二烯烃的共轭效应
- 格式:doc
- 大小:470.51 KB
- 文档页数:11
1,3-丁二烯中的共轭现象
1,3-丁二烯的双键比一般的C=C双键长一些,单键比一般的C-C单键短些,并且C-H键的键长比丁烷中要短。
这正是1,3-丁二烯分子中发生了键的平均化的结果。
这种存在于共轭体系中表现出来的原子间的互相影响,叫做共轭效应。
由于C与C之间存在σ键和π键,并且起到共轭效应的是π键,因此我们也称1,3-丁二烯的共轭效应为π-π共轭。
由于共轭效应,π键电子成为一种离域电子,在分子轨道上运动,而不再局限于两个碳原子之间。
由共轭效应引起的平均化是分子内的一种属性。
1,3-丁二烯分子不受外界影响时,其电子云的分布完全对称的。
但当与BR等试剂发生加成反应,由于受到BR离子的影响而引起了分子的极化。
结果使C1原子的电子云密度增大,略带部分负电荷,而C2的电子密度相应地降低,略带部分正电荷,又由于C2略带部分正电荷,要吸引电子,从二又影响到C3和C4的哌电子云,使C3略带部分负电荷,C4略带部分正电荷。
由此可见比较共轭二烯烃比较容易发生1,2或1,4加成。
极性溶剂不利于1,4加成。
在非极性溶剂中,升高温度更有利于1,2结构含量的增加;而在极性添加剂的参与下的烃类溶剂的聚合中,升高温度更有利于1,4结构含量的增加。
当然具体的加成方式还受到反应物结构的影响。
一二烯烃分子中含有不止一个双键的开链烃,按照双键数目的多少,分别叫做二烯烃,三烯烃.....至多烯烃等。
其中以二烯烃最为重要。
而根据二烯烃中双键位置的不同,又可以分为三类:a 累积二烯烃:两个双键连接在同一个碳原子上。
B 共轭二烯烃:两个双键之间,有一个单键相隔。
C 隔离二烯烃:两个双键之间,有两个或以上的单键相隔。
在这里主要介绍共轭二烯烃的性质。
1共轭二烯烃的结构以及共轭效应:1,3—丁二烯是最简单的共轭二烯烃,下面就以它为例来说明共轭二烯烃的结构。
在丁二烯分子中,四个碳原子和六个氢原子都处在同一个平面上。
其每一个碳原子都是sp2杂化,它们以sp2杂化轨道与相邻的碳原子相互交盖形成碳碳单键,与氢原子的1S轨道形成碳氢单键。
分子中一共形成了三个碳碳单键和六个碳氢单键,sp2杂化碳原子的三个σ键指向三角形的三个顶点,三个σ键相互之间的夹角都接近120°。
由于每一个碳原子的σ键都排列在一个平面上,所以就形成了分子中所有σ键都在一个平面的结构,此外,每一个碳原子都有一个未参与杂化的p轨道,它们都和丁二烯分子所在的平面垂直,因此这四个p轨道互相平行,在四个碳原子之间都有电子云交盖,从而电子也并不固定在两个原子之间,从而发生离域。
也就是说四个电子在四个原子轨道形成的共轭体系中流动,并不固定在某一位置。
2 共轭二烯烃的性质A 1,2—加成和1,4—加成共轭二烯烃和卤素,氢卤酸等都容易发生亲电加成,但可产生两种加成产物,如下所示:(1,2—加成产物和1,4—加成产物的键线式)1,2—加成产物是一分子试剂在同一个双键的两个碳原子上的加成,而1,4—加成产物则是一分子试剂加载共轭双键的两端碳原子上,同时原来的双键变为单键,而双键之间的单间变为双键。
1,3—丁二烯之所以有这两种加成方式,与其共轭结构有密切关系。
下面以溴化氢与丁二烯的加成来说明这一原理。
丁二烯与溴化氢的加成第一步也是H+的进攻,加成反应可能发生在C(1)或者C(2)上,然后生成相应的碳正离子(I)和(II)对于这两种碳正离子来说,双键上的碳原子,以及带有正电荷(在键线式中所表达出来的)的碳原子都是sp2杂化,而在(I)碳正离子中,三个碳原子剩余的p轨道均平行于三个碳原子锁组成的平面,因此它们之间存在共轭效应,从而正电荷并不只是单纯的聚集在同一个碳原子上,电荷因共轭效应而被分配到三个碳原子上,并且在C(2)和C(4)上的正电荷相对较多,从而分子比较稳定,生成(I)碳正离子所需要的活化能相对更低,而(II)碳正离子则没有共轭效应,因此反应总是向着(I)碳正离子的方向进行。
3.2.2 共轭二烯烃的结构和共轭效应Structures and Conjugative Effects ofConjugated Dienes(1)共轭二烯烃的结构。
在共轭二烯烃中,最简单的是1,3-丁二烯,下面我们就以它为例来说明共轭二烯烃的结构。
根据近代物理方法测定,1,3-丁二烯中碳碳双键的键长是0.135nm,碳碳单键的键长是0.148 nm,也就是说,它的双键比乙烯的双键(0.134 nm)长,而单键却比乙烷的单键(0.154 nm)短。
这说明1,3-丁二烯的单、双键较为特殊,键长趋于平均化。
杂化轨道理论认为,在1,3-丁二烯中,4个sp2杂化轨道的碳原子处在同一平面上(图3.6),每个碳原子上未杂化的p轨道相互平行,且都垂直于这个平面。
这样,在分子中不仅C1、C2和C3、C4间各有一个π键,C2、C3间的p 轨道从侧面也有一定程度的重叠(图3.6),使4个p电子扩展到四个碳原子的范围内运动,每两个碳原子之间都有π键的性质,组成一个大π键,这种共轭体系称为π-π共轭体系。
在共轭体系中,π电子Array不再局限于成键两个原子之间,而要扩展它的运动范围,这种现象称为电子离域。
电子离域范围愈大,体系的能量愈低,分图3.6 1,3-丁二烯分子中π键所在平面与纸面垂直子就愈稳定。
共轭体系的各原子必须在同一平面上,每一个碳原子都有一个未杂化且垂直于该平面的p轨道,这是形成共轭体系的必要条件。
按照分子轨道理论,4个p电子可以组成4个分子轨道,两个成键轨道(ψ1、ψ2)、两个反键轨道(ψ3、ψ4),如图3.7。
图3.7 1,3-丁二烯的原子轨道和π分子轨道图形从图中可以看出,ψ1在键轴上没有节面,而ψ2、ψ3、ψ4各有1个、2个、3个节面。
节面上电子云密度等于零,节面数目越多能量越高。
ψ4有3个节面,所有碳原子之间都不起成键作用,是能量最高的强反键;ψ3有2个节面,能量比只有1个节面的ψ2高,ψ3为弱反键;ψ2为弱成键分子轨道;ψ1没有节面,所有碳原子之间都起成键作用,是能量最低的成键轨道。
第五章 二烯烃的共轭效应§1、二烯烃一、二烯烃的分类和命名:二烯烃和炔烃是同分异构体,通式C n H 2n-2 (一) 分类:根据二个烯键在分子中的相对位置分:累积式的二烯烃Ë«¼ü»ýÀÛÔÚͬһCÉÏ ±û¶þÏ©C=C=CCH 2=C=CH 2共轭式二烯烃C=C-C=CCH 2=CH-CH=CH 2¶þ¸öË«¼ü±»Ò»¸öµ¥¼ü¸ô¿ª1£¬3¶¡¶þÏ©孤立式的二烯烃C=C-(CH 2)n-C=Cn > 1¶þ¸öË«¼ü±»¶þ¸öÒÔÉϵ¥¼ü¸ô¿ª其中:孤立式的二烯烃的性质和单烯烃相似。
每个双键各行其势,相互影响很小。
累积式的二烯烃数量少且实际应用也不多。
共轭式二烯烃在理论和实际应用上都很重要。
所以,我们讨论的是共轭二烯烃,它具有新的,特殊的性质。
(二) 命名:和烯烃相似,主要是分别指出烯键的数目和位置就行2-¼×»ù-1£¬3-¶¡¶þÏ© 1£¬3£¬5-¼ºÈýÏ©| | λÖà ÊýÄ¿CH 2=C CH=CH 2CH 3CH 2=CH-CH=CH-CH=CH 2对多烯烃,每个烯键都可能有顺反构型问题,二个烯键有二个顺反问题,组合起来就有三个顺顺,顺反,反反三种异构体˳£¬Ë³-2¡¢4-¼º ¶þ Ï©(Z),(Z)-C=CCH 3HC=CCH 3H HH˳¡¢·´-2¡¢4¼º¶þÏ© £¨·´£¬Ë³£©(Z),(Z)-·´£¬·´-2¡¢4-¼º ¶þ Ï©(E),(E)-(三)1、3丁二烯的构象:CH 2=CH-CH=CH 2C2¡¢C3 Χ ÈÆ µ¥ ¼ü Ðý ת »á ²ú Éú ²» ͬ µÄ ¿Õ ¼ä ¹¹ ÏóCCCH 2CH 2H¶þ¸öË«¼üÔÚC2¡¢C3ͬ²àS-˳- 1¡¢3-¶¡¶þÏ© S-Sigle µ¥CC CH 2CH 2HHS-·´-1¡¢3¶¡¶þÏ©¶þ¸öË«¼üÔÚC2¡¢C3Ïà·´²à性质上都是围绕单键旋转产生的,从能量上说S-反稳定,但在化学反应中参加反应时,S-反→S-顺。
第五章 二烯烃的共轭效应§1、二烯烃一、二烯烃的分类和命名:二烯烃和炔烃是同分异构体,通式C n H 2n-2 (一) 分类:根据二个烯键在分子中的相对位置分:累积式的二烯烃Ë«¼ü»ýÀÛÔÚͬһCÉÏ ±û¶þÏ©C=C=CCH 2=C=CH 2共轭式二烯烃C=C-C=CCH 2=CH-CH=CH 2¶þ¸öË«¼ü±»Ò»¸öµ¥¼ü¸ô¿ª1£¬3¶¡¶þÏ©孤立式的二烯烃C=C-(CH 2)n-C=Cn > 1¶þ¸öË«¼ü±»¶þ¸öÒÔÉϵ¥¼ü¸ô¿ª其中:孤立式的二烯烃的性质和单烯烃相似。
每个双键各行其势,相互影响很小。
累积式的二烯烃数量少且实际应用也不多。
共轭式二烯烃在理论和实际应用上都很重要。
所以,我们讨论的是共轭二烯烃,它具有新的,特殊的性质。
(二) 命名:和烯烃相似,主要是分别指出烯键的数目和位置就行2-¼×»ù-1£¬3-¶¡¶þÏ© 1£¬3£¬5-¼ºÈýÏ©| | λÖà ÊýÄ¿CH 2=C CH=CH 2CH 3CH 2=CH-CH=CH-CH=CH 2对多烯烃,每个烯键都可能有顺反构型问题,二个烯键有二个顺反问题,组合起来就有三个顺顺,顺反,反反三种异构体˳£¬Ë³-2¡¢4-¼º ¶þ Ï©(Z),(Z)-C=CCH 3HC=CCH 3H HH˳¡¢·´-2¡¢4¼º¶þÏ© £¨·´£¬Ë³£©(Z),(Z)-·´£¬·´-2¡¢4-¼º ¶þ Ï©(E),(E)-(三)1、3丁二烯的构象:CH 2=CH-CH=CH 2C2¡¢C3 Χ ÈÆ µ¥ ¼ü Ðý ת »á ²ú Éú ²» ͬ µÄ ¿Õ ¼ä ¹¹ ÏóCCCH 2CH 2H¶þ¸öË«¼üÔÚC2¡¢C3ͬ²àS-˳- 1¡¢3-¶¡¶þÏ© S-Sigle µ¥CC CH 2CH 2HHS-·´-1¡¢3¶¡¶þÏ©¶þ¸öË«¼üÔÚC2¡¢C3Ïà·´²à性质上都是围绕单键旋转产生的,从能量上说S-反稳定,但在化学反应中参加反应时,S-反→S-顺。
二、共轭二烯烃的制法:工业制法1、 丁烯脱氢: (1) 催化脱氢:CH 2=CH-CH 2-CH 3CH 3-CH=CH-CH 3´ß»¯¼ÁCH 2=CH -CH=CH 2 + H 2(2) 氧化脱氢:CH 2=CH-CH 2-CH 3CH 3-CH=CH-CH 3´ß»¯¼Á+ 1/2 O 2CH 2=CH -CH=CH 2 + H 2O2、 丁烷脱氢:CH 3CH 2CH 2CH 3CH 2=CHCH 2CH 3 + H 2 CH3CH=CHCH 3 + H 223Cr 2O 33、 由乙炔制备:HCHO + HC CH + HCHOHOCH 2C CCH 2OHKOH H 2HOCH 2CH 2CH 2CH 2OH Al 2O 32CH 2=CHCH=CH 24、2-甲基-1、3-丁二烯的制法:Al 2O 3C=O CH 3CH 3+ HCCHKOHCCH 3CH 3CCHOH42CCH 3CH 3CHCH2OH2CH 2=CCH=CH 23三. 共轭二烯烃的性质:具有烯烃的性质,此外也有烯烃所没有的特性 1. 1、4加成:CH 2=CHCH=CH 2 + Br 22CHCH=CH 2Br BrCH 2CH=CHCH 2BrBr一般1、2加成和1、4加成同时发生,试剂不仅可以加到一个双键上,而且也可以加到共轭体系的两端C 原子上,二者的比例决定于反应条件,也就是与溶剂、温度有关。
1、2 1、4 温度-80 80% 20% -40 20% 80% 溶剂CHCl 3/40 70% 环己烷/-150C 62%2.D-A 反应。
狄耳斯-阿尔德反应(Diel—Alder)1、3—丁二烯和丁二烯酸酐作用。
»·¼ºÏ©-4¡¢5-¶þËáôûOO+OOO ±½£¬5h°× 90%反应特征:(1)一部分共轭体系,丁二烯,共轭体系的二双链打开,在C2、C3形成双链,二烯体。
(2) 另一部分是含不饱和双链的体系,叫亲二烯体 (3)生成的都是环状化合物 (4) 顺式加成++COOHCOOHCOOH COOH˫ϩÌå Ç×˫ϩÌåÀý È磺用途:由链状化合物生成环状化合物的重要方法 3.聚合反应和合成橡胶: (1)分类:CH 2CH CH=CH 2n1¡¢2-¼Ó ³É ¾Û ºÏ ÎïC=CCH 2CH 2HH**n˳ 1¡¢4-¼Ó ³É ¾Û ÎïC=CCH 2CH 2HH*n ·´ 1¡¢4-¼Ó ³É ¾Û Îï1¡¢4-¼Ó³É¾ÛºÏ1¡¢2-¼Ó³É¾ÛºÏ共聚反应:丁苯橡胶 (2)聚合反应: 合成橡胶:CH 2CH=C-CH 2nC=CCH 2CH 2HHnC=CCH 2CH 2HHnnCH 2=CHCH=CH 2nCH 2=CCH=CH 2CH3˳¶¡Ïð½ºË³-1£¬4-¾ÛÒìÎì¶þÏ©Ïð½ºnCH 2=CH -CH=CH 2 + n CH=CH 2ROOR'...CH 2CH=CHCH 2CHCH 2......¶¡±½Ïð½ºClnCH 2=CHC=CH 2ClÂȶ¡Ïð½º氯丁橡胶单体的制备: 反应历程:CH 2=CHC=CH 2CH CH 2=CHCd d +-+ HClCH 2Cl天然橡胶:分散性较大的异戊二烯的高分子量聚合物的混合体。
来源:橡树 Ï𠽺¸ÉÁóCH 2=CHC=CH 2CH 32-¼×»ù-1,3- ¶¡ ¶þ Ï©结构:线性高分子化合物 ↓体型(网络型)高分子可塑性延展性§2 电子离域和共轭效应一、二烯烃的结构:(一)累积式二烯烃: CH 2=C=CH2p ps s C 3H 4 ±û ¶þ Ï©½á ¹¹ £º缺图所以,它有二个相互垂直的Π键[模型]性质:性质很活泼,双链可以一个个打开发生加成反应 (1) 水化反应:CH 2=C=CH 2 + H 2OCH 2=CCH 3OHCH 3COCH 3H+(2) 异构化:(H 的重排)(CH 3)KOH , ´¼(CH 3)2CHCCH(二) 共轭二烯烃的结构共轭二烯烃在结构和性质上都表现出一系列特性。