火灾报警系统毕业设计
- 格式:doc
- 大小:476.00 KB
- 文档页数:34
火灾报警器的毕业设计物联网火灾报警器的设计和实现一、综述随着物联网的快速发展,许多传统设备都可以通过互联网实现智能化,其中包括火灾报警器。
本篇毕业设计将介绍一个基于物联网的火灾报警器的设计和实现。
二、设计方案该物联网火灾报警器的设计方案分为硬件设计和软件设计两个部分。
硬件设计:1.火灾检测模块:通过高灵敏度的烟雾传感器,能够实时监测室内的烟雾浓度。
当烟雾浓度超过预设阈值时,会触发报警信号。
2.温度传感器:可以实时监测室内温度的变化,当温度异常升高时,也会触发报警信号。
3.微控制器:用于处理传感器采集到的数据,并根据预设的逻辑来判断是否触发报警信号。
同时,还负责与网络通信模块进行数据交互。
4.网络通信模块:可以通过Wi-Fi或者以太网连接到互联网,与远程服务器进行数据通信。
5.声光报警器:当触发报警信号时,会发出声音和灯光提示,提醒室内人员火灾发生。
软件设计:1.嵌入式软件:负责控制硬件模块,包括传感器数据采集、数据处理、逻辑判断和触发报警信号等功能。
2.数据库存储:将传感器采集到的数据存储到数据库中,便于后续的数据分析和查询。
3. 远程服务器:用于接收物联网火灾报警器发送的数据,并进行实时监控和处理。
当接收到报警信号时,可以通过手机App或者电子邮件发送报警通知。
4. 移动端App:可以通过手机App进行远程监控和控制,包括实时查看室内的温度和烟雾浓度、设置预设阈值、接收报警通知等功能。
三、实现步骤1.硬件部分:根据设计方案选择适合的硬件模块,完成电路连接和焊接。
测试各个传感器和报警器的功能是否正常。
2.嵌入式软件:使用C语言编写嵌入式软件,包括数据采集、数据处理、逻辑判断和触发报警信号等功能。
使用编译器将代码烧录到微控制器中。
3.远程服务器:搭建远程服务器,利用云计算平台或者自建服务器。
编写后台程序,接收物联网火灾报警器发送的数据,并进行实时监控和处理。
编写报警通知的发送功能。
4. 移动端App:使用Android或iOS开发平台编写移动端App,实现远程监控和控制功能,包括实时查看室内的温度和烟雾浓度、设置预设阈值、接收报警通知等。
火灾报警器毕业设计开题报告一、简介火灾是一种常见的灾害,对人类生命和财产造成巨大损失。
为了及时发现和防止火灾事故的发生,火灾报警器作为一种重要设备得到广泛应用。
本毕业设计旨在设计一种基于先进技术的智能火灾报警系统,以提高火灾报警准确性和响应速度,并减少误报率。
二、探测原理智能火灾报警器使用多种传感器来检测不同的火源特征,通过分析这些数据来判断是否有火情存在。
主要包括以下几个方面:1. 温度传感器:利用温度变化来检测是否存在可能引发火灾的异常热源。
2. 光学传感器:通过光学衰减检测空气中微小颗粒物质的含量增加,以判断烟雾密度增加。
3. 声音传感器:监测特定声音频率范围内的声音变化,如爆炸声或玻璃碎裂声。
4. 气体传感器:检测可燃气体等有害气体的浓度,如一氧化碳、甲烷等。
5. 视频监控传感器:通过摄像头捕捉影像进行火灾识别和实时监控。
三、系统设计本毕业设计将采用分布式架构,将传感器与报警控制器分离以提高系统的可靠性和稳定性。
主要设计包括以下几个方面:1. 火灾检测单元:负责接收并处理传感器发出的信号,并进行数据分析判断是否为火灾信号。
2. 报警控制器:当火灾检测单元确认火情存在时,报警控制器会触发声光报警装置,并同时向相关部门发出预先设定好的工作人员电话信息或自动拨打紧急电话。
3. 远程监测模块:通过网络连接实现对火灾报警器的远程监控,可以随时查看报警信息和视频监控画面。
四、关键技术在智能火灾报警系统的设计过程中,有几个关键技术需要特别注意。
1. 数据融合与智能分析:将多个传感器采集到的数据进行融合与智能分析,快速准确地判断是否为火灾信号。
2. 通信技术:通过使用网络传输数据,实现与报警控制器的远程通讯及联动。
3. 数据存储与管理:对于大量传感器采集到的数据进行有效存储和管理,保证系统运行效率。
4. 视频分析与识别:利用计算机视觉技术进行火灾图像的识别和分析。
五、预期效果本设计旨在提高火灾报警准确性和响应速度,并减少误报率。
目录1 引言 ...................................................................................................... - 1 -1.1建筑情况 ........................................................................................ - 1 -1.2火灾自动报警系统的作用 ............................................................ - 1 -2 火灾自动报警系统简介.................................................................. - 2 -2.1 火灾自动报警系统概述........................................................ - 2 -2.2 火灾自动报警系统的组成 ................................................... - 3 -3. 系统的设置 ....................................................................................... - 9 -3.1区域报警控制系统................................................................... - 9 -3.2集中报警控制系统................................................................... - 9 -3.3控制中心报警系统 ...................................................................... - 10 -4 火灾自动报警系统设计.................................................................- 11 -4.1系统选型....................................................................................- 11 -4.2 防火区域和报警区域的划分..............................................- 11 -4.3 火灾探测器的选择 ............................................................... - 13 -4.4 手动报警按钮的设置........................................................... - 20 -4.5消防联动的设计 ..................................................................... - 21 -5 经济预算 .............................................................................................. - 24 -致谢 ......................................................................................................... - 25 -参考文献 ................................................................................................ - 26 -1 引言1.1建筑情况***行政楼是学院各党政部门集中办公的场所,办公楼内来往人员较多,在其内部还有各种贵重设备、资料、文献等,所以一定要做好防火等工作。
基于51单片机的火灾自动报警系统毕业设计火灾自动报警系统是一种广泛应用于居民住宅、商业建筑、工业厂房等场所的安全设备,它能够及时发现和报警火灾,有效减少火灾造成的财产损失和人员伤亡。
本篇论文将介绍一种基于51单片机的火灾自动报警系统的设计。
本系统的主要功能包括火灾探测、报警信号输出和远程监控等。
为了实现这些功能,我们将采用51单片机作为主控芯片,并结合相应的外围电路和传感器。
在火灾探测方面,我们选择了烟雾传感器和温度传感器作为主要探测元件。
当烟雾传感器检测到烟雾浓度超过一定阈值时,系统将触发报警;当温度传感器检测到环境温度超过一定阈值时,系统也将触发报警。
通过使用这两种传感器,可以提高火灾探测的准确性和可靠性。
在报警信号输出方面,系统将采用声音和光线两种形式进行报警。
当系统检测到火灾时,蜂鸣器将发出响亮的声音,以吸引周围人员的注意;同时,LED指示灯也将闪烁,以增加报警的显著性。
通过这种声光报警方式,可以快速有效地提醒人们火灾的发生。
此外,为了实现远程监控功能,我们将使用无线模块与远程服务器进行通信。
当系统发生火灾的时候,会通过无线模块将相关信息发送到远程服务器,并触发服务器端的报警响应。
同时,远程服务器也可以向系统发送指令,以便实现对系统的远程控制和监控。
总之,本设计基于51单片机的火灾自动报警系统可以实现火灾探测、报警信号输出和远程监控等功能。
通过有效地利用传感器和外围电路,可以提高火灾探测的准确性和可靠性;通过声光报警和远程监控,可以及时地发现火灾并采取相应的措施。
这种系统在实际应用中具有重要的价值和意义,可以帮助人们提高火灾防范和救援的能力,减少火灾带来的危害。
火灾自动报警系统毕业设计论文标题:基于火灾图像识别的自动报警系统设计与实现摘要:随着科技的不断发展,火灾的防范和报警系统的自动化已成为一个重要的研究方向。
本文提出了一种基于火灾图像识别的自动报警系统设计,并采用深度学习模型进行火灾图像的识别,以实现火灾的自动警报。
该系统通过对火灾图像进行实时监测和分析,能够快速准确地识别火灾,并及时向相关部门发送报警信息,提高了火灾防范和扑救的效率,减少了人力和物力的浪费。
实验证明,该系统具有较高的识别准确率和实时性,具有重要的应用价值和推广前景。
关键词:火灾报警系统、火灾图像识别、深度学习一、引言近年来,火灾事故频繁发生,给人们的生命财产安全带来了严重威胁。
传统的火灾报警系统需要依靠人工巡逻来发现火灾迹象,不仅效率低下而且容易出现盲点,无法实现24小时实时监控。
因此,设计一种能够快速准确地识别火灾并进行报警的自动化系统非常必要。
二、设计思路本文设计的自动报警系统主要基于火灾图像的识别。
系统的主要流程包括图像采集、图像预处理、特征提取、模型训练和火灾识别等环节。
首先,使用高清摄像头采集火灾现场图像;然后,对图像进行预处理,包括图像去噪、图像增强等操作;接着,利用深度学习模型进行特征提取,将图像转化为一组有意义的特征向量;最后,通过对模型进行训练,实现火灾图像的准确识别,并及时向相关部门发送报警信息。
三、深度学习模型的选择本文选择了卷积神经网络(Convolutional Neural Network,CNN)作为深度学习模型。
CNN具有良好的图像处理能力和学习能力,适用于图像识别。
在本系统中,选择一种主流的CNN模型(例如ResNet、Inception等)作为基础模型,并通过调整网络结构和参数进行优化,提高火灾图像的识别准确率。
四、实验结果与讨论本文在实验中采用了大量的火灾图像数据进行训练和测试,评估了系统的性能表现。
实验结果表明,本系统在火灾图像的识别准确率和实时性方面都达到了很高的水平。
智能火灾报警监测系统的本科毕业设计智能火灾报警监测系统是一种可以实时监测火灾并及时报警的智能设备,能够在火灾发生早期进行监测,快速报警并采取适当的措施来避免火灾蔓延,保护人们的生命财产安全。
本文将详细介绍智能火灾报警监测系统的设计与实现。
本科毕业设计的目标是设计一款基于物联网技术的智能火灾报警监测系统。
该系统由多个智能传感器节点以及一个中央控制器组成。
每个智能传感器节点负责火灾信号检测和数据采集,将采集到的数据通过无线通信方式传送给中央控制器,中央控制器通过分析传感器节点发送过来的数据,判断是否发生火灾并进行相应的报警措施。
在系统设计中,首先需要选择合适的传感器来对火灾进行监测。
常用的火灾传感器有烟雾传感器、温度传感器以及火焰传感器等。
这些传感器可以采集到火灾所产生的烟雾、温度和火焰等信息。
当传感器检测到异常情况时,会发送信号给中央控制器。
其次,中央控制器应具备对传感器节点进行管理和控制的功能。
中央控制器可以接收传感器节点发送过来的数据,并进行分析判断。
当中央控制器发现有火灾发生时,会立即采取报警措施,例如发送警报信息给相关人员,并触发灭火装置或安全门等设备的启动。
此外,在设计智能火灾报警监测系统时要考虑到系统的可靠性和实时性。
为了提高系统的可靠性,可以采用冗余设计,即引入多个传感器节点进行监测,以防止单个节点的故障影响整个系统的正常运行。
而为了保证系统的实时性,可以使用快速的无线通信技术来进行数据传输,以确保火灾信息能够及时传达给中央控制器。
总之,智能火灾报警监测系统是一种应用广泛且具有重要意义的智能设备。
通过对火灾的实时监测和及时报警,可以有效地提高火灾的防范能力,保护人员的生命财产安全。
本科毕业设计的目标是设计一款基于物联网技术的智能火灾报警监测系统,通过采集和分析火灾相关数据来实现火灾的早期发现和报警操作,以提高火灾防护能力。
火灾报警器毕业设计火灾报警器毕业设计在现代社会中,火灾是一种常见而又极具破坏性的灾害。
为了保护人们的生命和财产安全,火灾报警器作为一种重要的安全设备,被广泛应用于各种场所。
本文将探讨火灾报警器的毕业设计,旨在提供一种创新的设计方案,以提高火灾报警器的性能和可靠性。
一、设计目标火灾报警器的设计目标是在火灾发生时能够及时检测到火灾信号,并发出警报,以便人们能够及时逃生或采取适当的灭火措施。
因此,设计一个高效、灵敏的火灾报警器是非常重要的。
二、传感器选择火灾报警器的核心部件是传感器,它能够感知到火灾产生的烟雾、温度或火焰等特征。
传感器的选择应根据火灾的特点和应用场所的需求来确定。
常见的传感器包括光电传感器、热电传感器和红外传感器等。
在设计中,可以采用多种传感器的组合,以提高火灾的检测准确性和可靠性。
三、信号处理火灾报警器的信号处理部分是将传感器获取到的信号转换为可供人们识别的警报信号。
在设计中,可以使用模拟电路或数字电路来实现信号的处理和转换。
模拟电路适用于简单的火灾报警器设计,而数字电路则适用于更复杂的设计,可以实现信号的处理、存储和传输等功能。
四、警报方式火灾报警器的警报方式可以选择声光报警、手机短信报警或网络报警等。
声光报警是最常见的方式,通过发出高分贝的声音和闪烁的灯光来提醒人们火灾的发生。
手机短信报警可以将火灾信息发送给事先设定的联系人,以便他们能够及时采取行动。
网络报警则可以通过互联网将火灾信息传输到相关部门或人员,提高火灾的响应速度。
五、供电方式火灾报警器的供电方式可以选择电池供电或外部电源供电。
电池供电具有便携性和独立性的优势,适用于一些特殊场所或应急情况下的使用。
外部电源供电则可以保证火灾报警器的长时间稳定工作,适用于长期使用和大型场所的需求。
六、无线通信随着物联网技术的发展,火灾报警器的无线通信功能也逐渐得到了应用。
通过无线通信,火灾报警器可以与其他设备或系统进行联动,实现信息的共享和远程控制。
毕业设计(论文)题目:火灾自动报警系统设计学生:指导老师:系别:电子信息与电气工程系专业:电气工程及其自动化班级:电气1005班学号:31002075302012年6月目录摘要............................................................................................................................ I II ABSTRACT ................................................................................................................. I V 1 绪论. (1)1.1选题的目的和意义 (1)1.2 国内外设计现状 (1)1.3 主要设计内容 (2)1.4工程概况 (2)1.4.1工程说明 (2)1.4.2施工组织方案 (3)1.5施工技术方案 (3)2火灾自动报警系统简介 (9)2.1火灾自动报警系统概述 (9)2.2 火灾自动报警系统的组成 (9)2.2.1触发器件 (9)2.2.2火灾报警装置 (12)2.2.3火灾警报装置 (13)2.2.4消防控制设备 (15)2.2.5电源 (15)3火灾自动报警系统的基本形式及该大楼的结构选型 (16)3.1区域报警系统 (16)3.2集中报警系统 (17)3.3控制中心报警系统 (17)3.4该工程结构选型 (17)3.5报警控制器安装位置的选择和安装 (18)4火灾自动报警系统设计 (19)4.1系统选型 (19)4.2 防火区域和报警区域 (19)4.2.1防火分区的定义 (19)4.2.2防火分区的划分 (20)4.2.3探测区域和报警区域的划分 (21)4.3火灾探测器的选择与设计 (22)4.3.1火灾探测器的设置要求 (22)4.3.2火灾探测器的设置部位 (23)4.3.3火灾探测器数量计算 (25)4.4手动火灾报警按钮、消火栓按钮的设置 (26)4.5区域显示器的布置 (27)4.6火灾应急广播扬声器的设置 (27)4.7消防专用电话设置 (27)5 消防联动控制系统 (29)5.1消防联动控制系统的基本概念 (29)5.2 防火卷帘的联动控制 (30)5.3喷淋泵联动控制 (32)5.4正压风机控制 (33)5.5排烟风机控制 (34)6结论与展望 (35)致谢 (37)【参考文献】 (38)火灾自动报警系统设计摘要本论文是针对合肥北城世纪城B-05地块商业、公寓大楼消防工程的火灾自动报警系统的设计。
火灾报警系统毕业设计火灾报警系统毕业设计在现代社会,火灾是一种常见的灾害,给人们的生命财产安全带来了巨大威胁。
因此,火灾报警系统的设计和研发变得尤为重要。
本文将探讨火灾报警系统的毕业设计,包括系统的结构、功能和技术挑战。
一、引言火灾报警系统是一种用于检测和报警火灾的设备,广泛应用于各种场所,如住宅、商业建筑和工业厂房。
它的主要功能是及时发现火灾并发出警报,以便人们能够尽早采取适当的措施避免火灾蔓延。
二、系统结构火灾报警系统通常由传感器、控制器和警报器组成。
传感器用于检测火灾的迹象,如烟雾、温度和火焰。
控制器负责接收传感器的信号并判断是否发生火灾,同时控制警报器发出警报。
警报器可以是声音报警器、闪光灯或两者的组合。
三、系统功能1. 火灾检测:火灾报警系统的主要功能是检测火灾的迹象。
传感器可以通过检测烟雾、温度和火焰等指标来判断是否发生火灾。
当传感器检测到异常情况时,会向控制器发送信号。
2. 警报通知:一旦控制器接收到传感器的信号并确认发生火灾,它会立即触发警报器发出警报。
警报器通常会发出高分贝的声音和闪烁的灯光,以吸引人们的注意并提醒他们采取逃生措施。
3. 通信功能:现代的火灾报警系统还具备通信功能,可以将火灾信息传输给相关部门,如消防局或物业管理人员。
这样,他们可以及时采取措施,减少火灾对人员和财产的危害。
四、技术挑战设计一个高效可靠的火灾报警系统是一项具有挑战性的任务。
以下是一些可能遇到的技术挑战:1. 传感器选择:不同类型的火灾需要不同类型的传感器来检测。
因此,选择合适的传感器对系统的准确性和可靠性至关重要。
2. 数据处理:传感器会不断产生大量的数据,需要对这些数据进行实时处理和分析。
如何高效地处理数据,准确地判断火灾发生与否,是一个重要的技术挑战。
3. 误报率控制:火灾报警系统必须具备高的准确性,以避免误报。
减少误报率是一个困难的问题,需要综合考虑各种因素,如传感器的灵敏度和算法的优化。
4. 系统可靠性:火灾报警系统必须具备高可靠性,以确保在火灾发生时能够及时发出警报。
摘要火灾报警系统是人们为了早期发现通报火灾,并及时采取有效措施,控制和扑灭火灾,而设置在建筑物中或其它场所的一种自动消防设施,是人们同火灾作斗争的有力工具。
在我们生活得四周到处潜伏着火灾隐患,为了避免火灾以及减少火灾造成的损失,我们必须按照“隐患险于明火,防患胜于救灾,责任重于泰山”的概念设计和完善火灾自动报警系统,将火灾消灭在萌芽状态,最大限度地减少社会财富的损失。
设计以MCS-51单片机为硬件核心实现智能火灾报警系统的设计。
文中选用MQ-2型半导体烟雾传感器实现烟雾的检测;选用DS18B20数字温度传感器实现温度的检测;使用ADC0809对MQ-2采集的模拟信号进行A/D转换,以便单片机处理。
由于ADC0809的时钟信号通常为500KHz,故而选用74LS74进行分频。
单片机处理数据后,与设定的上限值进行比较,超过上限值时,发出指令,实现光报警,达到预期的效果。
第一章绪论1.1火灾报警系统火灾报警系统,一般由火灾探测器、区域报警器和集中报警器组成;也可以根据工程的要求同各种灭火设施和通讯装置联动,以形成中心控制系统。
即由自动报警、自动灭火、安全疏散诱导、系统过程显示、消防档案管理等组成一个完整的消防控制系统。
火灾探测器是探测火灾的仪器,由于在火灾发生的阶段,将伴随产生烟雾、高温格火光。
这些烟、热和光可以通过探测器转变为电信号报警或使自动灭火系统启动,及时扑灭火灾。
区域报警器能将所在楼层之探测器发出的信号转换为声光报警,并在屏幕上显示出火灾的房间号;同时还能监视若干楼层的集中报警器(如果监视整个大楼的则设于消防控制中心)输出信号或控制自动灭火系统。
集中报警是将接收到的信号以声光方式显示出来,其屏幕上也具体显示出着火的楼层和房间号,机上停走的时钟记录下首次报警时间性,利用本机专用电话,还可迅速发出指示和向消防队报警。
此外,也可以控制有关的灭火系统或将火灾信号传输给消防控制室。
1.2课题研究的背景及意义在各种灾害中,火灾是最经常、最普遍地威胁公众安全和社会发展的主要灾害之一。
火灾是世界上发生频率较高的一种灾害,几乎每天都有火灾发生。
据联合国“世界火灾统计中心(WFSC)2000统计资料”,全球每年大约发生火灾600万至700万次,全球每年死于火灾的人数约为65000至75000人。
其中,欧美地区发生的火灾较多,死亡人数却相对较少,这与欧美发达国家的生活水平以及消防技术和设施有关;相比较而言,亚洲地区发生火灾次数较少,但死亡人数较多,这与亚洲经济发展程度不高、消防设施不完善等因素有关。
据统计,我国70年代火灾年平均损失不到2.5亿元,80年代火灾年平均损失接近3.2亿元。
进入90年代,特别是1993年以来,火灾造成的直接财产损失上升到年均十几亿元,年均死亡2000多人。
随着经济和城市建设的快速发展,城市高层、地下以及大型综合性建筑日益增多,火灾隐患也大大增加,火灾发生的数量及其造成的损失呈逐年上升趋势。
一旦发生火灾,将对人的生命和财产造成极大的危害[1]。
严峻的事实证明,随着社会和经济的发展,社会财富日益增加,火灾给人类、社会和自然造成的危害范围不断扩大,它不仅毁坏物质财产,造成社会秩序的混乱,还直接危胁生命安全,给人们的心灵造成极大的伤害。
残酷的现实让人们逐渐认识到监控预警和消防工作的重要性,良好的监控系统和及时的报警机制可以大大降低人员的伤亡,为社会减少不必要的损失[2]。
火灾自动报警系统(FAS)就是为了满足这一需求而研制出的,并且其自身的技术水平也在随着人们需求的不断地提高,在功能、结构、形式等方面不断地完善。
火灾自动报警系统能迅速监测火情,可发现人们不易发觉的火灾早期特征,可将火灾带来的生命财产损失降到最低限度。
火灾发生的早期,会使得燃烧物质分解,析出大量的有毒气体CO,人们可能在毫无察觉火情的情况下就发生了CO 中毒,从而无力逃生,火灾自动报警系统可监测到CO浓度的变化,为人们提供CO浓度超标报警信息,通知人们及时疏散[3]。
火灾自动报警系统可作为城市消防系统的单元,通过城市消防专用网与城市消防报警中心联网,及时将报警信息传递到消防报警中心,城市消防报警中心会自动查找到火灾发生的位置,并为消防队员制定消防路线图,以便消防队员可以迅速抵达火灾地点[4]。
火灾自动报警系统能对火灾进行实时监测和准确报警,有着防止和减少火灾危害、保护人身安全和财产安全的重要意义,有着很大的经济效益和社会效益。
1.3国内外研究的现状根据现代战争的突发性、立体性和区域不确定性,使攻防界线模糊,作战方向多变,战火灾自动报警系统已有百余年的发展历史,19世纪40年代美国诞生的火灾报警装置标志着火灾自动报警系统首次进入人们的视野[5]。
1890年在英国,感温式火灾探测器研制成功并应用于火灾探测系统,标志着火灾自动报警系统的发展走上正轨[6]。
此后,随着世界科技取得了突飞猛进的进步和各种新兴技术的出现和发展,火灾监测技术也相应迅速发展,各种类型的火灾探测器相继问世,并日臻完善,火灾自动报警系统也在此基础上逐渐地蓬勃发展起来,其发展过程可以分为以下几个阶段:第一阶段,从19世纪40年代至20世纪40年代,火灾报警系统处于发展的初级阶段,采用的探测器主要是感温式的探测器,它通过采集温度信号,然后判定是否超出设定的阂值,从而判断是否有火灾发生。
这一阶段,火灾报警系统简单,仅靠单一的温度参量进行火灾判断。
但是它易受环境中其他干扰源的影响,灵敏度低,响应速度慢,无法判断阴燃火灾,也无法满足智能化火灾报警系统的要求。
第二阶段,20世纪40年代末,瑞士物理学家Emst Meili研究的离子感烟探测器推出以后,引起了人们对离子感烟探测器的重视,随后感烟探测器得到广泛应用,并逐渐占据了绝大部分市场,迫使感温式探测器退居其次;到70年代末,光电式感烟探测器在光电技术的基础上发展起来,并很快得到大力发展,它的使用寿命长,抗干扰能力强,没有离子感烟探测器的放射性问题。
在这一阶段,火灾报警系统普遍采用多线制布局方式,布线、调试、系统可靠性是系统发展的瓶颈。
第三阶段,20世纪80年代初期,总线型火灾报警系统开始兴起,在火灾报警领域中迈出了一大步,并得到了较普遍的应用。
它使得布线工作量显著减少,安装调试更加容易,更能精确报警定位。
但是这一时期的火灾报警系统的智能化水平不高,采用有线连接对工程要求高。
第四阶段,从20世纪80年代中后期开始,随着计算机技术、控制技术、集成电路技术、传感器技术及智能技术的快速发展,火灾自动报警系统步入智能化时代,智能化火灾报警系统迅速发展起来,各种智能型的火灾自动报警系统相继出现。
模拟量可寻址技术的应用使得火灾报警系统的安全性、精准性和智能性有了很大提高,在火灾自动报警系统发展史上具有里程碑的意义[7]。
近年来,采用无线通信方式的火灾自动报警系统在国外悄然兴起。
这种系统引入了无线电通信技术,利用无线通信方式代替传统的有线通信方式,将大多的电器装置通过无线连接方式进行信息传输与控制,适用于各类建筑和场所。
无线火灾自动报警系统起初仅用于特殊场合,如博物馆、名胜古迹等不宜布线的场合,而且其价格也比较高[8]。
随着科技进步和元器件成本的降低,无线火灾自动报警系统的研发和生成成本也随之降低,它在性能和价格上都具有很强的竞争力,其市场潜力已经崭露头角[9]。
在我国,采用的无线通信方式的火灾自动报警系统日益受到重视。
由于其具有安装简便、对建筑物无损坏作业、灵活性好,易于扩展等优点,适用于许多场合,如名胜古迹、体育馆、博物馆、展览中心、处于施工阶段的建筑物、医院等。
火灾自动报警系统的智能性主要体现在火灾判决和统筹管理方面,一般分为分散式、集中式和分布式,分散式系统由非智能型控制器若干智能型探测节点组成,由探测节点完成火灾状态的判断;集中式系统由智能型控制器和若干非智能探测节点构成,探测节点仅将火灾参量传送给控制器,由控制器智能地判断火灾状态;分布式系统的控制器和探测节点均为智能型,也是今后火灾自动报警系统的发展方向[10]。
第二章火灾报警系统设计方案2.1 火灾产生的原理与过程火灾是一种失去人为控制的由燃烧造成的灾害,产生火灾的基本要素是可燃物、助燃物和点火源。
可燃物以气态、液态和固态三种形态存在,助燃物通常是空气中的氧气。
根据可燃气体与空气混合方式不同有两种燃烧方式,如果在燃烧前,可燃气就与空气均匀混和,则称之为预混燃烧;如果可燃气体和空气分别进入燃烧区边混合边燃烧,则称之为扩散燃烧。
液体和固体是凝聚态物质,难与空气均匀混合,它们燃烧的基本过程是当从外部获取一定的能量时,液体或固体先蒸发成蒸汽或分解出可燃气体(如CO、H2等)的分子团、灰烬和未燃烧的物质颗粒悬浮在空气中,称之为气溶胶。
一般气溶胶的分子较小(直径0.01μm)。
在产生气溶胶的同时,产生分子较大(直径0.01一10μm)的液体或固体微粒,称为烟雾。
可燃气体与空气混合,在较强火源作用下产生预混燃烧。
着火后,燃烧产生的热量使液体或固体的表面继续放出可燃气体,并形成扩散燃烧。
同时,发出含有红、紫外线的火焰,散发出大量的热量[11]。
这些热量通过可燃物的直接燃烧、热传导、热辐射和热对流,使火从起火部位向周围蔓延,导致了火势的扩大,形成火灾。
其中的气溶胶、烟雾、火焰和热量都称为火灾参量,通过对这些参量的测定便可确定是否存在火灾。
根据火灾发生时产生现象的不同,可以将火灾分为慢速阴燃、明火和快速发展火焰等。
阴燃就是在疏松或颗粒介质中形成的缓慢进行的热解和氧化反应,它能长时间自行维持并传播,当条件发生变化时,或者自行熄灭,或者转化为明火。
明火则是火灾发生时燃烧火焰产生的热量使液体或固体的表面放出可燃气体,并形成扩散燃烧,同时发出含有红、紫外线的火焰。
快速发展火焰则是火灾扩散的速度特别快,这种类型的火灾一般为空气中混有大量可燃气体。
通过大量的研究表明阴燃是诱发火灾的重要原因[12]。
总的来说,普通可燃物在燃烧时表现为以下形式:首先是产生燃烧气体,然后是烟雾,在氧气充足的条件下才能达到全部燃烧,产生火焰,发出可见光和不可见光,并散发出大量的热,使环境温度升高。
起火过程中,起初和阴燃两个阶段所占的时间比较长,虽然产生大量的烟雾,但是环境温度不太高,若探测器就应该从此阶段开始进行探测,就可以火灾损失控制在最小限度。
火焰燃烧后,迅速蔓延,产生大量的热使得环境温度升高,如果能将这时能够探测到有效地温度值,就可以比较及时地控制火灾。
起火过程曲线如图2.1所示[13]。
图2.1 起火过程曲线2.2 火灾报警系统系统设计方案2.2.1 系统总体设计方案为了便于系统维护和功能扩充,采用了模块化程序设计方法,系统各个模块的具体功能都是通过子程序调用实现的。