硬件抗干扰技术
- 格式:ppt
- 大小:388.50 KB
- 文档页数:47
无线通信中的干扰与抗干扰方法随着无线通信技术的不断发展,人们的生活离不开各种无线通信设备,如手机、无线网络、蓝牙耳机等。
然而,无线通信中的干扰问题也逐渐显现出来。
本文将详细介绍无线通信中的干扰问题以及抗干扰方法,分步骤进行说明。
一、无线通信中的干扰问题:1.1 外部干扰:外部干扰是指无线通信设备受到其他无关设备或信号的干扰,包括电磁辐射、其他频率段的无线信号等。
1.2 内部干扰:内部干扰是指无线通信设备自身产生的干扰,如不同通信设备之间的相互干扰、不同频段的信号相互干扰等。
二、无线通信中的干扰类型:2.1 同频干扰:同频干扰是指在相同频段上的两个信号互相干扰,导致通信质量下降。
例如,在同一频段上通话的两部手机会相互干扰。
2.2 邻频干扰:邻频干扰是指在相邻频段上的两个信号互相干扰,也会导致通信质量下降。
例如,使用相邻频段的两个无线网络之间可能会相互干扰。
2.3 共存干扰:共存干扰是指不同通信系统或设备共同使用同一频段,导致互相干扰,进而影响通信质量。
例如,无线网络在2.4GHz频段上与蓝牙设备共存时会相互干扰。
三、无线通信中的抗干扰方法:3.1 技术手段:3.1.1 协议设计:通过优化协议的设计,降低通信系统之间的干扰。
例如,在邻频干扰情况下,通过合理规划频段的间隔,来降低相邻频段信号之间的干扰。
3.1.2 功率控制:通过合理的功率控制策略,减少同频干扰。
例如,无线通信设备可以根据距离远近、信号强度等因素自动调整发送功率,降低同频干扰的可能性。
3.1.3 频谱分配:通过合理的频谱分配策略,减少共存干扰。
例如,通信系统可以按需分配频段,避免频繁的频谱冲突和共存干扰。
3.1.4 编码技术:采用差分编码、编码违序、交织技术等方式,提高信号的抗干扰能力。
例如,利用纠错编码算法可以在传输过程中对数据进行检测和纠正,提高通信质量。
3.2 设备设计:3.2.1 滤波器设计:通过在无线通信设备中加入滤波器来屏蔽外部干扰。
PIC单片机抗干扰设计摘要:单片机已经普遍应用到各个领域,对其可靠性也提出了更高的要求。
影响单片机可靠性的因素很多,但是抗干扰性能是最重要的一个因素之一。
本文对PIC单片机抗干扰设计主要从硬件干扰抑制技术和软件干扰抑制技术两个大方面来进行分析。
关键词:PIC单片机抗干扰硬件软件1 硬件干扰抑制技术1.1 采用合理的隔离技术采用合理的隔离技术对单片机抗干扰起着非常重要的作用。
隔离不仅能够将外来干扰信号的通道阻断,而且还可以通过控制系统与现场隔离实现抗干扰目的,使得彼此之间的串扰最大限度地降低。
常用的隔离技术主要包括变压器隔离方式、布线隔离方式、光电隔离方式和继电器隔离方式等。
1.2 合理选择系统时钟PIC单片机系统时钟频率为0~20MHz,时基震荡方式主要有四种,每一种时基震荡方式由不同的时基频率相对应:外接电阻电容元件的阻容振荡方式RC,频率为0.03MHz~5MHz;低频晶体振荡器/陶瓷谐振器振荡方式LP,频率为32.768kHz或200kHz;标准晶体振荡器/陶瓷谐振器振荡方式XT,频率为0.2MHz~4MHz;高频晶体振荡器/陶瓷谐振器振荡方式HS,频率为4MHz~20MHz。
外接方式主要有三种:外接晶体振荡器/陶瓷谐振器、外接时钟电路、外接RC。
用户在选择基振荡方式和外接方式时可根据PIC单片机应用系统的性能、应用场合、价格等因素来进行。
外接时钟属于高频噪声源,从可靠性方面来讲,不仅会干扰本应用系统,而且还能够干扰外界。
频率越高越容易成为噪声源,因此应采用低频率的系统时钟,但是必须把与系统性能要求相符作为前提条件。
1.3 合理设计电路板在电路板设计时,不要只是采用单一的PCB板进行,而应尽可能多的采用多层PCB板来进行,其中一层用作接地,而另外一层用作电源布线,这样就使得退耦电路形成,同时,这样的电路其屏蔽效果也比较好。
如果对空间没有任何的硬性规定,同时要成本因素进行考虑,此时在设计电路板时就可以采用单层或者双层的PCB板进行布线,这样需要从电源单独引电源线进行布线,并将其逐个分配到每个功能电路中,另外,还要将所有的地线汇集到靠近电源地的一个点上。
无人机抗干扰通信技术研究近年来,无人机在军事、民用、商业等领域快速发展。
无人机具有优异的航行性能和强大的任务适应性,广泛应用于侦察、目标打击、灾害救援、民用航拍等领域。
然而,无人机的通信系统容易受到外界干扰,从而影响无人机的飞行和任务执行。
因此,研发无人机抗干扰通信技术,成为无人机研究领域的一个热点话题。
一、无人机通信系统概述无人机通信系统包括控制通信和数据通信两个部分。
控制通信主要通过电台、地面站、中继器等设备,控制和调度无人机飞行。
数据通信则通过图传设备将图像和数据传回地面站,并通过云计算技术实现图像处理和数据解析。
目前,无人机通信系统主要采用无线电通信方式。
频谱资源非常有限,常常导致通信干扰问题。
二、干扰对无人机的影响干扰对无人机通信系统的影响主要表现在五个方面。
1、通信内容受到干扰干扰有可能改变无人机通信信号的频率、相位、幅度、时序等特征参数,导致通信内容发生错误或丢失。
2、通信丢失干扰信号可能会覆盖无人机通信信号,导致通信信号丢失,无法到达目的地。
3、通信延迟由于干扰信号与无人机通信信号存在直接或间接的相互作用,造成通信信号传输延迟,从而影响无人机的运行和任务执行。
4、无人机与地面站间的通信中断干扰导致地面站与无人机之间的通信中断,可能导致无人机失去参考系,从而失去控制,发生事故。
5、数据丢失干扰还会影响数据传输,导致数据丢失或错误,从而影响无人机任务的执行。
三、无人机抗干扰通信技术的研究现状无人机抗干扰通信技术的研究主要集中在两个方面,分别是硬件技术和软件技术。
1、硬件技术硬件技术主要采用以下方法:(1)天线技术天线技术是提高无人机通信系统抗干扰能力的重要方法之一,通过对天线进行优化设计,可以提高天线的抗干扰和抗多径传播能力。
(2)功率控制技术功率控制技术是保障无人机通信质量的重要手段之一,通过控制无人机发射功率的大小和方向,可以有效降低通信干扰对无人机通信的影响。
(3)频率调谐技术频率调谐技术是提高无人机通信抗干扰能力的重要方法之一,通过对无人机通信信号进行频率调谐,可以实现抗干扰、抗多径传播的功能。
常用硬件抗干扰技术针对形成干扰的三要素,采取的抗干扰主要有以下手段。
抑制干扰源抑制干扰源就是尽可能的减小干扰源的du/dt, di/dt。
这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。
减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。
减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。
抑制干扰源的常用措施如下:(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。
仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。
(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。
(3)给电机加滤波电路,注意电容、电感引线要尽量短。
(4)电路板上每个IC要并接一个0.01μF~0.1 μF高频电容,以减小IC对电源的影响。
注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。
(5)布线时避免90度折线,减少高频噪声发射。
(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。
3.2.4 单片机自身的抗干扰措施为提高单片机本身的可靠性。
近年来单片机的制造商在单片机设计上采取了一系列措施以期提高可靠性。
这些技术主要体现在以下几方面。
1.降低外时钟频率外时钟是高频的噪声源,除能引起对本应用系统的干扰之外,还可能产生对外界的干扰,使电磁兼容检测不能达标。
在对系统可靠性要求很高的应用系统中,选用频率低的单片机是降低系统噪声的原则之一。
以8051单片机为例,最短指令周期1μs时,外时钟是12mhz。
而同样速度的motorola单片机系统时钟只需4mhz,更适合用于工控系统。
近年来,一些生产8051兼容单片机的厂商也采用了一些新技术,在不牺牲运算速度的前提下将对外时钟的需求降至原来的1/3。
单片机抗干扰措施概述在单片机应用中,抗干扰是一个非常重要的问题。
由于电磁干扰的存在,单片机可能会受到干扰信号的影响,导致系统的性能下降甚至功能失效。
因此,为了确保单片机系统的稳定运行,需要采取一些抗干扰措施。
本文将介绍单片机常见的抗干扰措施,包括软件抗干扰措施和硬件抗干扰措施。
软件抗干扰措施1. 外部中断和定时中断技术外部中断是单片机接收外部信号的一种方式,通过设置中断触发条件,当接收到特定信号时触发中断处理程序。
通过使用外部中断技术,可以及时响应干扰信号的触发,进行干扰处理。
定时中断也是一种常见的抗干扰措施。
通过设置定时器,定时生成中断信号,进行对干扰信号的定时处理。
2. 硬件监控和重启单片机系统中,可以通过硬件监控电压、温度、电流等参数,并根据监控结果采取相应措施。
例如,如果电压过高或过低,可以通过监控电源电压的方式,自动重启系统,以恢复正常运行。
3. 硬件看门狗硬件看门狗是一种常见的抗干扰措施。
通过设置看门狗定时器,在预设时间内必须向看门狗喂狗,否则看门狗将复位单片机。
看门狗能够有效监控单片机运行,并在系统崩溃或运行异常时进行自动重启。
硬件抗干扰措施1. 接口屏蔽和过滤对于单片机与外部设备接口,可以通过屏蔽和过滤的方式降低干扰信号的影响。
接口屏蔽是通过在接口线上添加屏蔽层,减少干扰信号对于单片机的干扰。
常见的屏蔽层材料包括金属层、导电胶和导电纤维等。
接口过滤是通过添加滤波器或滤波电路,降低接口信号中的干扰成分。
常见的滤波器包括低通滤波器和带阻滤波器等。
2. 地线设计在单片机系统中,地线设计也是一个重要的抗干扰措施。
合理地划分地线,避免地线回路产生环形,可以有效减少共模干扰。
3. 电源干扰削弱技术电源干扰是单片机系统中常见的干扰源之一。
为了降低电源干扰,可以采取以下措施:•过滤电源线,加装滤波电容和滤波电阻,降低电源中的高频干扰成分。
•使用稳压器或电源滤波器,确保电源稳定,并降低电源线上的干扰噪声。