讨不同伺服系统的技术特性。 三、进给伺服系统的现状与展望

数控机床进给伺服系统的组成和分类

机床加工,大多是低速时进行切削,即在低速时进给驱动要有大的转矩输出。 二、进给伺服系统的组成 如图所示为数控机床进给伺服系统的组成。从图中可以看出,它是一个双闭环系统,内环是速度环,外环是位置环。位置环的输入信号是计算机给出的指令信号和位置检测装置反馈的位置信号,这个反馈是一个负反馈,即与指令信号的相位相反。指令信号是向位置环送去加数,而反馈信号向位置环送去减数。位置检测装置通常有光电编码器、旋转变压器、光栅尺、感应同步器或磁栅尺等。它们或者直接对位移进行检测,或者间接对位移 进行检测。 开环伺服系统开环伺服系统是最简单的进给伺服系统,无位置反馈环节。如图所示,这种系统的伺服驱动装置主要是步进电动机、功率步进电动机、电液脉冲电动机等。由数控系统发出的指令脉冲,经驱动电路控制和功率放大后,使步进电动机转动,通过齿轮副 与滚珠丝杠螺母副驱动执行部件。 闭环伺服系统 闭环伺服系统原理图如图所示。系统所用的伺服驱动装置主要是直流或交流伺服电动机以及电液伺服阀—液压马达。与开环进给系统最主要的区别是:安装在执行部件上的位置检测装置,测量执行部件的实际位移量并转换成电脉冲,反馈到输入端并与输人位置指令信号进行比较,求得误差,依此构成闭环位置控制。由于采用了位置检测反馈装置,所以闭环伺服系统的位移精度主要取决于检测装置的精度。闭环伺服系统的定位精度一般可 达±0.01mm~±0.005 mm。

半闭环伺服系统 半闭环伺服系统如图所示。将检测元件安装在中间传动件上,间接测量执行部件位置的系统称为半闭环系统。闭坏系统可以消除机械传动机构的全部误差,而半闭环系统只能补偿系统环路内部分元件的误差,因此,半闭环系统的精度比闭环系统的精度要低一些, 但是它的结构与凋试都比较简单。 全数字伺服系统 随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已经开始采用高速度、高精度的全数字伺服系统。使伺服控制技术从模拟方式、混合方式走向全数字方式。由位置、速度和电流构成的三环反馈全部数字化,应用数字PID算法,用PID程序来代替PID调节器的硬件,使用灵活,柔性好。数字伺服系统采用了许多新的控制技术和改进伺服性能的措施,使控制精度和品质大大提高。位置、速度和电流构成的三环结构 如图所示。

数控机床传动系统设计介绍

1. 开发XXX型号数控车床的目的和理由 国内数控车床经过十几年的发展,已形成较为完整的系列产品,但用户要求越来越高,对价格性能比更为看重,尤其对某些小型零件的加工,其所需负荷较小,调速范围不宽,加工工序少,效率高,但目前国内数控车床功能多,价格高,造成很大浪费,而我厂现有的数控车床,虽然在这方面做得较好,其加工范围的覆盖面也较宽,但针对上述零件加工的机床还是空白,对用户无法做到“量体裁衣”。随着市场经济的发展和产品升级换代,上述零件加工越来越多,市场对其具有较高效率,价格较低的排刀式数控车床的要求量越来越大,综上所述,为适应市场要求,扩大我厂数控车床在国内机床市场上的占有量,特进行N-089型数控车床的开发。 2 机床概况、用途和使用范围 2.1 概述: XXX型号是结合我厂数控机床和普通机床的生产经验,为满足高速、高效和高精度生产而设计成铸造底座、平床身、滚动导轨,可根据加工零件的要求自由排刀的全封闭式小规格数控车床。本机床采用SIEMENS 802S系统,主电机为YD132S-2/4双速电机。主传动采用富士FRN5.5G9S-4型变频器进行变频调速,进给采用德国SIEMENS公司生产的110BYG-550A 和110BYG-550B步进电机驱动的半闭环系统,两轴联动。 2.2 用途: XXX型号型数控车床可以完成直线、圆锥、锥面、螺纹及其它各种回转体曲面的车削加工,适合小轴类、小盘类零件的单件和批量生产,特别适合于工序少,调速范围窄,生产节拍快的小轴类零件的批量生产。 2.3 使用范围: 本机床是一种小规格,排刀式数控车床,广泛用于汽车、摩托车、纺织、仪器、仪表、航空航天、油泵油嘴等各种机械行业。 3 XXX型号型数控车床的主要技术参数: 3.1 切削区域: a. 拖板上最大回转直径75mm b. 最大切削长度180mm

数控机床伺服系统

第6章 数控机床伺服系统 进给伺服系统是数控系统主要的子系统。如果说CNC 装置是数控系统的“大脑”,是发布“命 令”的“指挥所”,那么进给伺服系统则是数控系统的“四肢”,是一种“执行机构”。它忠实地 执行由CNC 装置发来的运动命令,精确控制执行部件的运动方向,进给速度与位移量。 第一节 概述 . 进给伺服系统的定义及组成 . 定义:进给伺服系统(Feed Servo System)——以移动部件的位置和速度作为控制量的自动 控制系统。 一、进给伺服系统的定义及组成 组成: 进给伺服系统主要由以下几个部分组成:位置控制单元;速度控制单元;驱动元 件(电机);检测与反馈单元;机械执行部件。 3、进给伺服驱动系统由进给伺服系统中的 驱动电机及其控制和驱动装置组成。 4、驱动电机是进给系统的动力部件,它提供执行部分运动所需的动力,在数控机床上常用 的电机有: 步进电机 直流伺服电机 交流伺服电机 直线电机。 5 、速度单元是上述驱动电机及其控制和驱动装置,通常驱动电机与速度控制单元是相 互配套供应的,其性能参数都是进行了相互匹配,这样才能获得高性能的系统指标。 6、速度控制单元主要作用:接受来自位置控制单元的速度指令信号,对其进行适当的调节 运算(目的是稳速),将其变换成电机转速的控制量(频率,电压等),再经功率放大部件将其 变换成电机的驱动电量,使驱动电机按要求运行。简言之:调节、变换、功放。 7、进给驱动系统的特点(与主运动(主轴)系统比较): ? 功率相对较小; ? 控制精度要求高; ? 控制性能要求高,尤其是动态性能。 二、NC 机床对数控进给伺服系统的要求 1.调速范围要宽且要有良好的稳定性(在调速范围内) 调速范围: 一般要求: 稳定性:指输出速度的波动要少,尤其是在低速时的平稳性显得特别重要。 调速范围: 一般要求: 2.稳定性:指输出速度的波动要少,尤其是在低速时的平稳性显得特别重要。 输出位置精度要高 静态:定位精度和重复定位精度要高,即定位误差和重复定位误差要小。(尺寸精度) 动态:跟随精度,这是动态性能指标,用跟随误差表示。 (轮廓精度) 灵敏度要高,有足够高的分辩率。 3.负载特性要硬 在系统负载范围内,当负载变化时,输出速度应基本不变。即△F 尽可能小;当负载突变 时,要求速度的恢复时间短且无振荡。即△t 尽可能短; 应有足够的过载能力,以满足低速大转矩的要求。(高速恒功率,低速恒转矩) 这是要求伺服系统有良好的静态与动态刚度。 4. 响应速度快且无超调 这是对伺服系统动态性能的要求,即在无超调的前提下,执行部件的运动速度的建立时间 tp 应尽可能短。 通常要求从 0→Fmax (Fmax →0),其时间应小于200ms ,且不能有超调, min max F F R N =m in 1m in 1.010000min mm F mm R N <≤>且

数控机床坐标系统介绍

湖南科技工业职业技术学院 教师课时授课计划 教师姓名谭晓芳课程名称数控编程授课时数2课时

课题三数控机床坐标系统 【新课导入】: 在数控编程时,为了描述机床的运动,简化编程的方法及保证记录数据的互换性,我们把数控机床的坐标系和运动方向均已标准化。今天,我们以数控机床坐标系统为主线,一起来学习相关的知识。 【新课内容】: 一、坐标轴和运动方向命名的原则 (1)、假定刀具相对于静止的工件而运动。当工件移动时,则在坐标轴符号上加“`”表示。 (2)、标准坐标系是一个右手直角笛卡尔坐标系。 (3)、刀具远离工件的运动方向为坐标轴的正方向。

二、坐标轴的规定 1、基本坐标轴 数控机床的坐标轴和方向的命名制订了统一的标准,规定直线进给运动的坐标轴用X,Y,Z表示,常称基本坐标轴。 2)旋转轴 围绕X,Y,Z轴旋转的圆周进给坐标轴分别用A,B,C 表示,根据右手螺旋定则,如图所示,以大姆指指向+X,+Y,+Z方向,则食指、中指等的指向是圆周进给运动的+A,+B,+C方向。 3)附加坐标轴 在基本的线性坐标轴X,Y,Z之外的附加线性坐标轴指定为U,V,W 和P,Q,R。这些附加坐标轴的运动方 向,可按决定基本坐标轴运动方向的方法来决定。

三、机床坐标轴的确定 (1)Z坐标轴。 1)在机床坐标系中,规定传递切削动力的主轴为Z坐标轴。 2)对于没有主轴的机床(如数控龙门刨床),则规定Z坐标轴垂直于工件装夹面方向。 3)如机床上有几个主轴,则选一垂直于工件装夹面的主轴作为主要的主轴。 (2)X坐标轴。 1)X坐标轴是水平的,它平行于工件装夹平面。 2)对于工件旋转的机床,X坐标的方向在工件的径向上,并且平行于横滑座。 3)对于刀具旋转的机床,如Z坐标是水平(卧式)的,当从主要刀具的主轴向工件看时,向右的方向为X的正方向;如Z坐标是垂直(立式)的,当从主要刀具的主轴向立柱看时,X的正方向指向右边。 4)对刀具或工件均不旋转的机床(如刨床),X坐标平行于主要进给方向,并以该方向为正方向。 (3)Y坐标轴。Y坐标轴根据Z和X坐标轴,按照右手直

数控车床的伺服系统介绍

4、简述采用的数控铣床伺服系统的组成、原理及作用 数控机床伺服系统是以机床运动部件的位置和速度作为控制量的自动控制系统,又称位置 随动系统,简称伺服系统。 数控机床伺服系统包括进给伺服系统和主轴伺服系统。 1、进给伺服系统用于控制机床各坐标轴的切削进给运动,是一种精密的位置跟踪、定位 系统,它包括速度控制和位置控制,是一般概念的伺服驱动系统;数控机床的进给伺服系 统与一般的机床的进给系统有本质的差异,它能根据指令信号自动精确的控制执行部件运 动的位移、方向和速度,以及数个执行部件按一定的规律运动以合成一定的运动轨迹。 2、主轴伺服系统用于控制机床主轴的旋转运动和切削过程中的转矩和功率,一般只以速 度控制为主。 伺服控制系统分为开环伺服系统和闭环伺服系统,开环伺服系统由驱动控制单元、执行原 件和机床组成。闭环伺服系统由执行元件、驱动控制单元、机床及反馈检测元件、比较环 节组成。 图4-1数控伺服系统的组成 伺服系统的作用是接受数控系统发出的进给位移和速度指令信号,由伺服驱动电路作一定 的转换和放大后,经伺服驱动装置和机械传动机构,驱动机床的工作台等执行部件进行运动。 5、分析所采用数控铣床所需的主运动、进给运动、换刀与刀库原理结构,并画出数控机 床总体方案草图,简述其尺寸、动力、运动参数范围。 5.1数控机床CK6140主轴运动 主轴部件是机床的重要部件之一,其精度、抗振性和热变形对加工质量有直接影响。特别 是如果数控机床在加工过程中不进行人工调整,这些影响将更为严重。数控机床主轴部件 在结构上要解决好主轴的支承、主轴内刀具自动装夹、主轴的定向停止等问题。 数控机床主轴的支承主要采用图1所示的三种主要形式。图5-1a所示结构的前支承采用 双列短圆柱滚子轴承和双向推力角接触球轴承组合,后支承采用成对向心推力球轴承。这 种结构的综合刚度高,可以满足强力切削要求,是目前各类数控机床普遍采用的形式。图 5-1b所示结构的前支承采用多个高精度向心推力球轴承,后支承采用单个向心推力球轴承。这种配置的高速性能好,但承载能力较小,适用于高速、轻载和精密数控机床。图5-1c所示结构为前支承采用双列圆锥滚子轴承,后支承为单列圆锥滚子轴承。这种配置的径向和

数控机床伺服系统概述

教案 章节 课题 数控机床伺服系统概述 课型新课课时 2 教具学具 电教设施 无 教学目标 知识 教学点 1、伺服系统的概念与组成。 2、伺服系统的分类。 3、数控机床对伺服系统的要求。 4、进给伺服系统的组成及工作原理。能力 培养点 1、增强对理性知识的学习。 2、培养学生严谨的工作和学习作风。德育 渗透点 提高学生学习兴趣,增强学生责任心。 教 学重点难点重点伺服系统的相关知识 难点进给伺服系统的工作原理 学法引导 1、讨论法(积极参与,总结规律) 2、引导法(举一反三) 3、例举法 4、归纳法 5、图解法 教学内容 更新、补 充、删节 补充:进给伺服系统的工作原理 参考资料《数控原理》、《数控技术》、《先进制造技术》等课后体会

导入新课 下面我们来复习以下上节课所学的内容: 1、什么叫逐点比较法?它的四个工作节拍分别是什 么? 2、叙述逐点比较法有哪些优点? 讲授新课 一、伺服系统的概念与组成 ?主要采用图解法、讨论法、引导法。 1、概念 2、作用 3、组成 注意 (1)伺服系统直接影响数控机床的精度和速度 等技术指标。 (2)半闭环控制精度介于开环和全闭环之间。 (3)速度环常用检测元件:测速发电机、高分 辨率脉冲编码器 位置环常用检测元件:光栅、码盘等。二、伺服系统的分类 ?主要采用讲解法、图解法和归纳法。 1、主轴伺服系统 伺服系统 进给伺服系统 2、通过用练习的方式 检测学生掌握情况 通过分析图解使学 生思考伺服系统的 组成及各部分的作 用 采用图解法,学生 认真听讲,参与讨 论 6分 25 分 5分 15 分 12 分

3、根据反馈控制方式分类 三、数控机床对伺服系统的要求 ?主要采用讲解法和引导法。 四、进给伺服系统的组成及工作原理 ?主要采用讨论法、图解法和归纳法。 1、开环伺服系统 2、闭环伺服系统 课堂总结 1、伺服系统的概念与组成; 2、伺服系统的分类; 3、数控机床对伺服系统的要求; 4、进给伺服系统的组成及工作原理。 布置作业和辅导答疑 1、伺服系统的概念、分类和作用分别是什么? 2、数控机床对伺服系统的要求有哪些? 3、简单叙述开环、闭环伺服系统的工作原理和精度决定 因素分别是什么?学生通过思考,理 解开环与闭环原理 10 分 15 分 5分 3分

数控机床中伺服系统现状分析(doc 5)

数控机床中伺服系统现状分析(doc 5)

数控机床中伺服系统的现状分析 一、概述 伺服系统是以机械运动的驱动设备,电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。这类系统控制电动机的转矩、转速和转角,将电能转换为机械能,实现运动机械的运动要求。具体在数控机床中,伺服系统接收数控系统发出的位移、速度指令,经变换、放调与整大后,由电动机和机械传动机构驱动机床坐标轴、主轴等,带动工作台及刀架,通过轴的联动使刀具相对工件产生各种复杂的机械运动,从而加工出用户所要求的复杂形状的工件。 作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。数控机床中的伺服系统种类繁多,本文通过分析其结构及简单归分,对其技术现状及发展趋势作简要探讨。 二、伺服系统的结构及分类 从基本结构来看,伺服系统主要由三部分组成:控制器、功率驱动装置、反馈装置和电动机(图1)。控制器按照数控系统的给定值和通过反馈装置检测的实际运行值的差,调节控制量;功率驱动装置作为系统的主回路,一方面按控制量的大小将电网中的电能作用到电动机之上,调节电动机转矩的大小,另一方面按电动机的要求把恒压恒频的电网供电转换为电动机所需的交流电或直流电;电动机则按供电大小拖动机械运转。 图1 伺服系统的结构 图1 伺服系统的结构 图1中的主要成分变化多样,其中任何部分的变化都可构成不同种类的伺服系统。如根据驱动电动机的类型,可将其分为直流伺服和交流伺服;根据控制器实现方法的不同,可将其分为模拟伺服和数字伺服;根据控制器中闭环的多少,可将其分为开环控制系统、单环控制系统、双环控制系统和多环控制系统。考虑伺服系统在数控机床中的应用,本文首先按机床中传动机械的不同将其分为进给伺服与主轴伺服,然后再根据其它要素来探讨不同伺服系统的技术特性。

数控机床简介

数控机床简介 第一节数控加工的概念 一、概念: 数字控制(Numerical Control,简称NC)技术是用数字化信息进行控制的自动控制技术。数控机床:是以数字化的信息实现机床控制的机电一体化产品,它把刀具和工件之间的相对位置,机床电动机的起动和停止,主轴变速,工件松开夹紧,刀具的选择,冷却泵的起停等各种操作和顺序动作等信息用代码化的数字信息送入数控装置或计算机,经过译码、运算,发出各种指令控制机床伺服系统或其它执行元件,使机床自动加工出所需要的工件。 数控加工:根据零件图样及工艺要求等原始条件,编制零件数控加工程序,并输入到数控机床的数控系统,以控制数控机床中刀具与工件的相对运动,从而完成零件的加工。二、产生:1952年美国帕森斯公司(Parsons)和麻省理工学院(MIT)合作研制成功了世界上第一台数控机床,它是一台三坐标数控铣床,用于加工直升飞机叶片轮廓检查用样板。 第二节数控机床的组成与分类 一、数控机床的组成 控机床是机电一体化的典型产品,是集机床、计算机、电机及拖动、自动控制、检测等技术为一体的自动化设备。现代数控系统都为计算机数控系统(Computer Numerical Control,简称CNC)。数控机床的基本组成包括加工程序、输入/输出装置、数控装置、伺服系统、辅助控制装置、反馈系统及机床本体。 1.CNC装置(CNC单元):CNC装置是数控机床的核心部件。 组成:计算机系统、位置控制板、PLC接口板,通讯接口板、特殊功能模块以及相应的控制软件。 作用:根据输入的零件加工程序进行相应的处理(如运动轨迹处理、机床输入输出处理等),然后输出控制命令到相应的执行部件(伺服单元、驱动装置和PLC等),所有这些工作是由CNC装置内硬件和软件协调配合,合理组织,使整个系统有条不紊地进行工作的。2.操作面板:操作面板的是操作人员与机床数控装置进行信息交流的工具。 组成:按钮站、状态灯、按键阵列(功能与计算机键盘一样)和显示器; 它是数控机床特有的部件。 3.控制介质与输入输出设备 控制介质记录零件加工程序的媒介 输入输出设备CNC系统与外部设备进行交互装置。交互的信息通常是零件加工程序。即将编制好的记录在控制介质上的零件加工程序输入CNC系统或将调试好了的零件加工程序通过输出设备存放或记录在相应的控制介质上。 4.通讯 现代的数控系统除采用输入输出设备进行信息交换外,一般都具有用通讯方式进行信息交换的能力。它们是实现CAD/CAM的集成、FMS和CIMS的基本技术。采用的方式有:串行通讯(RS-232等串口)、 自动控制专用接口和规范(DNC,MAP等) 网络技术(internet,LAN等)。 5.伺服单元、驱动装置和测量装置: 伺服单元和驱动装置: 主轴伺服驱动装置和主轴电机 进给伺服驱动装置和进给电机 测量装置:位置和速度测量装置。以实现进给伺服系统的闭环控制。

数控伺服系统组成及原理介绍

数控伺服系统组成及原理介绍 伺服系统是指以机械位置或角度作为控制对象的自动控制系统。它接受来自数控装置的进给指令信号,经变换、调节和放大后驱动执行件,转化为直线或旋转运动。伺服系统是数控装置(计算机)和机床的联系环节,是数控机床的重要组成部分。 数控机床伺服系统又称为位置随动系统、驱动系统、伺服机构或伺服单元。 该系统包括了大量的电力电子器件,结构复杂,综合性强。 进给伺服系统是数控系统主要的子系统。如果说C装置是数控系统的“大脑”,是发布“命令”的“指挥所”,那么进给伺服系统则是数控系统的“四肢”,是一种“执行机构”。它忠实地执行由CNC装置发来的运动命令,精确控制执行部件的运动方向,进给速度与位移量。 一、伺服系统的组成 组成:伺服电机 驱动信号控制转换电路 电子电力驱动放大模块 位置调节单元 速度调节单元 电流调节单元 检测装置 一般闭环系统为三环结构:位置环、速度环、电流环。 位置、速度和电流环均由:调节控制模块、检测和反馈部分组成。电力电子驱动装置由驱动信号产生电路和功率放大器组成。 严格来说:位置控制包括位置、速度和电流控制;速度控制包括速度和电流控制。 位置、速度和电流环均由:调节控制模块、检测和反馈部分组成。电力电子驱动装置由驱动信号产生电路和功率放大器组成。 严格来说:位置控制包括位置、速度和电流控制;速度控制包括速度和电流控制。

二、对伺服系统的基本要求 1.精度高 伺服系统的精度是指输出量能复现输入量的精确程度。包括定位精度和轮廓加工精度。2.稳定性好 稳定是指系统在给定输入或外界干扰作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。直接影响数控加工的精度和表面粗糙度。 3.快速响应 快速响应是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4.调速范围宽 调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。0~24m / min。 5.低速大转矩 进给坐标的伺服控制属于恒转矩控制,在整个速度范围内都要保持这个转矩;主轴坐标的伺服控制在低速时为恒转矩控制,能提供较大转矩。在高速时为恒功率控制,具有足够大的输出功率。 对伺服电机的要求: (1)调运范围宽且有良好的稳定性,低速时的速度平稳性 (2)电机应具有大的、较长时间的过载能力,以满足低速大转矩的要求。 (3)反应速度快,电机必须具有较小的转动惯量、较大的转矩、尽可能小的机电时间常数和很大的加速度 (400rad / s2以上)。 (4)能承受频繁的起动、制动和正反转。 三、伺服系统的分类 1.按调节理论分类

数控系统简介

第一章数控系统介绍 本实训室配备有华中Ⅰ型车削、铣削数控系统的模拟软件以及对应的硬加密狗,SIENUMENS 810D铣加工中心数控系统。 第一节华中Ⅰ型车削数控系统 华中Ⅰ型车削数控系统是(HCNC—1T)华中理工大学、武汉华中数控系统有限公司研制开发出来的。在保证系统可靠性的基础上,为用户提供了一个简捷、方便的操作平台。 1.1.1CNC结构 CNC结构如图1.1所示: 图1.1 数控教学型车床系统框图

说明: ①系统用中文CRT显示,具有很好的人——机界面。 ②3.5英寸软盘可用于保存或调入加工程序。 ③通讯接口可用于系统集成化、联网、数据输入、输出、远程诊断等。 ④标准面板包括CRT/MDI面板和操作面板。 ⑤系统采用实时多任务的管理方式,能够在加工的同时进行其他操作。 1.系统启动步骤 ⑴打开电柜开关 ⑵打开计算机开关 ⑶开始自检并由电子盘引导系统,进入DOS或WINDOWS工作环境。 ⑷执行CNC.EXE文件,系统显示如图1.2所示 图1.2 系统上电屏幕显示 1.1.2系统通电后的屏幕说明 ⑴系统通电后,系统的屏幕显示如图1.2所示。 ⑵工作方式:显示系统目前的运行方式,如:自动运行、回零功能、手摇进给、MDI 功能、手动操作、步进功能等。

⑶运行状态:表示在不同的工作方式下有不同的运行状态,如: 自动方式的状态显示:100%(进给修调)、机床锁住、程序单段等 回零方式的状态显示:X轴回零、Z轴回零 手摇功能的状态显示:*10(手摇倍率)、X轴进给、Z轴进给等 MDI功能的状态显示:摸态G00 G90 G20 G99等 点动功能的状态显示:100%(最大速度的百分比)、X轴进给、Z轴进给等 步进功能的状态显示:*10(步进倍率)、X轴进给、Z轴进给等 ⑷运行文件名:显示自动加工的文件名,如:O2000 表示该文件被读入运行 ⑸O.N索引:显示自动运行中的O代码和N代码 ⑹P.L索引:显示自动运行中的P(调用子程序号)代码和L(调用次数)代码 ⑺M.T索引:显示自动运行中的M(辅助功能为两位)代码和T(刀具号为四位)代码 ⑻机械坐标:显示从伺服单元反馈的坐标信息 ⑼F1键的功能:用此键改变显示软键的功能,使其返回到较高层次的菜单 图1.3菜单结构 1.1.3系统的菜单功能介绍 该系统的菜单共分为4级,分一级主菜单和三级子菜单,其结构如图1.3所示 ⑴第一级菜单(主菜单) 基本功能菜单,如下图所示: ⑵第二级菜单(第一级子菜单) ①自动方式下的子菜单如下图所示

数控系统伺服电机控制

数控系统伺服电机控制 近年来,伺服电机控制技术正朝着交流化、数字化、智能化三个方向发展。作为数控机床 的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽 调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。本文对其技术现状及发展趋势作简要探讨。 一、数控机床伺服系统 (一)开环伺服系统。开环伺服系统不设检测反馈装置,不构成运动反馈控制回路, 电动机按数控装置发出的指令脉冲工作,对运动误差没有检测反馈和处理修正过程,采用 步进电机作为驱动器件,机床的位置精度完全取决于步进电动机的步距角精度和机械部分 的传动精度,难以达到比较高精度要求。步进电动机的转速不可能很高,运动部件的速度 受到限制。但步进电机结构简单、可靠性高、成本低,且其控制电路也简单。所以开环控 制系统多用于精度和速度要求不高的经济型数控机床。 (二)全闭环伺服系统。闭环伺服系统主要由比较环节、伺服驱动放大器,进给伺服 电动机、机械传动装置和直线位移测量装置组成。对机床运动部件的移动量具有检测与反 馈修正功能,采用直流伺服电动机或交流伺服电动机作为驱动部件。可以采用直接安装在 工作台的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。系 统的直线位移检测器安装在移动部件上,其精度主要取决于位移检测装置的精度和灵敏度,其产生的加工精度比较高。但机械传动装置的刚度、摩擦阻尼特性、反向间隙等各种非线 性因素,对系统稳定性有很大影响,使闭环进给伺服系统安装调试比较复杂。因此只是用 在高精度和大型数控机床上。 (三)半闭环伺服系统。半闭环伺服系统的工作原理与全闭环伺服系统相同,同样采 用伺服电动机作为驱动部件,可以采用内装于电机内的脉冲编码器,无刷旋转变压器或测 速发电机作为位置/速度检测器件来构成半闭环位置控制系统,其系统的反馈信号取自电机轴或丝杆上,进给系统中的机械传动装置处于反馈回路之外,其刚度等非线性因素对系统 稳定性没有影响,安装调试比较方便。机床的定位精度与机械传动装置的精度有关,而数 控装置都有螺距误差补偿和间隙补偿等项功能,在传动装置精度不太高的情况下,可以利 用补偿功能将加工精度提高到满意的程度。故半闭环伺服系统在数控机床中应用很广。 二、伺服电机控制性能优越 (一)低频特性好。步进电机易出现低速时低频振动现象。交流伺服电机不会出现此 现象,运转非常平稳,交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系 统内部具有频率解析机能,可检测出机械的共振点,便于系统调整。 (二)控制精度高。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。例如 松下全数字式交流伺服电机,对于带17位编码器的电机而言,驱动器每接收217=131072 个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电 机的脉冲当量的1/655。 (三)过载能力强。步进电机不具有过载能力,为了克服惯性负载在启动瞬间的惯性 力矩,选型时需要选取额定转矩比负载转矩大很多的电机,造成了力矩浪费的现象。而交 流伺服电机具有较强的过载能力,例如松下交流伺服系统中的伺服电机的最大转矩达到额 定转矩的三倍,可用于克服启动瞬间的惯性力矩。

数控机床伺服系统

第6章 数控机床伺服系统 进给伺服系统就是数控系统主要的子系统。如果说CNC 装置就是数控系统的“大脑”,就是发 布“命令”的“指挥所”,那么进给伺服系统则就是数控系统的“四肢”,就是一种“执行机构”。它忠 实地执行由CNC 装置发来的运动命令,精确控制执行部件的运动方向,进给速度与位移量。 第一节 概述 、 进给伺服系统的定义及组成 、 定义:进给伺服系统(Feed Servo System)——以移动部件的位置与速度作为控制量的自动 控制系统。 一、进给伺服系统的定义及组成 组成: 进给伺服系统主要由以下几个部分组成:位置控制单元;速度控制单元;驱动元件(电 机);检测与反馈单元;机械执行部件。 3、进给伺服驱动系统由进给伺服系统中的 驱动电机及其控制与驱动装置组成。 4、驱动电机就是进给系统的动力部件,它提供执行部分运动所需的动力,在数控机床上常用 的电机有: 步进电机 直流伺服电机 交流伺服电机 直线电机。 5 、速度单元就是上述驱动电机及其控制与驱动装置,通常驱动电机与速度控制单元就是 相互配套供应的,其性能参数都就是进行了相互匹配,这样才能获得高性能的系统指标。 6、速度控制单元主要作用:接受来自位置控制单元的速度指令信号,对其进行适当的调节运 算(目的就是稳速),将其变换成电机转速的控制量(频率,电压等),再经功率放大部件将其变换 成电机的驱动电量,使驱动电机按要求运行。简言之:调节、变换、功放。 7、进给驱动系统的特点(与主运动(主轴)系统比较): ? 功率相对较小; ? 控制精度要求高; ? 控制性能要求高,尤其就是动态性能。 二、NC 机床对数控进给伺服系统的要求 1、调速范围要宽且要有良好的稳定性(在调速范围内) 调速范围: 一般要求: 稳定性:指输出速度的波动要少,尤其就是在低速时的平稳性显得特别重要。 调速范围: 一般要求: 2、稳定性:指输出速度的波动要少,尤其就是在低速时的平稳性显得特别重要。 输出位置精度要高 静态:定位精度与重复定位精度要高,即定位误差与重复定位误差要小。(尺寸精度) 动态:跟随精度,这就是动态性能指标,用跟随误差表示。 (轮廓精度) 灵敏度要高,有足够高的分辩率。 3、负载特性要硬 在系统负载范围内,当负载变化时,输出速度应基本不变。即△F 尽可能小;当负载突变时,要 求速度的恢复时间短且无振荡。即△t 尽可能短; 应有足够的过载能力,以满足低速大转矩的要求。(高速恒功率,低速恒转矩) 这就是要求伺服系统有良好的静态与动态刚度。 4、 响应速度快且无超调 这就是对伺服系统动态性能的要求,即在无超调的前提下,执行部件的运动速度的建立时间 tp 应尽可能短。 通常要求从 0→Fmax(Fmax →0),其时间应小于200ms,且不能有超调,否则 对机械部件不利,有害于加工质量。 min max F F R N =m in 1m in 1.010000min mm F mm R N <≤>且

浅析数控机床的发展进程及趋势

百度文库- 让每个人平等地提升自我 网络教育学院 本科生毕业论文(设计) 题目:浅析数控机床的发展进程及趋势 学习中心: 层次:专科起点本科 专业:机械设计制造及其自动化 年级:年季 学号: 学生: 指导教师: 完成日期:年月日

内容摘要 本文以数控机床为研究对象,首先阐述了数控机床的发展历程,尤其对其进给伺服系统和机械传动系统的发展过程进行了详细描述,接下来对我国数控机床的发展现状与发展趋势进行了介绍,并分析了其存在的问题,最后提出了针对我国数控机床的发展策略。 关键词:数控机床;进给伺服系统,机床加工程序

目录 内容摘要 ........................................................................................................................... I 前言 .. (1) 1 数控机床的发展进程 (2) 进给伺服系统 (2) 机械传动系统 (4) 数控机床加工程序的结构 (5) 2 数控机床的发展趋势 (7) 3 数控机床发展中所存在的问题 (12) 4 数控机床的发展策略 (13) 结束语 (14) 致谢 (15) 参考文献 (15) 参考文献 (17)

前言 自20世纪末开始,我国制造业就开始了逐渐由制造大国向制造强国迈进了脚步,机床制造业也跟着取得数控机床快速增长的业绩。机床是先进制造技术和制造信息集成的重要元素,既是生产力要素,又是重要商品。机床的发展和创新在一定程度上能映射出加工技术的主要趋势。近年来, 我国在数控机床和机床工具行业对外合资合作进一步加强, 无论在精度、速度、性能, 还是智能化方面都取得了相当的成绩[1]。 在国际贸易中, 很多发达国家把数控机床视为具有高技术附加值、高利润的主要机电出口产品。因此,对数控机床技术的发展历程进行总结分析,将有助于推进我国数控机床技术实现跨越式发展的目标。

数控系统介绍

数控机床的控制系统简介 随着现代微电子技术的飞速发展,微电子器件集成度和信息处理能力不断提高,而价格却不断下降,这使以信息技术为中心的新技术革命正冲击着世界各技术领域,机械制造业自动化正经历从CNC(计算机数控系统)→FMS(柔性制造系统)→CIMS(计算机集成制造系统)的发展。 一.数控系统的基本工作过程。 1.输入 向CNC装置输入的内容有:零件程序、控制参数和补偿数据等。输入的方式有:手工键盘输入、磁盘或卡输入和连接计算机的DNC接口输入等。 2.译码 译码是以一个程序段为单位进行的。译码的目的是:把程序段中的各种零件轮廓信息(如起点、终点、直线或圆弧等几何要素)、加工速度信息(F代码)和其他辅助信息(M,S,T代码等)按照特定的语法规则解释成数控装置

能识别的语言并以特定的格式存放在指定的内存专用区。 在译码过程中,还要完成程序段的语法检查,一旦发现错误会立即报警。 3. 刀具补偿 刀具补偿包括刀具半径补偿和刀具长度补偿。刀具半径补偿是把立即轮廓轨迹转换成刀具中心轨迹。刀具长度补偿是编程人员不必知道刀具的实际长度,而根据假设刀具长度编程,数控装置按两者之差自动补偿。 4.进给速度处理 数控装置进给速度处理的任务是要保证程序速度的实现。编程所给定的刀具移动速度是加工轨迹切线方向的速度,速度处理就是把它们分解各运动坐标向的分速度。5.插补 插补是在已知起点和终点的曲线上,按选定的数学模型求其他中间数据点的工作,即所谓的“数据点密化”。 6.位控制 在闭环控制的CNC系统中,位置位置的作用是:在每各采样周期内,把插补计算机得到的理论位置与实际反馈位置相比较,用其差值去控制进给电动机。在位置控制中,通常还要进行位置回路的位置的增益调整各坐标系方向的螺距误差补偿和反向间隙补偿,以提高机床的定位精度。

数控机床系统组成的介绍

数控机床系统组成的介绍 (1)数控机床的组成及各部分的功能 数控机床一般由数控系统、包含伺服电动机和检测反馈装置的伺服系统、强电控制柜、机床本体和各类辅助装置组成。 (2)数控加工的过程 利用数控机床完成零件数控加工的过程主要内容如下。 ①根据零件加工图样进行工艺分析,确定加工方案、工艺参数和位移数据。 ②用规定的程序代码和格式编写零件加工程序单;或用自动编程软件进行CAD/CAM工作.直接生成零什的加工程序文件。 ③程序的输入或传输。由手工编写的程序,可以通过数控机床的操作面板输入程序;由编程软件生成的程序,通过计算机的串行通讯接口直接传输到数控机床的数控单元(MCU)。 ④将输入/传输到数控单元的加工程序,进行试运行、刀具路径模拟等。 ⑤通过对机床的正确操作,运行程序,完成零件的加工。 加工中心的操作面板由机床控制面板和数控系统操作面板两部分组成,下面分别作一介绍。 一、机床操作面板 主要由操作模式开关、主轴转速倍率调整开关、进给速度倍率调整开关、快速移动倍率开关以及主轴负载荷表、各种指示灯、各种辅助功能选项开关和手轮等组成。不同机床的操作面板,各开关的位置结构各不相同,但功能及操作方法大同小异,具体可参见数控铣床操作项目相关内容。

二、注意事项 1、在开机之前要先检查机床状况有无异常,润滑油是否足够等,如一切正常,方可开机; 2、回原点前要确保各轴在运动时不与工作台上的夹具或工件发生干涉; 3、回原点时一定要注意各轴运动的先后顺序。 三、工件安装 根据不同的工件要选用不同的夹具,选用夹具的原则: 1、定位可靠; 2、夹紧力要足够。 安装夹具前,一定要先将工作台和夹具清理干净。夹具装在工作台上,要先将夹具通过量表找正找平后,再用螺钉或压板将夹具压紧在工作台上。安装工件时,也要通过量表找正找平工件。

数控机床的特点介绍

数控机床的特点介绍 数控加工就是数控机床在加工程序的驱动下将毛坯加工成合格零件的加工过程。数控机床控制系统具有普通机床所没有的计算机数据处理功能、智能识别功能以及自动控制能力。数控加工与常规加工相比有着明显的区别,其特点如下: 1.自动化程度高,易实现计算机控制 除了装夹工件还需要手工外,全部加工过程都在数控程序的控制下,由数控机床自动完成,不需要人工干预。因此加工质量主要由数控程序的编制质量来控制。 2.数控加工的连续性高 工件在数控机床上只需装夹一次,就可以完成多个部位的加工,甚至完成工件的全部加工内容。配有刀具库的加工中心能装有几把甚至几十把备用刀具,具有自动换刀功能,可以实现数控程序控制的全自动换刀,不需要中断加工过程,生产效率高。 3.数控加工的一致性好 数控加工基本消除了操作者的主观误差,精度高、产品质量稳定、互换性好。 4.适合于复杂零件的加工 数控加工不受工件形状复杂程度的影响,应用范围广。它很容易实现涡轮叶片、成型模具等带有复杂曲面、高精度零件的加工,并解决一些如装配要求较高,常规加工中难以解决的难题。 5.便于建立网络化系统 例如建立直接数控系统(DNC),把编程、加工、生产管理连成一体,建立自动化车间,走向集成化制造。甚至于CAD系统集成,形成企业的数字化制造体系。数控程序由CAM软件编制,采用数字化和可视化技术,在计算机上用人机交互方式,能够迅速完成复杂零件的编程,从而缩短产品的研制周期。 近年来,随着数控机床的模块化发展,使数控加工设备增加了柔性化的特点。先进的柔性加工不仅适合于多品种、小批量生产的需要,而且增加了自动变换工件的功能,能交替完成两种或更多种不同零件的加工,可实现夜间无人看管的生产操作。有数台数控机床(加工中心)组成的柔性制造系统(FMS)是一种具有更高柔性的自动化制造系统,具有将加工、装配和检验等制造过程的关键环节高度集成的自动化制造系统。 数控技术已经成为制造业自动化的核心技术和基础技术。其中,数控机床的精确性和重复性成为用户考虑最多的重要因素。

相关主题
文本预览
相关文档 最新文档