一元线性回归分析实验报告
- 格式:doc
- 大小:241.00 KB
- 文档页数:7
计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。
2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。
广东财经大学华商学院实验报告实验项目名称 ________________ 实验二一元线性回归模型的估计、检验、预测和应用______________________________ 课程名称 ____________ 计量经济学 _________________ 成绩评定良__________ 实验类型:验证型□"综合型□设计型口实验日期_______________________ 指导教师学生姓名_____________________ 学号 _____________________ 专业班级___________________________________________ 一、实验项目训练方案小组合作:是□ 否^I小组成员:无实验目的:掌握简单相关分析、格兰杰因果关系检验、简单线性回归模型的设定和模型的参数估计、简单线性回归模型的区间估计、假设检验和预测方法,并能利用所建立的模型分析实际问题。
实验场地及仪器、设备和材料:实验室:普通配置的计算机,Eviews软件及常用办公软件(二)相关分析(请对得到的图表进行处理,“相关分析”部分不得超过本页)1 •作散点图分别作上述三组变量之间的散点图(3个散点图),并根据散点图作简单分析,写出各组变量的关系。
散点图:分析:由(1)可知,X, y系数互为正相关关系。
由(2)可知,x, y系数互为正相关关系由由(3)可知,x, y系数互为正相关关系2、计算简单线性相关系数分别计算上述三组变量之间的简单线性相关系数,并根据相关系数作简单分析GDPS SLCGDPS CSGDPS 1.000000 0.992864CS 0.992864 1.000000CS CZCS 1.000000 0.997638CZ 0.997638 1.000000GDPS 1.000000 0.996795SLC 0.996795 1.000000(三)回归分析1 .【模型设定门(请对得到的图表进行处理,“模型设定”部分不得超过本页)(1)作因果关系检验(辅助“模型设定”)分别对上述三组变量作因果关系检验(3组检验结果),并根据因果关系检验的结果,作简单描述及分析。
1、实验过程和结果记录:(1)实验数据(2)人均可支配收入与人均消费性支出散点图(3)数据分析步骤4、(5)最终实验结果2、人均可支配收入为12千元时的人均消费性支出和置信度为95%的预测区间计算步骤: (1)一元线性回归方程为Y=0.72717+0.6741420X(2)将0X =12带入样本回归方程可得0Y 的预测值=0.72717+0.674142*12=8.816874千元(3)0e S =千元 结论:因此,当城镇居民家庭的人均可支配收入为12千元时,人均消费性支出地点预测为8.816874千元;置信度为95%的预测区间为(8.816874-1.96*0.0542千元,8.816874+1.96*0.0542千元) 即(8.71千元,8.92千元)六、实验结果及分析1、实验结果:当城镇居民家庭的人均可支配收入为12千元时,人均消费性支出地点预测为8.816874千元;置信度为95%的预测区间为(8.816874-1.96*0.0542千元,8.816874+1.96*0.0542千元) 即(8.71千元,8.92千元)2、实验分析(1)相关系数:相关系数R 实际上是判定系数的平方根,相关系数R 从另一个角度说明了回归直线的拟合优度。
|R|越接近1,表明回归直线对观测数据的拟合程度就越高。
R=0.999592,接近于1,所以人均可支配收入和人均消费支出相关程度高。
(2)判定系数:该指标测度了回归直线对观测数据的拟合程度。
若所有观测点,落在直线上,残差平方和RSS=0,则R^2=1,拟合是完全的;0≤R^2≦1。
R^2越接近1,表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用X 的变化来解释Y 值的部分就越多,回归直线的拟合度就越好;反之,R^2越接近0,回归直线的拟合度就越差。
所以,判定系数R^2=0.999185,表示所观测到的我国城镇居民家庭人均消费支出的值与其均值的偏差平方和中有99.92%可以通过人均可支配收入来解释。
实验报告金融系金融学专业级班实验人:实验地点:实验日期:实验题目:进行相应的分析,揭示某地区住宅建筑面积与建造单位成本间的关系实验目的:掌握最小二乘法的基本方法,熟练运用Eviews软件的一元线性回归的操作,并能够对结果进行相应的分析。
实验内容:实验采用了建筑地编号为1号至12号的数据,通过模型设计、估计参数、检验统计量、回归预测四个步骤对数据进行相关分析。
实验步骤:一、模型设定1.建立工作文件。
双击eviews,点击File/New/Workfile,在出现的对话框中选择数据频率,因为该例题中为截面数据,所以选择unstructured/undated,在observations中设定变量个数,这里输入12。
图12.输入数据。
在eviews 命令框中输入data X Y,回车出现group窗口数据编辑框,在对应的X,Y下输入数据,这里我们可以直接将excel中被蓝笔选中的部分用cirl+c复制,在窗口数据编辑框中1所对应的框中用cirl+v粘贴数据。
图23.作X与Y的相关图形。
为了初步分析建筑面积(X)与建造单位成本(Y)的关系,可以作以X为横坐标、以Y为纵坐标的散点图。
方法是同时选中工作文件中的对象X和Y,双击得X和Y的数据表,点View/Graph/scatter,在File lines中选择Regressions line/ok(其中Regressions line为趋势线)。
得到如图3所示的散点图。
图3 散点图从散点图可以看出建造单位成本随着建筑面积的增加而降低,近似于线性关系,为分析建造单位成本随建筑面积变动的数量规律性,可以考虑建立如下的简单线性回归模型:二、估计参数假定所建模型及其中的随机扰动项满足各项古典假定,可以用OLS法估计其参数。
Eviews软件估计参数的方法如下:在eviews命令框中键入LS Y C X,按回车,即出现回归结果。
Eviews的回归结果如图4所示。
图4 回归结果可用规范的形式将参数估计和检验结果写为:(19.2645)(4.8098)t=(95.7969)(-13.3443)0.9468 F=178.0715 n=12若要显示回归结果的图形,在equation框中,点击resids,即出现剩余项、实际值、拟合值的图形,如图5所示。
⼀元线性回归实验报告实验⼀⼀元线性回归⼀实验⽬的:掌握⼀元线性回归的估计与应⽤,熟悉EViews的基本操作。
⼆实验要求:应⽤教材P61第12题做⼀元线性回归分析并做预测。
三实验原理:普通最⼩⼆乘法。
四预备知识:最⼩⼆乘法的原理、t检验、拟合优度检验、点预测和区间预测。
五实验内容:第2章练习12下表是中国2007年各地区税收Y和国内⽣产总值GDP的统计资料。
单位:亿元(1)作出散点图,建⽴税收随国内⽣产总值GDP变化的⼀元线性回归⽅程,并解释斜率的经济意义;(2)对所建⽴的回归⽅程进⾏检验;(3)若2008年某地区国内⽣产总值为8500亿元,求该地区税收收⼊的预测值及预测区间。
六实验步骤1.建⽴⼯作⽂件并录⼊数据:(1)双击桌⾯快速启动图标,启动Microsoft Office Excel, 如图1,将题⽬的数据输⼊到excel表格中并保存。
(2)双击桌⾯快速启动图标,启动EViews6程序。
(3)点击File/New/ Workfile…,弹出Workfile Create对话框。
在WorkfileCreate对话框左侧Workfile structure type栏中选择Unstructured/Undated 选项,在右侧Data Range中填⼊样本个数31.在右下⽅输⼊Workfile的名称P53.如图2所⽰。
图 1 图 2(4)下⾯录⼊数据,点击File/Import/Read Text-Lotus-Excel...选中第(1)步保存的excel表格,弹出Excel Spreadsheet Import对话框,在Upper-left data cell栏输⼊数据的起始单元格B2,在Excel 5+sheet name栏中输⼊数据所在的⼯作表sheet1,在Names for series or Number if named in file栏中输⼊变量名Y GDP,如图3所⽰,点击OK,得到如图4所⽰界⾯。
2013-2014第1学期计量经济学实验报告实验(一):一元线性回归模型实验学号姓名:专业:国际经济与贸易选课班级:实验日期:2013年12月2日实验地点:K306实验名称:一元线性回归模型实验【教学目标】《计量经济学》是实践性很强的学科,各种模型的估计通过借助计算机能很方便地实现,上机实习操作是《计量经济学》教学过程重要环节。
目的是使学生们能够很好地将书本中的理论应用到实践中,提高学生动手能力,掌握专业计量经济学软件EViews的基本操作与应用。
利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。
【实验目的】使学生掌握1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换。
2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测【实验内容】1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换;2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。
实验内容以下面1、2题为例进行操作。
1、为了研究深圳地方预算中财政收入与国内生产总值关系,运用以下数据:(1)建立深圳的预算内财政收入对GDP的回归;(2)估计模型的参数,解释斜率系数的意义;(3)对回归结果进行检验;(4)若2002年的国内生产总值为3600亿元,试确定2002年财政收入的预测值和预α=)。
测区间(0.052、在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上,公布有美国各航空公司业绩的统计数据。
航班正点准时到达的正点率和此公司每10万名乘客中投诉1(1)做出上表数据的散点图(2)依据散点图,说明二变量之间存在什么关系?(3)描述投诉率是如何根据航班正点率变化,并求回归方程。
实验报告四.spss一元线性相关回归分析预测
本实验使用spss 17.0软件,针对50个被试者,使用一元线性相关回归分析预测变
量X和Y的关系。
一、实验目的
通过一元线性相关回归分析,预测50个被试者的被试变量X(会计实操次数)和被试变量Y(综合评价分)之间的关系,来检验变量X是否能够预测变量Y的值。
二、实验流程
(2)数据收集:通过收集50个被试者的实际实操次数与综合评价分,建立反映这两
者之间关系的一元线性回归方程。
(3)数据分析:通过SPSS软件的一元线性相关回归分析预测变量X和Y的关系,使
用R方值进行检验研究结果的显著性。
以分析变量X对于变量Y的影响程度。
三、实验结果及分析
1.回归分析结果如下所示:变量X的系数b = 0.6755,t = 7.561,p = 0.000,说
明变量X和被试变量Y之间存在着显著的相关关系;R方值为0.941,说明变量X可以较
好地预测变量Y。
2.可以得出一元线性回归方程为:Y=0.67×X+5.293,其中,b为系数,X是自变量,Y是因变量。
四、结论
(1)50个被试者实际实操次数与综合评价分之间存在着显著的相关性;
(2)变量X可以较好地预测变量Y,R方值较高;。
一元线性回归分析研究实验报告一元线性回归分析研究实验报告一、引言一元线性回归分析是一种基本的统计学方法,用于研究一个因变量和一个自变量之间的线性关系。
本实验旨在通过一元线性回归模型,探讨两个变量之间的关系,并对所得数据进行统计分析和解读。
二、实验目的本实验的主要目的是:1.学习和掌握一元线性回归分析的基本原理和方法;2.分析两个变量之间的线性关系;3.对所得数据进行统计推断,为后续研究提供参考。
三、实验原理一元线性回归分析是一种基于最小二乘法的统计方法,通过拟合一条直线来描述两个变量之间的线性关系。
该直线通过使实际数据点和拟合直线之间的残差平方和最小化来获得。
在数学模型中,假设因变量y和自变量x之间的关系可以用一条直线表示,即y = β0 + β1x + ε。
其中,β0和β1是模型的参数,ε是误差项。
四、实验步骤1.数据收集:收集包含两个变量的数据集,确保数据的准确性和可靠性;2.数据预处理:对数据进行清洗、整理和标准化;3.绘制散点图:通过散点图观察两个变量之间的趋势和关系;4.模型建立:使用最小二乘法拟合一元线性回归模型,计算模型的参数;5.模型评估:通过统计指标(如R2、p值等)对模型进行评估;6.误差分析:分析误差项ε,了解模型的可靠性和预测能力;7.结果解释:根据统计指标和误差分析结果,对所得数据进行解释和解读。
五、实验结果假设我们收集到的数据集如下:经过数据预处理和散点图绘制,我们发现因变量y和自变量x之间存在明显的线性关系。
以下是使用最小二乘法拟合的回归模型:y = 1.2 + 0.8x模型的R2值为0.91,说明该模型能够解释因变量y的91%的变异。
此外,p 值小于0.05,说明我们可以在95%的置信水平下认为该模型是显著的。
误差项ε的方差为0.4,说明模型的预测误差为0.4。
这表明模型具有一定的可靠性和预测能力。
六、实验总结通过本实验,我们掌握了一元线性回归分析的基本原理和方法,并对两个变量之间的关系进行了探讨。
一元线性回归在公司加班制度中的应用
院(系):
专业班级:
学号姓名:
指导老师:
成绩:
完成时间:
一元线性回归在公司加班制度中的应用
一、实验目的
掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归程,对回归程进行差分析、显著性检验等的各种统计检验二、实验环境
SPSS21.0 windows10.0
三、实验题目
一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。
经10时间,收集了每加班数据和签发的新保单数目,x为每签发的新保单数目,y为每加班时间(小时),数据如表所示
y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0
1.画散点图。
2.x与y之间大致呈线性关系?
3.用最小二乘法估计求出回归程。
4.求出回归标准误差σ∧。
5.给出0β∧与1β∧的置信度95%的区间估计。
6.计算x与y的决定系数。
7.对回归程作差分析。
8.作回归系数1β∧的显著性检验。
9.作回归系数的显著性检验。
10.对回归程做残差图并作相应的分析。
x=,需要的加班时间是多少?
11.该公司预测下一签发新保单01000
12.给出0y的置信度为95%的精确预测区间。
E y的置信度为95%的区间估计。
13.给出()0
四、实验过程及分析
1.画散点图
如图是以每加班时间为纵坐标,每签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。
2.最小二乘估计求回归程
用SPSS 求得回归程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归程如下:
0.1180.004y x =+
3.求回归标准误差σ∧
ANOVA a
模型 平和 自由度
均 F 显著性
1
回归 16.682 1 16.682 72.396
.000b
残差 1.843 8 .230
总计
18.525
9
a. 因变量:y
b. 预测变量:(常量), x
由差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差:
2=
2SSE
n σ∧-,2σ∧=0.48。
4.给出回归系数的置信度为95%的置信区间估计。
由回归系数显著性检验表可以看出,当置信度为95%时:
0β∧
的预测区间为[-0.701,0.937], 1β∧
的预测区间为[0.003,0.005].0
β∧
的置信区间包含0,表示0β∧
不拒绝为0的原假设。
6.计算x 与y 的决定系数。
由模型摘要表得到决定系数为0.9接近于1,说明模型的拟合度较高。
7.对回归程做差分析。
ANOVA a
模型 平和 自由度
均 F 显著性
1
回归 16.682 1 16.682 72.396
.000b
残差 1.843 8 .230
总计
18.525
9
a. 因变量:y
b. 预测变量:(常量), x
由差分析表可知:F 值=72.396>5.32(当121,8n n ==时,查表得出对应值为5.32),显著性约为0,所以拒绝原假设,说明回归程显著。
8.做相关系数的显著性检验。
模型摘要
模型
R
R
调整后 R
标准估算的误差
1 .949a.900 .888 .4800
a. 预测变量:(常量), x
由模型摘要可知相关系数达到0.949,说明与x y显著线性相关。
9.对回归程做残差图并做相应分析。
从残差图上看出残差是围绕e=0上下波动的,满足模型的基本假设。
x ,需要的加班时间是多少?
10.该公司预测下一签发新保单01000
由预测可知公司预计下一签发新保单
01000
x=时,
0.1180.00359*1000 3.7032
y=+=
五、实验总结
在统计学实验学习中,通过实验操作可使我们加深对理论知识的理解,学习和掌握统计学的基本法,并能进一步熟悉和掌握spss的操作法,培养我们分析和解决实际问题的基本技能,提高我们的综合素质。