场效应管在开关电源中的作用
- 格式:docx
- 大小:3.66 KB
- 文档页数:2
场效应管工作原理MOS场效应管电源开关电路。
这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。
MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field EffectTransistor(金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
本文使用的为增强型MOS场效应管,其内部结构见图5。
它可分为NPN型PNP型。
NPN型通常称为N沟道型,PNP型也叫P沟道型。
由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。
我们知道一般三极管是由输入的电流控制输出的电流。
但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。
为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。
如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。
这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P 型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。
同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。
对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。
当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。
k2698场效应管参数K2698场效应管是一种高频功率场效应管,具有很高的开关速度和低的输入电容。
它是一种N沟道MOSFET,适用于高频功率放大器、开关电源、逆变器等电路。
本文将介绍K2698场效应管的参数及其应用。
一、K2698场效应管的参数1. 静态参数(1)漏极-源极电阻:K2698场效应管的漏极-源极电阻为0.3欧姆。
(2)漏极电流:K2698场效应管的最大漏极电流为10安培。
(3)漏极-源极电压:K2698场效应管的最大漏极-源极电压为600伏。
(4)场效应管转移导纳:K2698场效应管的场效应管转移导纳为30毫西门子。
(5)栅极-源极电容:K2698场效应管的栅极-源极电容为8皮法。
2. 动态参数(1)开关时间:K2698场效应管的开关时间为20纳秒。
(2)关断时间:K2698场效应管的关断时间为20纳秒。
(3)输入电容:K2698场效应管的输入电容为50皮法。
(4)输出电容:K2698场效应管的输出电容为100皮法。
3. 温度特性(1)温度系数:K2698场效应管的温度系数为-0.035%/℃。
(2)温度范围:K2698场效应管的工作温度范围为-55℃至150℃。
二、K2698场效应管的应用1. 高频功率放大器K2698场效应管适用于高频功率放大器,因为它具有很高的开关速度和低的输入电容。
它可以用于射频放大器、微波放大器等高频电路。
2. 开关电源K2698场效应管可以用于开关电源,因为它可以在高频下进行开关。
开关电源是一种节能、高效的电源,可以实现高效的转换。
3. 逆变器K2698场效应管可以用于逆变器,因为它可以实现高频的开关。
逆变器是一种将直流电转换为交流电的电路,可以应用于太阳能发电、风能发电等领域。
三、结论K2698场效应管是一种高频功率场效应管,具有很高的开关速度和低的输入电容。
它适用于高频功率放大器、开关电源、逆变器等电路。
在应用中,需要注意其静态参数、动态参数和温度特性,以实现最佳的电路设计。
开关电源的开关管为什么选MOSFET,而非三极管场效应晶体管(FET,Field Effect Transistor),很大程度上会与双极性结型晶体管(BJT,Bipolor Junction Transistor)简称三极管,很多应用场景相似。
有些控制开关的应用场景下,两个似乎可以相互替代。
但是两者的不同导致了,应用场景的不同,和使用时的特性不同(频率、功耗等)。
1、两者的基本物理模型不相同三极管的理想模型是流控电流源,场效应管的理想物理模型是压控电流源。
2、输入阻抗不同三极管是电流控制器件,通过控制基极电流到达控制输出电流的目的。
因此,基极总有一定的电流,故三极管的输入电阻较低;场效应管是电压控制器件,其输出电流决定于栅源极之间的电压,栅极基本上不取电流,因此,它的输入电阻很高,可高达1MΩ~100000MΩ。
高输入电阻是场效应管的突出优点。
3、完全导通(饱和状态)的等效电阻值不同三极管导通时等效电阻值大,场效应管导通电阻小,只有几十毫欧姆,几毫欧,在现在的用电器件上,一般都用场效应管做开关来用,他的效率是比较高的。
在实际工作中,常用Ib*β=V/R作为判断临界饱和的条件。
根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱和程度就越深。
BJT的CE之间可以实现的最小电压差,是一个定值,所以随着电流的增大,功耗就是Ice*Vce。
对于9013、9012而言,饱和时Vce小于0.6V,Vbe小于1.2V。
下面是9013的特性表:BCP56比较常用于开关控制功能的三极管的一个特性参数表,其Vce(sat)也是最大值0.5V饱和区的现象就是:两个PN结均正偏。
那么Vce(sat)的最大值,也就是两个二极管正向导通电压的压差,这个压差可能很小,而半导体厂家保证这颗BJT的最大值是0.6V。
这个值有可能非常接近于0,但是一般来说和IC和温度相关。
mos管软开关的过程【原创实用版】目录1.MOS 管概述2.MOS 管软开关的原理3.MOS 管软开关的优势4.MOS 管软开关在实际应用中的例子5.总结正文1.MOS 管概述MOS 管,全称为金属 - 氧化物 - 半导体场效应管(Metal-Oxide-Semiconductor Field Effect Transistor),是一种半导体器件,可以被制造成增强型或耗尽型,P 沟道或 N 沟道共 4 种类型。
在实际应用中,常用的是 NMOS 和 PMOS。
MOS 管具有输入阻抗高、噪声低、功耗小、动态响应快等特点,因此在电子电路设计中得到了广泛的应用。
2.MOS 管软开关的原理MOS 管软开关是指在开关状态下,MOS 管的导通与截止过程不存在明显的开关瞬间,而是在一定时间内逐渐完成。
软开关的主要目的是减小开关过程中的电磁干扰和电压尖峰,从而提高电路的可靠性和稳定性。
软开关的过程主要包括预充电和放电两个阶段。
在预充电阶段,当输入电压 ui 由低变高时,MOS 管开始导通,电源通过 RD 向杂散电容 CL 充电,充电时间常数为 1RDCL。
在放电阶段,当输入电压 ui 由高变低时,MOS 管开始截止,杂散电容 CL 中的电荷通过 RD 放电,放电时间常数同样为 1RDCL。
3.MOS 管软开关的优势MOS 管软开关技术具有以下优势:(1)减小电磁干扰:软开关过程中不存在明显的开关瞬间,可以有效地减小电磁干扰,提高电路的可靠性和稳定性。
(2)降低功耗:软开关可以减小开关过程中的电压尖峰,从而降低功耗,提高电路的效率。
(3)改善电路特性:软开关可以提高电路的动态响应,减小电路的输出电压波动,从而改善电路的特性。
4.MOS 管软开关在实际应用中的例子MOS 管软开关在实际应用中得到了广泛的应用,例如:(1)开关电源:在开关电源中,MOS 管软开关可以有效地减小电磁干扰,提高电路的可靠性和稳定性。
(2)马达驱动:在马达驱动电路中,MOS 管软开关可以减小电磁干扰,降低功耗,提高马达驱动的效率和可靠性。
增强型绝缘栅场效应管哎呀,今天咱们聊聊增强型绝缘栅场效应管,听起来挺复杂的,但别怕,我们就像喝杯茶一样轻松。
咱得知道,这东西也叫做MOSFET,名字一听就有点科技范儿,但其实它的工作原理就像是开关一样简单,懂吧?它可以让电流通过或者挡住电流,真是个神奇的小家伙。
想象一下,你在开关前摇摆,点了开关,灯亮了;点了关,灯灭了。
这就是MOSFET的基本功能,调节电流的流动。
它在电路里就像一个小管家,负责管理电流的进出,真是个细致入微的角色。
这个小管家可不简单哦,它能承受高电压,控制大电流,简直就是现代电子设备的得力助手。
无论是手机、电脑,还是你家里的冰箱,都少不了它的身影。
说到MOSFET,它分为增强型和耗尽型。
增强型就像是开车的老司机,只要给它点信号,它立马就能加速,不带犹豫。
它的栅极是绝缘的,所以即使外面再吵,它也能专注工作。
想象一下,一个专心致志的学生,周围再吵也不影响他写作业,真让人佩服。
而耗尽型就有点不一样,它一开始就能让电流流过,但你得给它点儿力气,才能让它继续工作。
这样一来,增强型就成了许多电路的首选,毕竟谁不喜欢那种随叫随到的感觉呢?增强型MOSFET的设计真是独具匠心,细腻得很。
它的输入阻抗高,这就意味着你只需要一小点儿电压,就能让它开始工作。
就像你在朋友聚会中说一句“来吧”,大家就都积极起来,气氛瞬间热闹。
为了实现这个神奇的效果,增强型MOSFET内部的结构设计可谓是精巧无比,各种材料和工艺都得精心挑选。
每一个细节都不容忽视,因为这关系到它的性能和稳定性。
增强型MOSFET在开关速度上也是杠杠的!你可以想象一下,电流在它身上流过时,那速度可比你在高峰期赶地铁快多了。
它几乎能在纳秒级别内切换,这让它在高频应用中大显身手,简直就是电子世界的“闪电侠”。
所以说,如果你想打造一个高效的电路,增强型MOSFET绝对是你不可或缺的好伙伴。
咱们再说说它的应用,增强型MOSFET的用途可广泛了。
在电源管理、电机驱动、开关电源等领域,它都是不可或缺的角色。
2.2场效应管功能及参数介绍开关电源的基本电路由“交流一直转换电路”, “开关型功率变换器”, “控制电路”和整流稳波电路”而组成.输入的电网电压通过“交流一直流转换电路”中的整流和稳器转换成直流电,该直流电源作为“开关型功率变换器”的输入电源,经过“开关型功率更换器”将直流电转变为高频脉冲电波电压输出给“整流滤波电路”,变成平滑直流供给负载,控制电路则起着控制“开关型功率变换器”工作的作用.开关型功率变换器是开关电源的主电路,开关电源的能量转换,电压变换就由它承担.在直流变换器的基础上,由于高频脉冲技术及开关变换技术的进一步发展,出现了推挽式开关型功率变换器,全挢式开关型功率变换器,半挢式﹑单端正激式.单端反激式开关型功率变换器.其控制方法可分为脉冲宽度调制(PWM)和脉冲频调制(PFM)两种.开关电源最重要的组件是MOSFET,它的开通和关短控制着整个电源运转.MOSFET原意是MOS(METAL OXIDE SEWILONDUCTOR,金属氧化物半导体)FET(FIELD DFFECT TRAHSISTOR,场效应晶体),即以金属层(M)的栅极隔着氧化层(0),利用电场的效应来控制半导体(S)的场效应晶体管.功率场应晶体管也分为结型绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semi Conductor FET),简称功率MOSFET(Power MOSPET).结型功率场效应晶体管一般称作静电感应晶体管(STATIC INTUCTION TRANSISTOR,缩写为SIT).其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,电流容量小,耐压低,一般只适用于功率不超过10KW的电力电子装置.国际整流器公司.(在International Rectifier,缩写IR)把MOSFET用于高压的器件归纳为第3,6,9代,其中包括3,5代,而用于低压的则为第5,7,8代.功率MOSFET按导电沟通可分P沟道和N沟道;按栅极电压幅值可分为耗尽型(当栅极电压为零时漏,源极之间就存在导电沟道)和增强型(对于N或P沟道器,件栅极电压大珪或小于零时才存在导电沟道,功率MOSFET主要是N沟道增强型).2.2.1.功率MOSFET的结构功率MOSPET的内部结构和电气符号如下周所示,其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管.导电机理与小功率MOS管相同,但结构上有极大区别.小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET.大大提高了MOSFET 器件的耐压和耐电流能力.按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET的结构为多元集.如国际整流器公司的HEXFET采用六边形单元;西门子公司的STPMOSFET采用了正方形单元;摩托罗拉公司的TMOS采用了矩形单元按“品”字形排列.2.2.2功率MOSFET的工作方式截止:漏极间加正电源,栅源极间电压为零.P基区与N漂移区之间形成的PN结,反偏;漏源极之间无电流流过.导电:在栅源极间加正电压Vgs,栅极是绝缘的,所以不会有栅极电流流过.但栅极的正电压会将其下P区中的空穴推开.,而将P区中的少子---电子吸引到栅极下面的P区表面.当Vgs大于UT(开启电压或阀值电压)时,栅极下面P区表面的电子浓度将超过空穴的浓度,P型半导体反型成N型而成为反型层,该反型层形成N沟道而PN结缩小消失,漏极和源极导电.2.2.3功率MOSFET的基本特性1.静态特性其转移特性和转出特性如图所示漏极电流Id和栅源间电压Vgs的关系为MOSFET的转移特性.Id较大时,Id与Vgs的关系近似线性 ,曲线的斜率定义为跨导Gfs.在恒流区内,N信道增强型MOSFET的Id可近似表示为:id=Ido(Vgs/VT-1)² (Vgs>VT)图2.3 场效应管的静态特性或取Ido是Vgs=2Vt时的id值MOSFET的漏极伏安特性(输出特性)与GTR的对应关系为:截止区对应于GTR的截止区;饱和区对应于GTR的放大区;非饱和区对应于GTR的饱和区.MOSFET工作在开关状态,即在截止区和非饱和区之间来回转换.MOSFET漏源极之间有寄生二极管,漏源极间加反向电压时器件导通.功率MOSFET的通态分数,对器件幷联时的均流有利.2.动态特性其测试电路和开关过程如下图所示,开遍延迟时间Td(on)指Vp前沿时刻到Vs等于Vt幷开始出Id的时刻间的时间段.上升时间Tr指Vgs上升到MOSFET进入非绝和区的栅压Vgsp的时间段.Id稳态值由漏级电源电压Ve和漏级负载电阻决定.Vgsp的大小和Id的稳态值有关.Vgs达到Vgsp后,在Vp作用下继续升高直至达到稳态,但Id已不变.开通时间ton指开通延迟时间与上升时间之和.关断延迟时间td(off)指Vp下降到零起,Cin通过Rs和Rg放电,Vgs按指数曲线下降到Vgsp时,Id开始减小为零的时间段.下降时间在指Vgs从Vgsp继续下降起,Id减小,到Vgs<Vt时沟道消失,Id下降到零为止时间段.关段时间 toff指关断延迟时间和下降时间之和.3.MOSFET的开关速度MOSFET的开关速度和Cin充放电有很大关系.使用者无法降低Cin,但可降低驱动电路内阻Ro,减小时间常数,加快开关速度.MOSFET只靠多子导电,不存在少子储存效应,因而关断过程非常迅速.它的开关时间在10~100ns之间,工作频率可迖100KHE以上,是主要电力电子器件中最高的. 场控器件静态时几乎不需输入电流.但在开关过程中需对输入电容充放电,仍需一定的驱动动率.开关频率越高,所需要的驱动功率越大.图2.4 场效应管的开关波形4.动态性能的改进在器件应用是除了要考虑器件的电压,电流,频率外,还必须牚握在应用中如何保护器件,不使器件在瞬志变化中受损害.晶间管是两个双极型晶体管的组合,又加上因大面积带来的大电容,所以,其dv/dt能力是较为脆弱的.对di/dt来说,它还存在一个导通区的扩展问题,所以也带来相当严格的限制.功率MOSFET的情况有很大的不同.它的dv/dt及di/dt的能力常以每纳秒的能力来估量.尽管如此,它也存在动态性能的限制,对于这些,我们可以以从功率MOSFET的基本结构予以理解.图2.5 功率MOSFET的等效电路如图2.5所示,除了考虑器件的每一部分存在电容以外,还必须考虑MOSFET还幷联着一个二极管,同时,从某个角度看,它还存在一个寄生晶体管(就像IGBT)也寄生着一个晶间管一样),这几个方面是研MOSFET动态特性很重要的因素.首先,MOSFET结构中所附带的寄生二极管具有一定的雪崩能力.通常用单次雪崩能力和重复雪崩能力来表迖.当反向di/dt很大时,二极管会承受一个速度非常快的脉冲尖制,它有可能进入雪崩区,一旦超越其雪崩能力就有可能将器件损坏.对于任一种PN结二极管来说,仔细研究其动态特性是相当复杂的.它们和我们一般理解PN结正向时导通而反向时阻断的简单概念很不相同.当电流迅速下降时,二极管有一阶段失去反向阻断能力,即所谓反向恢复时间.PN结要求迅速导通时,也会有一段时间幷不显示很低的电阻.在功率MOSFET中,一旦二极管有正向注入,所注入的少数载流子也会增加,是作务多子器件的MOSFET的复杂性.应在功率MOSFET的统计过程采取措施,使其中的寄生晶体管尽量不起作用.在不同代的功率MOSFET中所采取的措施有所不同,但总的原则是使漏极下的横向电阻Rb的值尽量小.因为,只有在漏极N区下的横向电阻流过足够电流,为这N区功力正偏的条件下,寄生的双极性晶阐管才开始发难.然而,在严峻的动态条件下,因dv/dt通过相应电容引起的横向电流可能足够小.此时,这个寄生的双极性晶体管就会启动,有可能给MOSFET带来损坏,所以,考虑瞬志性能时,对功率MOSFET器件内部的各个电容都必须予以注意.2.3.4 MOSFET的主要参数1.漏源击穿电压Udss:Udss通常为结温在25℃ ~150℃之间,对漏源极的击穿电压.该参数限制了MOSFET的最高工作电压,常用的MOSFET的Udss通常在1000V以下.尤其以500V及以下器件的各项性能最佳.需要注意的是,常用的MOSFET的漏源击穿电压具有正温度系数,因此在温度低于测试条件时,Udss会低于产品手册中给出的资料.2.漏极连续电流额定Id和漏极脉冲电流峰值Idm:这是标称电力MOSFET电流定额的参数,一般情况下,Idm是Id的2~4倍.工作温度对器件的漏极电流影响很大,生产厂商通常也会给出不同壳温下,允许的漏极连续电流变化情况.在计算实际器件参数时,必须考虑其损耗及散热情况得出壳温,由此核算器件的电流定额.通常在壳温为80~90℃时,器件可用的连续工作电流只有Tc=25℃时Id的60%~70%.3.漏源通态电阻Rds(on):该参数是栅源间施加一定电压(10~15V)时,漏源间的导通电阻,漏源通态电阻Rds(on)直接影响器件的通态降及损耗,通常对于额定电压低﹑电流大的器件,Rds(on)较小.此外, Rds(on)还与驱动电压及结温有关.增大驱动电压,可以减小Rds(on). Rds(on)具有正的温度系数随着结温的升高而增加,这一特性使MOSFET幷联运行较为容易.4.栅源电压Ugss:由于栅源之间的SiQ2绝缘层很薄,Ugs|>20V时将导致绝/缘层击穿.因此在焊接﹑驱动等方面必须注意.5.跨导Gfs:在规定的工作点下,MOSFET转移特性曲线的斜率称为该器件跨导,即Gfs=Did/dugs6.极间电容:MOSFET的三个电极之间分别存在极间电容Cgs﹑Cgd和Cds.,一般生产厂商提供的是漏源极短路时的输入电容Ciss﹑共源极输出电容Coss和反向转移电容Crss.它们之间的关系是:Ciss=Cgs+CgdCrss=CgdCoss=Cgd+Cds尽管MOSFET是用栅源间电压驱动的,阻抗很高,但由于存在输入电容Ciss,开关过程中驱动电路要对输入电容充放电.这样,用作高频开关时,驱动电路必须具有很低的内阻抗及一定的驱动电流能力.2.2.5米勒效应与米勒电容值和三极管一样,米勒效应和米电容值是MOSFET高频环路的一重要参数,在图下44中是一个简单的高频晶体管模型,图中产生一个负载电阻连接到输出,在这里我们确定电流增益,目的就是为了论证米勒效应.在输入结点a上,我们利用KCL电流环路,可以写出如下方程:Ii=jwCgsVgs+jwCgd(Vgs-Vds) ①在这里Ii是输入电流,类似地在输出结点b上的点输出电流为:Vds/RL+gmVgs+jwCgd(Vds-Vgs)=0 ②我们可以联立①②消去Vds,输入电流可以为:Ii=jw{Cgs+Cgd[1+gmRL/1+jwRLCgd]}Vgs ③一般情况下,(wRLCgd)远比1小,因此我们可以忽略jwRLCgd,因此③方程可以写为:Ii=jw[Cgs+Cgd(1+gmRL)]Vgs ④而由我们以前关于米勒电容的描述方程,参数Cm,即米勒电容值可表示如下:Cm=Cgd(1+gmRL).在方程⑤中可以清楚地表明附加D极迭加电容的等效容值,当晶体管被偏置在饱和区时,作为放大电路中,总的Cgd电容值主要是迭加电容,由于米勒效应迭加电容会翻倍,并且在一个限定的放大宽带里会变成一个有意义的参数,追求小的迭加电容是其结构的又一挑战.MOSFET的关断频率ft被定义为在电流增益为1时的频率,或是输入电流Ii的幅值等于理想负载电流Id,即Ii=jw(Cgs+Cm)Vgs;理想负载电流:Id=gmVgs ⑥因此电流幅度的增益为:∣Ai∣=∣Id∣/∣Ii∣∣Ai∣=∣Id∣/∣Ii∣=gm/2πf(Cgs+Cm) ⑦∣Ai∣=1,我们可以得到关断频率Ft=gm/2π (Cgs+Cm) = gm/2πCG在这里CG是一个输入g极电容的等效值.2.2.6 MOSFET的驱动驱动电路是电力电子主电路与控制电路之间的接口,是实现主电路中电力电子器件按照预定的设想运行的重要环节.采用性能良好驱动电路,可以使电力电子器件工作在较为理想的开关状态,缩短开关时间,减小开关损耗.此外,对器件或整个装置的一些保护措施也往往设在驱动电路中,或通过驱动电路实现,因此驱动电路对装置的运行效率﹑可靠性和安全性都有重要的影响.驱动电路的基本任务是将控制电路发出的信号转换为加在电力电子器件控制端和公共端之间﹑可以使其开通或关断的信号.同时驱动电路通常还具有电气隔离及电力电子器件的保护等功能.电气隔离是实现主电路间电量的隔离,在含有多个开关器件的电路中,电气隔离通常是保证电路正常工作的必要环节,同时电气隔离可以减少主电路开关噪声对控制电路的影响,幷提高控制电路的安全性.电气隔离一般采用光隔离(如光耦合器)或磁隔离(如脉冲变压器)来实现.MOSFET为电压驱动型器件,其静态输入电阻很大,所以需要的驱动功率较小.但由于栅源间﹑栅射间存在输入电容,当器高频通断时,电容频繁充放电,为快速建立驱动电压,要求驱动电路输出电阻小,且具有一定的驱动功率.MOSFET开通的栅源极间驱动电压一般取10~15V,在器件关断时,对器件施加反向电压可减小关断时间,保证器件可靠关断,反向电压一般为0~15V.此外,在栅极驱动回路中,通常需串入一个低值电阻(数欧至数十欧),以减小寄生振荡,该电阻阻值应随被驱动器件电流额定值的增大而减小.2.2.7 MOSFET的栅极驱动电流和驱动电阻的算法在MOSFET的驱动中,它不像双晶体一样,要使用精确的逆向电流才能使晶体管关闭,这是由于MOSFET为多数载流子的半导体,因此只要将栅极额到源极电压移去,就可将MOSFET关闭.移去栅极电压时,这时漏源之间会呈现很高的阻抗,因而除了漏电流外,可抑制其它电流的产生.MOSFET的直流输入阻抗是非常高的.在Vgs等与10V时,其栅极电流只是毫安级的.因此一旦栅极被驱动起来,在Vgs等与10V时,这个电流可以被忽略.然而,在栅-源极间有一个相当大的电容值,这就需要一个相对大的电流值,使栅极至源极电压脉冲波必须传输足够的电流,在期望的时间内,给输入电容器充电, 假如Vgs等与10V时来驱动栅极的开关来控制漏极电流的开关速率,在这里栅极驱动电流值一定要被精确算出来.在图2.6中,在Vgs等与10V时,Ig由两部分I1和I2组成,包括两个电容C1何C2.其中是栅极到源极的的结电容,可用Ciss来表示,C2是栅极到漏极的结电容,可用Crss来表示.对于在开通时间Tr,栅-源电压为10V时,栅极所需的驱动电流I1为图2.6 场效应管的工作电路然而,当驱动电流达到10V时,漏极的开关电压是从Vdc到Vgs之间的变动,有时会被带的更低.由于在此期间C2最高变动电压为Vdc,最低变动为10V.所以在此期间其所需的驱动电流I2为此外,驱动电压源阻抗Rg必须很低,目的就是为了实现晶体管的高速开关作用,这里我们有下面一个简略的公式可以大体算出2.2.8 MOSFET栅极驱动的优化设计MOS管的驱动对于MOS管的工作效果起着决定性的作用.我们往往既要考虑减少开关损耗,又要求驱动波形较好,即振荡小.过冲小,EMI 小,这往往是立相矛盾的;需要寻求一个平衡点即驱动电路的优化设计.优化驱动电路设计包含两个部分,一是最优化的驱动电流,电压的波形,二是最优化的驱动电压,电流的大小.在驱动电路优化设计之前我们必须先清楚MOS管的模型,MOS管的开关过程,MOS[管的栅极电荷以及MOS管有的输入输出电荷,跨越电荷,等效电荷等参数对驱动的影响.(1)MOS管的模型MOS管的等效电路模型及寄生参数如下图所示.其中LP和R9代表封装端到实际的栅极间线路的电感和电阻.C1代表从栅极到源端N4间的电阻,它的值是由结构因的.C2+C4代表从栅极到源P区间的电容,C2是电介质电容,其值是因定的,而C4由源极到漏极的耗尽区的大小决定,幷随栅极电压的大小而改变.当栅极电压从0升到Vgs(th)时,C4使整个栅极源电容增加10%~15%.C3+C5也是由一个固定大小的电介质电容和一个可变电容构成,当漏极电压改变极性时,其可变电容变得相当大.C6也是随漏极电压变换的漏涛电容.MOS管的输入ˋ输出电容ˋ跨越电容和栅源电容,栅漏电容,漏源电容间的关系如下:Ciss=Cgs+Cgd~C1+C4+C5;(Crss=Cgd~C5)Coss=Cds+Cgd~C5+C6(2)MOS管的开通过程开关管的开关模式电路如下所示,二极管可以是外接的或MOS管已有的,.开关管在开通时的二极管电压,电流波形如下图所示.在图中阶段1.开关管关断,开关电流为零,此时二极管电流和电感电流相等;在阶段2开关打开,开关电流上升,同时二极管电流下降.开关电流上升的斜率和二极管电流下降的斜率的绝对值相同,符号相反;在阶段3开关电流继续上升,二极管电流继续下降,幷且二极管从负的反向最大电流Irrm开始减小,开关管的从正的最大电流也开始减小,它们斜率的绝对值相等;在阶段5开关管完全开通,二极管的反向恢复完成.开关管电流等于电感电流.下图二是存储电荷高或低的两种二极管电流,电压波形.从图中我们可以看出存储电荷少,即在空载或轻载时是最坏条件.所以我们优化驱动电路设计时应着直考虑前置电流低的情况,即空载或轻载的情况,应使这时二极管产生的振动在可接受范围内.(3)栅极电荷Qg和驱动效果的关系栅极电荷Qg是使栅极电压0从升到10v所需的栅极电荷,它可以表示为驱动电流X开通时间或栅极电容X栅极电压.现在大部分MOS 管的栅极电荷Qg值从几十nC到一二百nC.栅极电荷Qg包括栅极到源极电荷Qgs和栅极到漏极电荷,Qgd,即密勒电荷.Qgs是使栅极电从0升到门限值(约3v)所需电荷;Qgd是漏极电压下降时克服密勒效应所需电荷.这存在于Vgs,曲线比较平坦的第二段(如图一所示),此时栅极电压不变,栅极电荷积聚而漏极电压急剧下降,也就是在这时候需要驱动尖峰电流限制,这由苾片内部完成或外接电阻完成.实际的Qg还可以略大,以减小等效Ron,但是太大也不益,所以10v到12v的驱动电压是比较合理的.这还包含一个重要的事实:需要一个高的尖峰电流以减小MOS管损耗和转换时间.重要的是,对于IC来说,MOS管的平均电容负荷幷不是MOS管的输入电容Ciss,而是等效输入电容Ceff:Ceff=Qg/Vgs,即整个0<Vgs<Vgs(th)的等效电容,而Ciss只是Vgs=0时的等效电容.漏极电流大Qg波形的Qgd阶段出现,此时漏极电压依然很高,MOS管的损耗此时最大,幷随Vds的减小而减小.Qgd的大部分用来减小Vds 从关断电压到Vgs(th)产生的密勒效应.Qg波形第三段的等效负载电容是: Ceff=[Qg-(Qgd+Qgs)]/[10v-Vgs(th)](4)优化栅极驱动设计在大多数的开关功率应用电路中,当栅极被驱动,开关导通时漏极电流上升的速度是漏极电压下降速度的几倍,这将造成功率损耗增加.为了解决问题,我们可以增加栅极驱动电流,但增加栅极驱动电流上升斜率又将带来过冲.振荡EMI等问题.为了优化栅极驱动设计,这些互相矛盾的要求必须寻求一个平衡点,而这个平稀点就是开关导通蛙漏极电流上升的速度和漏极电压下降速度相等这样一种波形,理想的驱动波形如下图所示:图中的Vgs波形包括了这样几部分:Vgs第一段是快速上升到门限电压;Vgs第二段是比较缓的上升速度以减慢漏极电流折上升速度,但此时的Vgs也必须满足所需的漏极电流值;Vgs第四段快速上升使漏极电压快速下降;Vgs第五段是充电到最后的值.当然,要得到完全一样的驱动波形是很困难的,但是可以得到一个大概的驱动电流波形,其上升时间等于理想的漏电压下降时间或漏极电流上的时间,幷且具有足够的尖峰值来充电开关期间的较大等效电容.该栅极尖峰电流Ip的计算是:电荷必须完全满足开关时期的寄生电容所需,即Qg=Ip*ton/2 而Qg=Ciss[2.5Vgs(th)+Id/Gm]+Crss(Vdd-Vgs(th))其中ton=tn+td+tr 所以Ip=2/ton Ciss[2.5Vgs(th)+Id/Gm]+Crss[Vdd-Vgs(th)]2.2.9.MOS上的热耗计算半导体的失效率通过多年的测试才能更好的估计出与温度之间的关系,在这里重现出内部的图面,如下所示:这是一幅从统计学上预计了NPN硅晶体管的特性,它也表明了一般大多数电子元器件随温度上升的快速增长失效率.特别是在高温下,其作用十分明显.如一个晶体管在180度时的寿命只有在25度时的1/20,或者可以说有20倍的失效率.图2.7 半导体内部的图面明显的,当有更多的类型的元器件导入到电源中时,其失效率就对高温更加的敏感.因此,对一个电源来讲,必须考虑它的温升,在组件的选用时更是如此.因此在这里考虑MOS的温升是十分有必要的.(1)在MOS上的热量分析(与电路中的电流相当)明显,根部是管中最热的地方,由左向右传递,最后到达散热器中,这个散热器与空气环境相连.存在一个热传导器与散热器相连.其传导率Q由Fourier定理来求:Q=(A*Td)/(L*Rθ)在此,Q为热率, Td为两部分的温度差,A为穿过部分的面积,L为传导长度也即传导宽度. Rθ为结与空气间的热阻.A和L是物理数据,在此可以近似的表示为:QαTd/Rd 与 I=V/R 相似的但这一公式只适用于一般的固体热传导.若是用热管来传导,将有一个不是线性的热阻,则就不遵循这一平衡.而在热传导不好的金属中,在一般的晶体温度下各种随温度的热阻是微不足道的,可以把其忽略.(2)热阻Rθ(相当于电路中的电阻)任以以上为例,假定消耗了10J/S(Q=10W),热量也跟着消耗(在此相对于10A电流)将加重内部的温差Td, 在热阻上相应的就有热量发出.当一稳态被建立,在内部的温度可能被聚集起来由于温度的上升和热阻的散热.在本例中,是由边缘的表面与空气交换温度.内部温度恒定,其它形式的温度在内部能通过由右到左集累.如图,可见其关系式图2.8 热阻等效由上图可见,可以认为有三个热阻Rjc,Rch,Rha.其中从右至左, Rha是最重要的,因它在其中是最大的.它指由边缘传热到空气中的热阻值.第二个Rch指有一个来自边缘通过云母绝热片,到达MOS的表壳.而最后一个Rjc是指壳到内部结点的热阻.为方便,可以认为每一部分的热阻都是独立的,在内部开始交换.这样,等同于电路中的电阻,则有其整个的热阻为Rθ= Rjc+Rch+Rha.可以用这个来衡量由结点到空气的总的温度差.用公式表示为:T=Q*Rθ (其中的T为温升, Q为结点上的消耗.)(3)结温的计算由以上可见,因损耗机易被知道,MOS的结温很容易就被建立.而在实际中,开关模式中的损耗是机难建立的,由于这样的因素,我们必须建立热模型,通过测俩不同的温度下穿过内部已知热阻的热量来算.温差可以由每秒中结上产生的热量和热阻来定义.由前图给出,已知热率和温差.对每一个热器件,可以用下式表示:△T=Wj* Rθ (其中△T为温差, Wj为结上的损耗)不同内部的温度可以用下式表示:热器表面温度Th:Th=( Wj* Rha)+Tamb (其中的Tamb为空气温度)MOS表面的温度:Tds=[ Wj*( Rch+Rha)]+ Tamb结温度是整个穿过组件的温度,包括环境温度:Tj=[ Wj*( Rjc+Rch+Rha)]+ Tamb由以上可知,如果在结上的能耗和热阻到热器或者散热器上的损耗已知,那幺这个结和内部的温度就可以被清楚计算,若果散热器上的温度被测量出来和热阻已知的情况下,结温损耗也就可以知道了.。
场效应管的静态工作点
场效应管的静态工作点是指在场效应管输入端施加一定的电压和电流,使其处于一个特定的工作状态。
这个工作状态通常是在其转移特性曲线的线性区域内,以保证场效应管能够正常地进行放大或开关操作。
在电子线路中,静态工作点是一个非常重要的概念,因为它决定了放大器或开关的性能和稳定性。
对于放大器来说,合适的静态工作点可以确保输出信号的失真最小,并且能够跟随输入信号的变化。
对于开关来说,合适的静态工作点可以确保其能够快速、准确地开启和关闭,从而控制电流的通断。
场效应管的静态工作点示例:
1.在音频放大器中,场效应管通常需要设置合适的静态工作点,以确保音频
信号能够被线性放大并输出。
2.在开关电源中,场效应管用于控制电源的通断和调整输出电压的大小。
静
态工作点的设置可以确保场效应管在导通和截止状态之间快速、稳定地切换。
总结:场效应管的静态工作点是指在场效应管输入端施加一定的电压和电流,使其处于一个特定的工作状态。
这个工作状态通常是在其转移特性曲线的线性区域内,以保证场效应管能够正常地进行放大或开关操作。
静态工作点的选择对于电子线路的性能和稳定性至关重要。
在实际应用中,需要根据具体的应用场景和要求来选择和调整场效应管的静态工作点。
三极管和场效应管应用场景三极管和场效应管作为主要的电子器件,广泛应用于各个领域。
下面将分别介绍三极管和场效应管的应用场景。
三极管是一种具有放大作用的电子元件,常用于电子放大器、开关电路和逻辑电路等方面。
在电子放大器中,三极管可以将微小的输入信号放大成更大的输出信号,用于电视、汽车音响、收音机等电子产品中,提供高质量的音频放大效果。
在开关电路中,三极管可以实现电路的开关控制,常常被应用于计算机内存存取和逻辑控制等方面。
此外,三极管还可以用于构建逻辑电路,将二进制的高低电平转化为逻辑推理的过程,用于计算机和电子器件。
场效应管也是一种常用的电子器件,主要应用于放大器、开关电路和数模转换器等领域。
在放大器中,场效应管可实现较高功率的信号放大,应用于音频功率放大器、射频功率放大器等方面,提供强大的信号放大能力。
在开关电路中,场效应管可实现高速的电路开关,用于高频开关电源、逆变器和驱动电机等方面。
在数模转换器中,场效应管可以将模拟信号转换成数字信号,实现模数转换器和数模转换器的功能,用于音频采样、传感器信号处理等方面。
总的来说,三极管和场效应管的应用场景非常广泛。
它们在电子放大器、开关控制和电路逻辑等方面发挥着重要作用。
无论是在消费电子产品中,还是在工业控制和通信领域,三极管和场效应管都扮演着不可或缺的角色。
因此,学习和掌握三极管和场效应管的原理和应用,对于电子工程师和电子爱好者来说都具有重要的指导意义。
只有深入理解它们的特性和应用场景,才能更好地设计和实现各种电子电路,提高电子产品的性能和功能。
mos管在电源电路中的作用【导语】电源电路作为电子设备中非常重要的一部分,承担着为电子设备提供稳定、可靠电源的功能。
而MOS管(MOSFET)作为电源电路中的关键元件之一,具有独特的特性和广泛的应用。
本文将从简单介绍MOS管的基本原理开始,逐步展开对MOS管在电源电路中的作用进行深入探讨,从而帮助读者全面了解该主题。
【正文】一、MOS管的基本原理MOS管全称金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor),它是一种半导体器件,借助电场效应来控制电流。
基本结构由金属门极、氧化物绝缘层和半导体基片组成。
其核心原理是通过变化门极电场来控制漏极和源极之间电流的通断,从而实现对电流的控制。
二、MOS管的工作模式MOS管根据工作模式的不同可分为三种类型:开关型,线性型和饱和型。
开关型MOS管用于电路开关控制,能够在两个极端状态之间进行快速切换,具有低电流损耗和高开关速度的优点。
线性型MOS管则用于对信号进行放大和处理,具有较高的输入电阻和输出电阻。
而饱和型MOS管结合了开关型和线性型的特点,适用于对电流要求较高的应用场景。
三、MOS管在电源电路中的作用1.开关电源中的应用MOS管在开关电源中扮演着重要的角色。
开关电源以其高效、稳定的特性而广泛应用,在电脑、通信设备等领域得到了大规模的应用。
MOS管作为开关电源中的关键元件,能够实现快速、稳定的开关和调节功能,帮助实现输出电压的调节和稳定性的保证。
2.直流-直流转换器中的应用直流-直流转换器(DC-DC Converter)也是电源电路中的重要组成部分。
MOS管在DC-DC Converter中常常用于功率开关和能量转换,通过控制MOS管的导通与截止,实现输入电压与输出电压的转换。
MOS管能够高效地将电能从输入端传送到输出端,帮助实现电能的转化与传输,在电源电路中发挥着至关重要的作用。
IFRP460场效应管参数1. 什么是场效应管(FET)?场效应管(Field Effect Transistor,简称FET)是一种主要用于放大和开关信号的半导体器件。
它是由金属电极、源极、漏极和栅极组成的。
栅极通过电场控制漏极到源极的电流,因此也被称为“场效应”。
2. IFRP460场效应管概述IFRP460是一种N沟道MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor),具有高频高功率特性,广泛应用于无线通信、音频放大器和开关电源等领域。
2.1 结构IFRP460由源极、漏极和栅极组成。
其中,源极是与N型半导体连接的引线,漏极是与P型半导体连接的引线,而栅极则通过氧化物绝缘层与P型半导体隔离。
2.2 工作原理IFRP460工作时,通过在栅极上施加正向偏置电压,形成一个电场。
当输入信号施加在栅极上时,该电场会调整漏极到源极之间的通道阻抗,并控制电流的流动。
栅极电压的变化将导致漏极到源极之间的电流变化,从而实现信号放大或开关操作。
3. IFRP460参数3.1 最大额定值•额定电压(Vds):100V•额定电流(Id):21A•额定功率(Pd):160W•栅极阈值电压(Vgs(th)):2V•最大漏极-源极导通电阻(Rds(on)max):0.055Ω3.2 常用参数•最大漏极电流(Id(max)):21A•漏极静态反向传导(Igss):±100nA•栅极静态反向传导(Idss):±10μA•栅源耦合系数(Ciss):1800pF•漏源耦合系数(Crss):40pF3.3 动态参数•输入电容(Ciss):1800pF•输出电容(Coss):280pF•反向传输比例(Crss/Coss):0.0144. IFRP460典型特性曲线IFRP460的典型特性曲线可以帮助我们了解其在不同工作条件下的性能。
4.1 静态特性曲线静态特性曲线显示了漏源极电流(Id)与漏源极电压(Vds)之间的关系,以及栅源极电压(Vgs)对漏源极电流的影响。
场效应管在开关电源中的作用
场效应管(Field Effect Transistor,简称FET)在开关电源中具有重要作用。
开关电源是一种将直流电转换为高频脉冲的装置,用于驱动各种电子设备。
而场效应管作为一种重要的功率开关元件,能够在开关电源中实现高效率、高速度的开关操作。
我们来了解一下场效应管的基本结构和工作原理。
场效应管由源极、栅极和漏极组成。
栅极与源极之间的电压可以控制漏极电流的大小。
其工作原理是通过控制栅极电压,改变栅极与漏极之间的电场强度,从而改变电流的通断状态。
在开关电源中,场效应管承担着两个重要的功能:开关功能和功率放大功能。
首先是开关功能。
开关电源需要将输入的直流电源通过开关操作,转换为高频脉冲输出。
场效应管作为开关元件,能够在很短的时间内实现通断操作,将输入电源切换为高频脉冲输出。
这种高速开关操作可以实现高效率的能量转换,减少能量损耗,提高电源的效率。
其次是功率放大功能。
在开关电源中,输入电压一般是低电平的直流电源,需要经过放大操作,转换为高电平的高频脉冲。
场效应管具有很高的电流放大倍数,可以将输入信号放大到足够的幅度,以驱动负载电路。
这种功率放大功能可以保证开关电源输出的能量足够大,能够满足各种电子设备的工作要求。
场效应管还具有以下几个优点,使其在开关电源中得到广泛应用:
首先是导通电阻小。
场效应管的导通电阻远远小于普通的开关管,可以实现更低的功耗和更高的效率。
其次是响应速度快。
场效应管的开关速度非常快,能够在纳秒甚至皮秒级别内完成通断操作,适用于高频开关电源的需求。
场效应管还具有体积小、重量轻、寿命长等优点,方便集成和使用。
然而,场效应管在开关电源中也存在一些问题。
首先是静态功耗较大。
由于场效应管的导通电阻不为零,会产生一定的静态功耗,导致效率下降。
其次是导通压降较大。
场效应管的导通电阻对应的电压降较大,会产生一定的功耗。
此外,场效应管还对栅极电压有一定的要求,需要外部电路进行控制,增加了设计和调试的复杂度。
场效应管在开关电源中具有重要作用。
通过其高速的开关功能和功率放大功能,可以实现高效率、高速度的能量转换和信号放大。
虽然场效应管存在一些问题,但其优点远大于缺点,在开关电源中得到了广泛应用。
随着技术的进步和发展,场效应管的性能将会不断提升,为开关电源的发展提供更加可靠和高效的解决方案。