八年级上期中考试数学试题含答案
- 格式:docx
- 大小:470.82 KB
- 文档页数:7
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,不是轴对称图形的是()A .B .C .D .2.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是()A .1B .2C .3D .83.下面的多边形中,内角和与外角和相等的是()A .B .C .D .4.在ABC 中,若一个内角等于另外两个角的差,则()A .必有一个角等于30°B .必有一个角等于45︒C .必有一个角等于60︒D .必有一个角等于90︒5.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为()A .2a +2b -2cB .2a +2bC .2cD .06.如图,已知MB ND =,MBA NDC ∠=∠,添加下列条件仍不能判定ABM CDN ≌的是A .M N ∠=∠B .AM CN =C .AB CD =D .//AM CN7.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是()A .15°B .30°C .45°D .60°8.如图,2AB =,6BC AE ==,7CE CF ==,8BF =,则四边形ABDE 与CDF 面积的比值是()A .1B .34C .23D .129.如图所示,在ABC 中,5AB AC ==,F 是BC 边上任意一一点,过F 作FD AB ⊥于D ,FE AC ⊥于E ,若10ABC S =△,则FE FD +=()A .2B .4C .6D .810.如图,在ABC △中,AD BC ⊥于D ,且AD BC =,以AB 为底边作等腰直角三角形ABE ,连接ED 、EC ,延长CE 交AD 于点F ,下列结论:①ADE BCE △△≌;②BD DF AD +=;③CE DE ⊥;④BDE ACE S S =△△,其中正确的有()A .①②B .①③C .①②③D .①②③④11.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长是()A .13cmB .16cmC .19cmD .22cm12.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别是D ,E ,AD ,CE 交于点H .已知4EH EB ==,6AE =,则CH 的长为()A .1B .2C .35D .53二、填空题13.如图,ABC 与A B C '''V 关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.14.把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=︒,90C ∠=︒,45A ∠=︒,30A ∠=︒,则12∠+∠=______.15.如图,在△ABC 中,DE 是AC 的垂直平分线,△ABC 的周长为19cm ,△ABD 的周长为13cm ,则AE 的长为______.16.设三角形的三个内角分别为α、β、γ,且a βγ≥≥,2αγ=,则β的最大值与最小值的和是___.三、解答题17.尺规作图,保留作图痕迹,不写作法.(1)作△ABC 中∠B 的平分线;(2)作△ABC 边BC 上的高.18.如图所示,在平面直角坐标系中,ABC △的三个顶点的坐标分别为()3,2A -,()1,3B -,()2,1C .(1)在图中作出与ABC △关于x 轴对称的111A B C △;(2)点1A 的坐标是______,ABC S =。
人教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.下列图形具有稳定性的是()A .六边形B .五边形C .平行四边形D .等腰三角形3.下列图形中,对称轴最多的是()A .等边三角形B .矩形C .正方形D .圆4.点M(3,-2)关于x 轴对称的对称点的坐标是()A .(-3,2)B .(3,2)C .(-3,-2)D .(2,3)5.能把一个三角形分成两个面积相等的三角形是三角形的()A .中线B .高线C .角平分线D .以上都不对6.如果三角形的两边长分别为3和5,则第三边L 的取值范围是()A .2<L<15B .L<8C .2<L<8D .10<L<167.已知:△ABC ≌△DEF ,AB=DE,∠A=70°,∠E=30°,则∠F 的度数为()A .80°B .70°C .30°D .100°8.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A .PQ≤5B .PQ<5C .PQ≥5D .PQ>59.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为()A .72°B .36°C .60°D .82°10.在ABC ∆中,已知::1:2:3A B C ∠∠∠=,则三角形的形状是()A .钝角三角形B .直角三角形C .锐角三角形D .无法确定11.一个正多边形的每个外角都等于60°,那么它是()A .正十二边形B .正十边形C .正八边形D .正六边形12.如图,已知AB⊥BC,BC⊥CD,AB=DC,可以判定△ABC≌△DCB,判定的根据是()A.HL B.ASA C.SAS D.AAS二、填空题13.等边三角形的每个内角都是____°.14.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是______.15.已知一个三角形的三边长a、b、c,满足(a-b)2+|b-c|=0,则这个三角形是____三角形. 16.若n边形的内角和是它的外角和的2倍,则n=_______.17.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为__________2cm.18.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是____________.三、解答题19.求出图形中x的值.20.在△ABC中,已知∠A=30°,∠B=2∠C,求∠B和∠C的度数.21.尺规作图:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)22.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .23.已知,,a b c 为ABC ∆的三边长,且222222222a b c ab ac bc ++=++,试判断ABC ∆的形状,并说明理由.24.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.25.数学中的对称美、统一美、和谐美随处可见,在数的运算中就有一些有趣的对称形式.(1)我们发现:12=1,112=121,1112=12321,11112=1234321,…请你根据发现的规律,接下去再写两个等式;(2)对称的等式:12×231=132×21.仿照这一形式,完成下面的等式,并进行验算:12×462=_______,18×891=_______.26.如图,在△ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,①求证:△ADC ≌△CEB .②求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图2的位置时,判断ADC ∆和CEB ∆的关系,并说明理由.参考答案1.A 【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合.故选A .考点:轴对称图形.2.D 【分析】根据三角形的稳定性判断即可.【详解】六边形、五边形、平行四边形都不具有稳定性;等腰三角形是三角形的一种,所以它具有稳定性.【点睛】本题考查了三角形的稳定性.在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.3.D【解析】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.4.B【分析】根据平面直角坐标系内关于x轴对称:纵坐标互为相反数,横坐标不变可以直接写出答案.【详解】点M(3,-2)关于x轴对称的对称点的坐标是(3,2).故答案为:B.【点睛】本题主要考查了关于x轴对称点的坐标特点,关键是掌握点的变化规律.5.A【分析】根据等底等高的两个三角形的面积相等解答.【详解】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点睛】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键. 6.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,即可求得第三边的取值范围.由三角形三边关系定理及其推论得:5-3<L<5+3,即2<L<8.故答案为:C.【点睛】此题考查了三角形的三边关系,能正确运用三角形的三边关系是解此题的关键.7.A【分析】根据全等三角形对应角相等求出∠D=∠A,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.8.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解9.A【解析】试题分析:∵AB=AC,∠A=36°,∴∠ABC=∠C=1801803622A︒-∠︒-︒==72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.10.B【分析】设∠A=x,∠B=2x,∠C=3x,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【详解】解:∵::1:2:3A B C∠∠∠=设∠A=x,∠B=2x,∠C=3x.则x+2x+3x=180°,解得x=30°,∴∠A=30°,∠B=60°,∠C=90°,所以这个三角形是直角三角形.故选:B.【点睛】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.11.D【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数.【详解】该正多边形的边数为360°÷60°=6.【点睛】本题考查了多边形外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.C 【分析】根据垂直定义推出90ABC DCB ∠=∠=°,AB=DC ,CB BC =,根据SAS 推出ABC DCB ≌.【详解】∵AB ⊥BC ,BC ⊥CD ∴∠ABC=∠DCB=90°又∵AB=DC ,BC=CB ∴△ABC ≌△DCB (SAS )故答案为:C.【点睛】本题考查了对全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS ASA AAS SSS ,,,.13.60°.【解析】试题分析:等边三角形三个角相等,而三角形内角和为180°,可得结果.试题解析:∵等边三角形三个角相等,又三角形内角和为180°,设等边三角形的每个内角的大小均是x ,则3x=180°,解得:x=60°.考点:1.三角形内角和定理;2.三角形.14.(-2,3)【解析】点P(2,3),点A 与点P 关于y 轴对称,则点A 的坐标是(−2,3),故答案为(−2,3).15.等边【分析】根据任意一个数的绝对值都是非负数和偶次方具有非负性可得:00a b b c -=-=,,再根据三角形的判断方法即可知道该三角形的形状.【详解】∵(a-b)2+|b-c|=0∴(a-b)2=0,|b-c|=0∴a=b ,b=c ∴a=b=c∴这个三角形是等边三角形.【点睛】本题考查了任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0、偶次方的非负性以及等边三角形的判定.16.6【详解】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617.8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.18.2【分析】根据题意,画出图形,由轴对称的性质即可解答.【详解】根据轴对称的性质可知,台球走过的路径为:∴该球最后将落入的球袋是2号袋.故答案为2.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.19.x=60.【解析】试题分析:根据三角形的外角和定理列出等式,即可求得x 的值.试题解析:解:x+70=x+10+x ,∴x=60.考点:三角形的外角和定理.20.∠B=100°,∠C=50°.【分析】根据三角形的内角和等于180°列式求出∠C ,再求解即可得到∠B .【详解】∵2B C ∠=∠,180A B C ∠+∠+∠=°,∴2180A C C ∠+∠+∠=°,即303180C ︒+∠=°,解得:50C ∠=°,∴2250100B C ∠=∠=⨯︒=°.答:∠B 等于100°,∠C 等于50°【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理列出并整理成关于∠C的方程是解题的关键.21.答案见解析.【分析】作的平分线交直线MN于P点.【详解】解:根据题意,如图,作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,则点P 即为所求.22.证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.△ABC是等边三角形,理由见解析【分析】先根据完全平方公式进行变形,求出a=b=c,即可得出答案.【详解】解:△ABC是等边三角形.证明如下:∵2a2+2b2+2c2=2ab+2ac+2bc,∴2a2+2b2+2c2-2ab-2ac-2bc=0,∴a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴(a-b)2=0,(a-c)2=0,(b-c)2=0,∴a=b且a=c且b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和完全平方公式、因式分解,能根据完全平方公式得出(a-b)2+(a-c)2+(b-c)2=0是解此题的关键.24.DE=2cm【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【详解】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC =12AB•DE+12AC•DF=28,即12×20×DE+12×8×DF=28,解得DE=2cm.【点睛】全等三角形的判定与性质;三角形的面积;角平分线的性质.25.(1)111112=1234543211111112=12345654321;(2)264×21;198×81.【分析】(1)分别观察112,1112,11112,…,得出结果的一般规律,再根据一般规律求值.(2)根据给出的题例,即把每一个因数各个数位上的数字反过来写,乘积仍相等.【详解】(1)由12=1,112=121,1112=12321,11112=1234321,可知,这类数平方的结果为“回文数”,即从1开始按连续整数依次增大到最大,再逐渐减小到1,其中,最大的数字为等式左边1的个数,所以接下来的等式是:111112=123454321,1111112=12345654321.(2)124625544264215544⨯=⨯=, ,1246226421∴⨯=⨯1889116038⨯=,1988116038⨯=1889119881∴⨯=⨯【点睛】本题考查了有理数的概念与运算.关键是由易到难,由特殊到一般,找出这类数的平方的规律.26.(1)①见解析;②见解析;(2)△ADC ≌△CEB ;理由见解析【分析】(1)①要证△ADC ≌△CEB ,已知一直角∠ADC=∠CEB=90°和一边AC=CB 对应相等,由题意根据同角的余角相等,可得另一内角∠ECB=∠DAC ,再由AAS 即可判定;②由①得出AD=CE ,BE=CD ,而DE=CD+CE ,故DE=AD+BE ;(2)同理,根据上一小题的解题思路,易得△ADC ≌△CEB.【详解】(1)①∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DAC ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )②∵△ADC ≌△CEB∴AD=CE ,BE=CD又∵DE=CD+CE∴DE=AD+BE(2)△ADC ≌△CEB ;∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DACADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )【点睛】此题主要考查三角形全等的判定,熟练掌握,即可解题.。
人教版八年级上册数学期中考试试题一、单选题1.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是()A .B .C .D .2.下面各组线段中,能组成三角形的是()A .6,9,14B .8,8,16C .10,5,4D .5,11,63.一个多边形的每个内角均为135°,则这个多边形是()A .五边形B .六边形C .七边形D .八边形4.如图,ABC 中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120∠=︒BEC ;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有()A .①②B .①③C .②③D .①②③5.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A .①B .②C .③D .①和②6.如图,在 ACE 中,点D 在AC 边上,点B 在CE 延长线上,连接BD ,若∠A =47°,∠B =55°,∠C =43°,则∠DFE 的度数是()A.125°B.45°C.135°D.145°7.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合。
其中正确的是()A.①②B.②③C.③④D.①④8.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12B.15C.12或15D.189.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是()A.10B.15C.20D.3010.已知:如图,FD∥BE,则()A.∠1+∠2-∠A=180°B.∠2+∠A-∠1=180°C.∠A+∠1-∠2=180°D.∠1-∠2+∠A=180°二、填空题11.如图,在△ABC中,BE和AD分别是边AC和BC上的中线,则△AEF和四边形EFDC 的面积之比为_____.12.赵师傅在做完门框后,为防止变形,如图中所示的那样在门上钉上两条斜拉的木条(即图中的AB ,CD ),这其中的数学原理是__________.13.若一个多边形的内角和为1800°,则这个多边形______边形.14.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是________.15.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.16.如图,线段AC ,BD 相交于点E ,EB CE =,要使ABE DCE △≌△,只需增加的一个条件是________.(只要填出一个即可)17.如图,在ABC 中,AD BC ⊥于点D ,AE 平分BAC ∠,若30BAE ∠=︒,20CAD ∠=︒,则B ∠=______.18.如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连结DE ,动点P 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动.设点P 的运动时间为t 秒,当t 的值为______________时,ABP △和DCE 全等.三、解答题19.如图,电信部门要在公路m ,n 之间的S 区域修一座电视信号发射塔P.按照设计要求,发射塔P 到区域S 内的两个城镇A,B 的距离必须相等,到两条公路m ,n 的距离也必须相等.发射塔P 建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).20.一个等腰三角形的周长是36厘米.(1)已知腰长是底长的2倍,求各边长.(2)已知其中一边长为8厘米,求其它两边长.21.在一次数学课上,老师在黑板上画出如图所示的图形,并写下四个等式,(1)AB DC =,(2)BD AC =,(3)B C ∠=∠,(4)BDA CAD ∠=∠.要求同学从这四个等式中选出其中的两个或三个作为条件,推出第四个,请你试着完成王老师提出的要求(写出三种)并选择一种说明理由.22.已知BC ED =,AB AE =,B E ∠=∠,F 是CD 的中点,求证:AF CD ⊥.23.如图,三角形纸片中,AB=8cm ,BC=6cm ,AC=5cm .沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,求ADE 的周长24.如图,在△ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若△CMN 的周长为15cm ,求AB 的长;(2)若70MFN ∠=︒,求MCN ∠的度数.25.探究与发现:如图①,在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在底边BC 上,AE=AD ,连接DE .(1)当∠BAD=60°时,求∠CDE 的度数;(2)当点D在BC(点B、C除外)上运动时,试猜想并探究∠BAD与∠CDE的数量关系;(3)深入探究:若∠BAC≠90°,试就图②探究∠BAD与∠CDE的数量关系.参考答案1.D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不符合题意;D、不是轴对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.A【解析】【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:由6,9,14可得,6+9>14,故能组成三角形;由8,8,16可得,8+8=16,故不能组成三角形;由10,5,4可得,4+5<10,故不能组成三角形;由5,11,6可得,5+6=11,故不能组成三角形;故选:A.【点睛】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边.3.D【解析】【详解】︒-︒=︒,解:正多边形的每个外角都相等,每个外角为18013545多边形的外角和为360︒,︒÷︒=所以边数为:360458故选:D.4.D【解析】【详解】分析:根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠,∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒,∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒,故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG 中,90BFD CGD DF DG BDF CDG∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒,∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒,根据三角形的外角性质,30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.5.C【解析】【分析】观察每块玻璃形状特征,利用ASA 判定三角形全等可得出答案.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带③去.故选:C .【点睛】本题属于利用ASA 判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合,解题的关键是熟练掌握全等三角形的判定定理.6.D【解析】【分析】利用三角形内角和定理求出∠AEC,再求出∠EFB可得结论.【详解】解:∵∠A+∠C+∠AEC=180°,∴∠AEC=180°﹣47°﹣43°=90°,∴∠FEB=90°,∴∠EFB=90°﹣∠B=35°,∴∠DFE=180°﹣35°=145°,故选:D.【点睛】本题考查三角形内角和定理,解题的关键是熟练掌握三角形的内角和定理,属于中考常考题型.7.D【解析】【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.【详解】解:①全等三角形的对应边相等,正确;②全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;③全等三角形的周长相等,但周长的两个三角形不一定能重合,不一定是全等三角形.故该选项错误;④全等三角形是指能够完全重合的两个三角形,故正确;故正确的是①④.故选D.8.B【解析】【分析】根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.【详解】解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .【点睛】本题考查了等腰三角形的性质.9.B【解析】【分析】过D 作DE ⊥BC 于E ,根据角平分线性质求出DE =3,对12BDC S BC DE =⨯ 计算求解即可.【详解】解:如图,过D 作DE ⊥BC 于E ,∵BD 平分ABC∠∴由角平分线的性质可知3DE AD ==∴111031522BDC S BC DE =⨯=⨯⨯= 故选B .【点睛】本题考查了角平分线的性质.解题的关键在于根据角平分线的性质求出BDC 的高.10.A【解析】【详解】∵FD//BE ,∴∠2=∠4,∵∠4+∠5=180°,∴∠5=180°-∠4=180°-∠2,∵∠1+∠3=180°,∴∠3=180°-∠1,∵∠3+∠5+∠A=180°,∴180°-∠1+(180°-∠2)+∠A=180°,∴∠1+∠2-∠A=180°,故选:A.11.1:2【解析】【分析】设△DEF的面积为S,先判断F点为△ABC的重心,根据三角形重心的性质得到AF=2FD,=2S,再利用E点为AC的中点得到S△DAE=S△DCE=则根据三角形面积公式得到S△AEF3S,从而得到△AEF和四边形EFDC的面积之比.【详解】解:设△DEF的面积为S,∵BE和AD分别是边AC和BC上的中线,∴F点为△ABC的重心,∴AF=2FD,=2S,∴S△AEF∵E点为AC的中点,=S△DCE=S+2S=3S,∴S△DAE∴△AEF和四边形EFDC的面积之比为2S:(S+3S)=1:2.故答案为:1:2.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S12=⨯底×高.三角形的中线将三角形分成面积相等的两部分.12.三角形的稳定性【解析】【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【详解】解:赵师傅这样做是运用了三角形的稳定性.故答案为:三角形的稳定性.【点睛】本题主要考查了三角形的稳定性,解题的关键在于能够熟知三角形具有稳定性.13.十二【解析】【分析】根据多边形的内角和公式列式求解即可.【详解】解:设这个多边形的边数是n,则()21801800n-⨯︒=︒,解得:12n=.故答案为:十二.【点睛】本题考查了多边形的内角和公式,熟记公式是解题的关键.14.16:25:08【解析】【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【详解】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为16:25:08.【点睛】本题考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5,5的对称数字是2.15.240°.【解析】【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.16.AE=DE或∠A=∠D或∠B=∠C【解析】【分析】根据全等三角形的判定方法添加条件即可.【详解】解:∵BE=CE,∠AEB=∠DEC,添加AE=DE,可根据SAS证明△ABE≌△DCE,添加∠A=∠D,可根据AAS证明△ABE≌△DCE,添加∠B=∠C,可根据ASA证明△ABE≌△DCE,故答案为:AE=DE或∠A=∠D或∠B=∠C.【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.17.50︒【解析】【分析】想办法求出AED∠,再利用三角形的外角的性质求解即可.【详解】解:AE∠,∵平分BAC∴∠=∠=︒,BAE CAE30∴∠=∠-∠=︒-︒=︒,EAD EAC DAC302010,⊥AD BC∴∠=︒,ADE90∴∠=︒-∠=︒,AED EAD9080,∠=∠+∠AED B BAE∴∠=︒-︒=︒,B803050故答案是:50︒.【点睛】本题考查三角形内角和定理,角平分线的性质等知识,解题的关键是熟练掌握三角形内角和定理.18.1或7【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】解:当点P在BC上时,∵AB=CD,∴当△ABP≌△DCE,得到BP=CE,由题意得:BP=2t=2,当P在AD上时,∵AB=CD,∴当△BAP≌△DCE,得到AP=CE,由题意得:AP=6+6-4﹣2t=2,解得t=7.∴当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,解题的关键在于能够利用分类讨论的思想进行求解.19.作图见解析【解析】【分析】作线段AB的垂直平分线,再作直线m与n的夹角的角平分线,两线的交点就是P点.【详解】解:如图所示.20.(1)365cm,725cm,725cm;(2)14cm,14cm.【解析】【分析】(1)设底边BC=acm,则AC=AB=2acm,代入求出即可;(2)分类讨论,然后根据三角形三边关系定理判断求出的结果是否符合题意.解:如图,(1)设底边BC=acm ,则AC=AB=2acm ,∵三角形的周长是36cm ,∴2a+2a+a=36,∴a=365,2a=725,∴等腰三角形的三边长是365cm ,725cm ,725cm .(2)①当等腰三角形的底边长为8cm 时,腰长=(36-8)÷2=14(cm );则等腰三角形的三边长为8cm 、14cm 、14cm ,能构成三角形;②当等腰三角形的腰长为8cm 时,底边长=36-2×8=20;则等腰三角形的三边长为8cm ,8cm 、20cm ,不能构成三角形.故等腰三角形另外两边的长为14cm ,14cm .【点睛】本题考查了等腰三角形的性质及三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.21.见解析【解析】【分析】根据SAS 、ASA 、AAS 进行推理即可得到答案.【详解】解:由①②③可推出④;由②③④可推出①;由①③④可推出②;第一种情况证明:∵AB DC =,BD AC =,B C ∠=∠,∴ABD DCA ∆≅∆(SAS )∴BDA CAD∠=∠第二种情况证明:∵BD AC =,B C ∠=∠,BDA CAD∠=∠∴ABD DCA ∆≅∆(ASA )∴AB DC=第三种情况证明:∵AB DC =,B C ∠=∠,BDA CAD∠=∠∴ABD DCA ∆≅∆(AAS )∴BD AC=22.见解析【分析】连接AC 、AD ,由已知证明ABC AED ∆≅∆,得到AC AD =,又因为点F 是CD 的中点,利用等腰三角形的三线合一或全等三角形可得AF CD ⊥.【详解】解:如图,连接AC 、AD,在ABC ∆和AED ∆中,AB AE B E BC ED =⎧⎪∠=∠⎨⎪=⎩,()ABC AED SAS ∴∆≅∆.AC AD ∴=.ACD ∴∆是等腰三角形.又 点F 是CD 的中点,AF AF CF DF AC AD =⎧⎪∴=⎨⎪=⎩,()ACF ADF SSS ∴∆≅∆,90AFC AFD ∴∠=∠=,AF CD ∴⊥.23.7cm【分析】根据翻折变换的性质可得DE=CD ,BE=BC ,然后求出AE ,再根据三角形的周长列式求解即可.【详解】解:∵BC 沿BD 折叠点C 落在AB 边上的点E 处,∴DE=CD ,BE=BC ,∵AB=8cm ,BC=6cm ,∴AE=AB-BE=AB-BC=8-6=2cm ,∴△ADE 的周长=AD+DE+AE ,=AD+CD+AE ,=AC+AE ,=5+2,=7cm .24.(1)AB 的长为15cm ;(2)MCN ∠的度数为40︒.【解析】(1)根据线段垂直平分线的性质,可得AM CM =,CN NB =,可得△CMN 的周长等于线段AB ;(2)根据三角形内角和定理,列式求出MNF NMF ∠+∠,再求出A B ∠+∠,根据等边对等角可得A ACM ∠=∠,B BCN ∠=∠,即可求解.【详解】解:(1)∵DM ,EN 分别垂直平分AC 和BC∴AM CM =,CN NB=∵△CMN 的周长为15cm∴15CM CN MN cm++=∴15AM BN MN cm++=∴15AB cm=AB 的长为15cm(2)由(1)得AM CM =,CN NB=∴A ACM ∠=∠,B BCN∠=∠在MNF 中,70MFN ∠=︒∴110FMN FNM ∠+∠=︒根据对顶角的性质可得:FMN AMD ∠=∠,FNM BNE∠=∠在Rt ADM △中,9090A AMD FMN∠=︒-∠=︒-∠在Rt BNE 中,9090B BNE FNM∠=︒-∠=︒-∠∴909070A B FMN FNM ∠+∠=︒-∠+︒-∠=︒∴70MCA NCB ∠+∠=︒在ABC 中,70A B ∠+∠=︒∴110ACB ∠=︒∴()40MCN ACB MCA NCB ∠=∠-∠+∠=︒25.(1)30°(2)∠CDE=12∠BAD(3)∠CDE=12∠BAD 【分析】(1)根据等腰三角形的性质得到∠CAD=∠BAD=60°,由于AD=AE ,于是得到∠ADE=60°,根据三角形的内角和即可得到∠CDE=75°﹣45°=30°;(2)设∠BAD=x ,于是得到∠CAD=90°﹣x ,根据等腰三角形的性质得到∠AED=45°+12x ,于是得到结论;(3)设∠BAD=x ,∠C=y ,根据等腰三角形的性质得到∠BAC=180°﹣2y ,由∠BAD=x ,于是得到∠DAE=y+12x ,即可得到结论.【详解】解:(1)∵AB=AC ,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE ,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=x,∴∠CAD=90°﹣x,∵AE=AD,∴∠AED=45°+12x,∴∠CDE=12 x;∴∠CDE=12∠BAD(3)设∠BAD=x,∠C=y,∵AB=AC,∠C=y,∴∠BAC=180°﹣2y,∵∠BAD=x,∴∠DAE=y+12 x,∴12 CDE AED C x ∠=∠-∠=.∴∠CDE=12∠BAD21。
金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。
答案:±42. 如果一个角的补角是120°,那么这个角是______。
答案:60°3. 一个数的绝对值是5,这个数可以是______。
答案:±54. 一个数的立方等于27,这个数是______。
答案:35. 一个数的倒数是1/3,那么这个数是______。
答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。
答案:x = 52. 已知一个角是45°,求它的补角。
八年级数学上册期中考试试卷(带答案)(考试时间:150分钟;试卷满分:120分)学校:___________班级:___________姓名:___________考号:___________一.选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.9的平方根是()A.3B.±3C.√3D.-32.下列实数中,是无理数的是()B.0.35C.π﹣3.14D.-√9A.763.如图是济南市地图简图的一部分,图中"济南西站"、"雪野湖"所在区域分别是()A.E4,E6B.D5,F5C.D6,F6D.D5,F64.在同一平面直角坐标系内,已知点A(4,2)、B(-2,2),下列结论正确的是()A.线段AB=2B.直线AB // x 轴C.点A与点B关于y轴对称D.线段AB 的中点坐标为(2,2)5.在平面直角坐标系中,点P (-1,-2)在( )A.第一象限B.第二象限C.第三象限D.第四象限6.下列函数图像中,能表示函数图象的是( )7.下列运算正确的是( )A .2√2-√2=1 B.√6+√3=√9 C.√6÷√3=2 D.√2x√8=48.如图,今年的冰雪灾害中,一棵大树在离地面9米处折断,树的顶端落在离树杆底部12米处,那么这棵树折断之前的高度是( )9.直线y1= mx + n 和y2= nmx - n 在同一平面直角坐标系中的大致图象可能是()10.如图,在长方形纸片ABCD 中,AB =8cm,AD =4cm.把纸片沿对角线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则重叠部分△ACF的面积为()A .5cm2B .10cm2C .15cm2D .20cm2二.填空题(每小题4分,共20分)11.在平面直角坐标系中,点4(3,4),B (a,b)关于x 轴对称,则a + b 的值为。
南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。
一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。
八年级上学期期中质量检测数学试题一、选择题(本大题共10小题,共40.0分)1.以下微信图标不是轴对称图形的是A. B. C. D.2.如图,下列条件中,不能证明≌的是A. ,B. ,C. ,D. ,3.如图,将三角形纸板的直角顶点放在直尺的一边上,,,则等于A.B.C.D.4.到三角形三个顶点的距离都相等的点是这个三角形的A. 三条高的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条边的垂直平分线的交点5.在中,,,则的度数是A. B. C. D.6.如图所示,在中,,,AD是的角平分线,,垂足于E,,则BC等于A. 1B. 2C. 3D. 47.下列运算正确的是A. B. C. D.8.如图,已知D为边AB的中点,E在AC上,将沿着DE折叠,使A点落在BC上的F处若,则等于A.B.C.D.9.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是A. kB.C.D.10.如图,,E是BC的中点,DE平分,下列说法:平分,点E到AD的距离等于CE,,其中正确的有A. 3个B. 2个C. 1个D. 4个二、填空题(本大题共6小题,共24.0分)11.等腰三角形的两边分别为1和2,则其周长为______.12.已知点与点关于y轴对称,则______.13.如图所示,有一块三角形田地,,作AB的垂直平分线ED交AC于D,交AB于E,量得BC的长是7m,请你替测量人员计算的周长为______14.等腰三角形一腰上的高与另一腰的夹角为,则顶角的度数为______.15.如图,AD是的角平分线,,垂足为F,,和的面积分别为48和26,求的面积______.16.如图,和都是等腰直角三角形,,连结CE交AD于点F,连结BD交CE于点G,连结下列结论中,正确的结论有______填序号;是等腰直角三角形;;;三、计算题(本大题共2小题,共19.0分)17.如图,,点E是CD的中点,BE的延长线与AD的延长线交于点若,,求AD长.18.如图,在平面直角坐标系中,,,.在图中作出关于y轴对称的,写出点,,的坐标直接写答案.的面积为______.在y轴上画出点Q,使的周长最小.四、解答题(本大题共7小题,共67.0分)19.如图所示,在中:画出BC边上的高AD和中线AE.若,,求和的度数.20.如图,已知是等边三角形,过点B作,过A作,垂足为D,若的周长为12,求AD的长.21.如图,中,,于D点,于点E,于点F,,求BF的长.22.已知,如图,中,,D是BC上一点,点E、F分别在AB、AC上,,,G为EF的中点,问:与全等吗?请说明理由.判断DG与EF的位置关系,并说明理由.23.已知:在中,,D为AC的中点,,,垂足分别为点E,F,且求证:是等边三角形.24.如图1,,,以B点为直角顶点在第二象限作等腰直角.求C点的坐标;在坐标平面内是否存在一点P,使与全等?若存在,直接写出P点坐标,若不存在,请说明理由;如图2,点E为y轴正半轴上一动点,以E为直角顶点作等腰直角,过M作轴于N,直接写出的值为.25.如图,在中,,,点D为内一点,且.求证:;,E为AD延长线上的一点,且.求证:DE平分;若点M在DE上,且,请判断ME、BD的数量关系,并给出证明;若N为直线AE上一点,且为等腰三角形,直接写出的度数.参考答案1【答案】D【解析】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选:D.根据轴对称图形的概念求解,看图形是不是关于直线对称.本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2【答案】D【解析】解:A、依据SSS可知≌,故A不符合要求;B、依据SAS可知≌,故B不符合要求;C、依据AAS可知≌,故C不符合要求;D、依据SSA可知≌,故D符合要求.故选:D.依据全等三角形的判定定理解答即可.本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3【答案】C【解析】解:由题意得:;由外角定理得:,,故选:C.如图,首先运用平行线的性质求出,然后借助三角形的外角性质求出,即可解决问题.该题主要考查了三角形外角的性质、平行线的性质等几何知识点及其应用问题;解题的关键是牢固掌握三角形外角的性质、平行线的性质等几何知识点,这也是灵活运用、解题的基础.4【答案】D【解析】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.根据线段的垂直平分线上的点到线段的两个端点的距离相等解答即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5【答案】C【解析】解:在中,,,.故选:C.由已知条件,根据等腰三角形的性质可得,,再由三角形的内角和可得.此题主要考查三角形的内角和定理和等腰三角形的性质;利用三角形的内角和求角度是很常用的方法,要熟练掌握.6【答案】C【解析】解:是的角平分线,,,,又直角中,,,.故选:C.根据角平分线的性质即可求得CD的长,然后在直角中,根据的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.本题考查了角的平分线的性质以及直角三角形的性质,的锐角所对的直角边等于斜边的一半,理解性质定理是关键.7【答案】C【解析】解:A:因为,不是同类项,所以故计算错误;B:因为,所以计算错误;C:因为,所以计算正确;D:,所以计算错误.故选:C.根据同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法的法则可判断各个选项.本题考查了同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,熟练运用法则是本题的关键.8【答案】B【解析】解:是沿直线DE翻折变换而来,,是AB边的中点,,,,,.故选:B.先根据图形翻折不变性的性质可得,根据等边对等角的性质可得,再根据三角形的内角和定理列式计算即可求解.本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.9【答案】C【解析】解:设这个多边形的边数是n,则,解得.故选:C.根据多边形的内角和公式与外角和等于列式,然后解方程即可得解.本题考查了多边形的内角和公式与外角和定理,任何多边形的外角和都是,与边数无关.10【答案】A【解析】解:,,;如图,作垂足为点F,,,平分,点E到AD的距离等于CE,正确,又,≌;,,,又,,≌;,,,平分,正确正确;,,错误;故选:A.根据平行线的性质和据全等三角形全等的判定判断即可.本题考查了平行线的判定及性质、等腰三角形的性质、全等三角形的判定等知识点,关键是根据平行线的性质和据全等三角形全等的判定判断.11【答案】5【解析】解:是腰长时,三角形的三边分别为1、1、2,,不能组成三角形;是底边时,三角形的三边分别为1、2、2,能组成三角形,周长,综上所述,三角形的周长为5.故答案为:5.分1是腰长与底边两种情况讨论求解.本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系判断是否能组成三角形.12【答案】【解析】解:点与点关于y轴对称,,,.故答案为:.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入代数式进行计算即可得解.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.13【答案】17【解析】解:根据中垂线的性质得:,所以,而,的周长为:17m.根据中垂线的性质进行解答,线段中垂线上的点到线段两端点的距离相等,点D在中垂线上,所以,所以,而BC的长度又已知,所以的周长可求出.本题主要根据中垂线的性质进行解答线段中垂线上的点到线段端点的距离相等.14【答案】或【解析】解:当为锐角三角形时,如图1,,,,三角形的顶角为;当为钝角三角形时,如图2,,,,,三角形的顶角为,故答案为或.本题要分情况讨论当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.15【答案】11【解析】解:如图,作于H,是的角平分线,,,,在和中,,≌,同理,≌,设的面积为x,由题意得,,解得,即的面积为11,故答案为:11.作于H,根据角平分线的性质得到,证明≌,≌,根据题意列方程,解方程即可.本题考查的是角平分线的性质、全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16【答案】【解析】解:和都是等腰直角三角形,,,,,,在和中,,≌,,故正确;,,在中,,,,故正确;只有时,,,无法说明,故错误;≌,,与相等无法证明,不一定成立,故错误;综上所述,正确的结论有共2个.故答案为:.根据等腰直角三角形的性质可得,,然后求出,再利用“边角边”证明和全等,根据全等三角形对应边相等可得,判断正确;根据全等三角形对应角相等可得,从而求出,再求出,从而得到,根据四边形的面积判断出正确;再求出时,,判断出错误;与不一定相等判断出错误.此题考查了全等三角形的判定与性质,等腰直角三角形的性质,对角线互相垂直的四边形的面积等于对角线乘积的一半的性质,熟记各性质是解题的关键.17【答案】解:点E是DC中点,,又,F在AD延长线上,,,在与中,≌,,,.【解析】根据点E是DC中点,得到,根据平行线的性质得到,,根据全等三角形的性质即可得到结论.本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.18【答案】【解析】解:如图所示:即为所求;由图可知:,,;.故答案为:;连接交y轴于Q,则此时的周长最小.根据关于y轴对称的点的坐标特点作出,根据各点在坐标系中的位置写出点,,的坐标即可;根据进行解答即可;连接交y轴于Q,于是得到结论;本题考查的是作图轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.19【答案】解:如图:,,,,,,.【解析】延长BC,作于D;作BC的中点E,连接AE即可;可根据三角形的内角和定理求,由外角性质求,那可得.此题是计算与作图相结合的探索考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.20【答案】解:为等边三角形,且的周长为12,,.,,,,.【解析】根据等边三角形的性质可得出,,进而可得出,在中,利用角所对的直角边等于斜边的一半即可求出AD的长.本题考查了等边三角形的性质以及含30度角的直角三角形,利用等边三角形的性质找出及AB的值是解题的关键.21【答案】解:中,,,是的中线,,,,,,.【解析】先得出AD是的中线,得出,又,将代入即可求出BF.本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.22【答案】解:与全等,理由:,,在和中,,≌,,理由:≌,,是EF的中点,.【解析】根据SAS证明与全等即可;利用全等三角形的性质、等腰三角形的三线合一即可证明;此题主要考查了全等三角形的性质与判定,以及等腰三角形的性质,关键是掌握全等三角形的判定定理.23【答案】证明:,,垂足分别为点E,F,,为AC的中点,,在和中,,≌,,,,,是等边三角形.【解析】只要证明≌,推出,推出,又,即可推出;本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24【答案】解:作轴于E,如图1,,,,,,,,,,在和中,,≌,,,即,.存在一点P,使与全等,分为四种情况:如图2,当P和C重合时,和全等,即此时P的坐标是;如图3,过P作轴于E,则,,,,在和中,≌,,,,即P的坐标是;如图4,过C作轴于M,过P作轴于E,则,≌,,,,,,,在和中,,≌,,,,,,,即P的坐标是;如图5,过P作轴于E,≌,,,则,,,,在和中,,≌,,,,即P的坐标是,综合上述:符合条件的P的坐标是或或或.如图6,作轴于F,则,,,,在和中,≌,,,轴,轴,,四边形FONM是矩形,,.【解析】作轴于E,证≌,推出,,即可得出答案;分为四种情况,画出符合条件的图形,构造直角三角形,证三角形全等,即可得出答案;作轴于F,证≌,求出EF,即可得出答案.本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形性质的应用,主要考查学生综合运用性质进行推理的能力,用了分类讨论思想.25【答案】证明:,,垂直平分线段AB,.证明:,,又,,又,,,,,,在和中,,≌,,,,平分;解:结论:,理由:连接MC,,,为等边三角形,,,,在和中,,≌,.当时,或;当时,;当时,,所以的度数为、、、.【解析】利用线段的垂直平分线的性质即可证明;易证,可得≌,即可求得即可解题;连接MC,易证为等边三角形,即可证明≌即可解题;分三种情形讨论即可;本题考查了全等三角形的判定、等边三角形的判定和性质、等腰三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.2018-2019学年八年级(上册)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列线段能组成三角形的是()A.3、4、8B.5、6、11C.5、6、10D.2、2、42.下列图案中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点A(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(﹣1,2)C.(2,1)D.(﹣1,﹣2)4.一个多边形的各个内角都等于120°,则它的边数为()A.3B.6C.7D.85.如图,已知CD=CA,∠D=∠A,添加下列条件中的()仍不能证明△ABC≌△DEC.A.DE=AB B.CE=CB C.∠DEC=∠B D.∠ECD=∠BCA6.已知:点P、Q是△ABC的边BC上的两个点,且BP=PQ=QC=AP=AQ,∠BAC的度数是()A.100°B.120°C.130°D.150°7.用一条长20cm的细绳围成一个三角形,已知第一条边长为xcm,第二条边长比第一条边长的2倍少4cm.若第一条边最短,则x的取值范围是()A.2<x<8B.C.0<x<10D.7<x<88.如图为正方形网格,顶点在格点上的三角形称为格点三角形,每个小正方形均为边长为1的正方形,图中与△ABC全等的格点三角形(不含△ABC)共有()个.A.4B.16C.23D.249.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个10.已知△ABC的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为()A.5B.6C.7D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.等腰三角形的一个角100°,它的另外两个角的度数分别为.12.如图,AD平分∠BAO,D(0,﹣3),AB=10,则△ABD的面积为.13.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,若BD=2,则AD=.14.平面直角坐标系中,已知A(4,3)、B(2,1),x轴上有一点P,要使PA﹣PB最大,则P点坐标为15.△ABC的三个内角满足5∠A>7∠B,5∠C<2∠B,则△ABC是三角形(填“锐角”、“直角”或“钝角”)16.在△ABC中,AB=AC,CE是高,且∠ECA=20°,平面内有一异于A、B、C、E的D点,若△ABC ≌△CDA,则∠DAE的度数为.三、解答题(共8题,共72分)17.(8分)如图,AB=AC,AD=AE.求证:∠B=∠C.18.(8分)已知等腰三角形的一边等于4,另一边等于9,求它的周长.19.(8分)如图,P为∠MON平分线上一点,PA⊥OM于A,PB⊥ON于B,求证:OP垂直平分AB.20.(8分)△ABC在平面直角坐标系中的位置如图所示,点A(﹣2,2),点B(﹣3,﹣1),点C(﹣1,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标.(2)求出△A1B1C1的面积.21.(8分)如图,△ABC中,AB=AC,AD=AE,∠CAD=60°,∠C=α(1)用α表示∠BAD,则∠BAD=;(2)求∠EDB的度数.22.(10分)如图,AB=AC,AB⊥AC,∠ADC=∠BAE.(1)求证:∠DAE=45°;(2)过B作BF⊥AD于F交直线AE于M,连CM,画出图形并判断BM与CM的位置关系,说明理由.23.(10分)如图,牧马人从A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,要求指出最短路径.同学甲:牧马人把马牵到草地与河边的交汇处N点,牧马又饮马,然后回到B处同学乙:作A点关于直线MN的对称点A1,再作A1关于直线l的对称点A2,连A2B交直线l于P,连PA交MN于Q,则路径A→Q→P→B为最短路径.你认为哪位同学方案正确?并证明其正确性.24.(12分)在平面直角坐标系中,点A(m,1),点B(3,n),C,D是y轴上两点(1)如图1,△AOC和△ABD是等边三角形,连接BC并延长交x轴于E,求CE的长;(2)如图2,直线AC交x轴于E,∠DCA的平分线交直线OA于F,FD⊥y轴于D,交直线AC于G,若m=1,请你写出线段OD,EG与DG之间的数量关系,并证明;(3)如图3,若m=2,n=4,在x轴上是否存在点P,使△ABP为等腰三角形?若存在,求出P的坐标;若不存在,说明理由.2018-2019学年八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据三角形的三边满足任意两边之和大于第三边来进行判断.【解答】解:A、∵3+4<8,∴3、4、8不能组成三角形,故本选项错误;B、∵5+6=11,∴5、6、11不能组成三角形,故本选项错误;C、∵5+6>10,∴5、6、10能组成三角形,故本选项正确;D、∵2+2=4,∴2、2、4不能组成三角形,故本选项错误.故选:C.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,不符合题意,本选项错误;B、是轴对称图形,不符合题意,本选项错误;C、不是轴对称图形,符合题意,本选项正确;D、是轴对称图形,不符合题意,本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】直接利用关于x轴对称,则其纵坐标互为相反数进而得出答案.【解答】解:点A(1,﹣2)关于x轴对称的点的坐标为:(1,2).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.【分析】先求出这个多边形的每一个外角的度数,再用360°除以每一个外角的度数即可得到边数.【解答】解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选:B.【点评】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.5.【分析】添加的条件取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【解答】解:A.当DE=AB,CD=CA,∠D=∠A时,可得△ABC≌△DEC(SAS).B.当CE=CB,CD=CA,∠D=∠A时,不能得到△ABC≌△DEC.C.当∠DEC=∠B,CD=CA,∠D=∠A时,可得△ABC≌△DEC(AAS).D.当∠ECD=∠BCA,CD=CA,∠D=∠A时,可得△ABC≌△DEC(ASA).故选:B.【点评】本题主要考查了全等三角形的判定,解题时注意:两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.6.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°.∴∠BAC=120°.故∠BAC的度数是120°.故选:B.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.7.【分析】根据第一条边长最短以及三角形的三边关系列出不等式组,即可求出x的取值范围.【解答】解:根据题意可得:第二条边长为(2x﹣4)米,∴第三条边长为20﹣x﹣(2x﹣4)=(24﹣3x)米;由题意得,解得<x<6.故选:B.【点评】本题主要考查了三角形的三边关系,在解题时根据三角形的三边关系,列出不等式组是本题的关键.8.【分析】用SSS判定两三角形全等.认真观察图形可得答案.【解答】解:如图所示:故选:C.【点评】本题考查的是SSS判定三角形全等,注意观察图形,数形结合是解决本题的又一关键.9.【分析】(1)点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;(2)点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可.【解答】解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选:D.【点评】本题主要考查等腰三角形的性质;要注意分点在三角形内部和三角形外部两种情况讨论,思考全面是正确解答本题的关键.10.【分析】如果设△ABC的面积为S,所求的第三条高线的长为h,根据三角形的面积公式,先用含S、h 的代数式分别表示出三边的长度,再由三角形三边关系定理,列出不等式组,求出不等式组的解集,得到h的取值范围,然后根据h为整数,确定h的值.【解答】解:设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,则.由三边关系,得,解得.所以h的最大整数值为6,即第三条高线的长的最大值为6.故选:B.【点评】本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】先判断出100°的角是顶角,再根据等腰三角形的两底角相等解答.【解答】解:∵等腰三角形的一个角100°,∴100°的角是顶角,∴另两个角是(180°﹣100°)=40°,即40°,40°.故答案为:40°,40°.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,需要注意100°的角只能是顶角.12.【分析】过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,即可求得△ABD的面积.【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAO,∠AOD=90°,D(0,﹣3),∴DE=DO=3,∵AB=10,∴△ABD的面积=AB•DE=×10×3=15.故答案为:15.【点评】本题考查了角平分线的性质,能根据角平分线性质得出DE=OD是解此题的关键,解题时注意:角平分线上的点到这个角两边的距离相等.13.【分析】由含30°角的直角三角形的性质得出AB=2BC,BC=2BD=4,得出AB,即可得出AD.【解答】解:∵∠ACB=90°,∠A=30°,∴AB=2BC,∠B=90°﹣∠A=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=90°﹣∠B=30°,∴BC=2BD=4,∴AB=2BC=8,∴AD=AB﹣BD=8﹣2=6,故答案为:6.【点评】本题考查了含30°角的直角三角形的性质、角的互余关系;熟练掌握含30°角的直角三角形的性质,并能进行推理计算是解决问题的关键.14.【分析】根据|PA﹣PB|≤AB,即可得到当A,B,P三点共线时,PA﹣PB最大值等于AB长,依据待定系数法求得直线AB的解析式,即可得到P点坐标.【解答】解:∵A(4,3)、B(2,1),x轴上有一点P,∴|PA﹣PB|≤AB,∴当A,B,P三点共线时,PA﹣PB最大值等于AB长,此时,设直线AB的解析式为y=kx+b,把A(4,3)、B(2,1)代入,可得,解得,∴直线AB的解析式为y=x﹣1,令y=0,则x=1,∴P点坐标为(1,0),故答案为:(1,0).【点评】本题主要考查了坐标与图形性质,利用待定系数法求得直线AB的解析式是解决问题的关键.15.【分析】利用已知条件,结合等式性质1可得5∠A+>5∠B+5∠C,整理得∠A>∠B+∠C,再利用等式性质,左右同加上∠A,结合∠A+∠B+∠C=180°,解不等式可得∠A>90°,从而可判断三角形的形状.【解答】解:∵5∠A>7∠B,2∠B>5∠C,∴5∠A+2∠B>7∠B+5∠C,即5∠A+>5∠B+5∠C,∴∠A>∠B+∠C,不等式两边加∠A,可得2∠A>∠A+∠B+∠C,而∠A+∠B+∠C=180°,∴2∠A>180°,即∠A>90°,∴这个三角形是钝角三角形.故答案是:钝角.【点评】本题考查了三角形内角和定理、不等式的性质的运用,解题的关键是掌握三角形内角和定理.16.【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【解答】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=20°,∴∠BAC=70°,∠ACB=∠ABC=55°,∵△ABC≌△CDA,∴∠CAD=∠ACB=55°,∴∠DAE=∠CAD+∠BAC=55°+70°=125°,当△ABC为钝角三角形时,∠DAE=15°、105°和35°故答案为:125°、15°、105°和35°【点评】此题考查全等三角形的性质,关键是根据等腰三角形的性质和全等三角形的性质解答.三、解答题(共8题,共72分)17.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.18.【分析】此题先要分类讨论,已知等腰三角形的一边等于4,另一边等于9,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.【解答】解:当4为腰,9为底时,∵4+4<9,∴不能构成三角形;当腰为9时,∵9+9>4,∴能构成三角形,∴等腰三角形的周长为:9+9+4=22.【点评】此题考查了等腰三角形的基本性质及分类讨论的思想方法,另外求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.【分析】根据角平分线性质得出PA=PB,根据HL证Rt△PAO≌Rt△PBO,推出OA=OB,根据等腰三角形性质推出即可.。
八年级数学上期期中教学质量检测
一、单项选择题(每小题3分,共30分)
1.下列图形是轴对称图形的有()
(A)2个(B)3个(C)4个(D)5个
2.以下列各组线段为边,能组成三角形的是()
(A)4 cm,5 cm,6 cm (B)3 cm,3 cm,6 cm
(C)2 cm,3 cm,5 cm (D)5 cm,8 cm,2 cm
3.如图,将一副三角板按如图所示摆放,图中∠α的度数是()
(A)75°(B)90°(C)105°(D)120°
4.一个多边形的边数每增加一条,这个多边形的()
(A)内角和增加360°(B)外角和增加360°
(C)对角线增加一条(D)内角和增加180°
5.若一个三角形的两边长分别为3和7,则第三边的长可能是()
(A)6 (B)3 (C)2 (D)11
6.若从多边形的一个顶点出发,最多可以引10条对角线,则它是()
(A)十三边形(B)十二边形(C)十一边形(D)十边形
7.如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()(A)4对(B)5对(C)6对(D)7对
第3题图第7题图
8.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为
将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第______块去,这利用了三角形全等中的______判定方法()
(A)2;SAS (B)4;ASA (C)2;AAS (D)4;SAS
9.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为()
(A)30°(B)60°(C)90°(D)120°或60°10.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC 于F,交AB于G,下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有()
(A)只有①②(B)只有③④(C)只有①③④(D)①②③④
第8题图第10题图
二、填空题(每小题3分,共15分)
11.将直角三角形(∠ACB为直角)沿线段CD折叠使B落在B′处,若∠ACB′=50°,则
∠ACD度数为__________。
12.如图所示是某零件的平面图,其中∠B=∠C=30°,∠A=40°,则∠ADC的度数为__________。
13.将命题“与线段两个端点距离相等的点在这条线段的垂直平分线上”改成“如果…,那么…”的形式为__________________________________________________。
14.如图,已知AC⊥BD于点P,AP=CP,请添加一个条件,使△ABP≌△CDP(不能添加辅助线),你添加的条件是__________ 。
第11题图第12题图第14题图
15.△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,且DE=3cm,∠B=30°,则
BC=______cm 。
第15题图
三、解答题(本题共8小题,满分75分)
16.(8分)作图题:电信部门要在S 区修建一座电视信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条高速公路m 和n 的距离也必须相等,发射塔应修建在什么位置?在图上标出它的位置(不写作法,保留作图痕迹)。
第16题图
17.(9分)如图:
(1)分别作出△PQR 关于直线m (直线m 上各点的横坐标都为1)和直线n (直线n 上各点的纵坐标都为-1)对称的图形; (2)写出△PQR 的各顶点坐标; (3)求出△PQR 的面积.
18.(8分)如图,在△ABC 中,∠A=40°,∠B=72°,CD 是AB 边上的高,CE 是∠ACB 的平分线,DF ⊥CE 于F ,求∠CDF 的度数
.
第17题图
第18题图
19.(9分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.则AD与AG的数量关系如何?请说明理由.
第19题图
20.(10分)如图,已知B、C、E三点共线,分别以BC、CE为边作等边△ABC和等边△CDE,连接BD、AE分别与AC、CD交于M、N,AE与BD的交点为F.
(1)求证:BD=AE;
(2)求∠AFB的度数;
第20题图
21.(10分)如图,四边形ABDC中,∠D=∠B=90°,点O为BD的中点,且AO平分∠BAC.求证:OA⊥OC.
第21题图
22.(10分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,若AC=10,求四边形ABCD的面积.
第22题图
23.(11分)已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B 在y轴上,点C在x轴上方.
(1)如图1所示,若A的坐标是(-3,0),点B的坐标是(0,1),请直接写出点C的坐标;
(2)如图2,过点C作CD⊥y轴于D,请写出线段OA,OD,OD之间等量关系,并说明理由.
图1 图2
八年级数学参考答案
一、单项选择题
1.C
2.A
3.C
4.D
5.A
6.A
7.D
8.B
9.D 10.D
二、填空题
11.20 12.100° 13.如果一个点到一条线段的两个端点的距离相等,那么这个点在这条线段的垂直平分线上 14.AB=CD(答案不唯一) 15.9
三、解答题
16.图略。
17.(1)略……4分(2)P(-1,3),Q(-4,5),R(-4,1)……7分(3)6……9分
18.略……4分∵DF⊥CE,∴∠DFC=90°,
∴∠CDF=180°-90°-16°=74°∠CDF=74°……8分.
19.解:AD=AG,理由如下:…………2分
可证:△ABD≌△GCA(SAS),…………8分
∴AD=GA(全等三角形的对应边相等);…………9分
20.略
在△BCD和△ACE中,
BC AC
BCD ACE DC EC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BCD≌△ACE(SAS),
∴BD=AE. …………6分
(2)解:∠AFB=60°…………10分21.略证:过点O作OE⊥AC于E. 可得:∠AOB=∠AOE. …………4分又∵Rt△COE=Rt△COD(HL)
∴∠COD=∠COE …………9分
∴∠AOC=∠AOE+∠COE=1
18090
2
⨯︒=︒,
∴OA⊥OC. …………10分
22.略解:可证:△ABC ≌△ADE (SAS ). ∴ABC ADE S S ∆∆=. …………6分 ∴21
10502
ABC ACD ADE ACD ACE ABCD S S S S S S ∆∆∆∆∆=+==⨯+=
=四边形 …………10分 23.解:(1)过点C 作CD ⊥y 轴,CE ⊥x 轴,则四边形CDOE 为矩形, C (-1,4);…………4分
(2)OA=OD+CD ;…………6分 可证:△AOB ≌△BDC …………11分。