高中高考高三数学第一次模拟试题精选数列05 Word版含答案
- 格式:doc
- 大小:301.50 KB
- 文档页数:6
2004-2005学年度上学期高中学生学科素质训练高三数学同步测试(2)—《数列与极限》一、选择题(本题每小题5分,共60分)1.在等比数列}{n a 中,a 1+a 2=2,a 3+a 4=50,则公比q 的值为 ( )A .25B .5C .-5D .±52.已知等差数列{a n }中,a 6=a 3+a 8=5,则a 9的值是( )A .5B . 15C .20D .253.给定正数p,q,a,b,c ,其中p ≠q ,若p,a,q 成等比数列,p,b,c,q 成等差数列, 则一元二次方程bx 2-2ax+c=0( )A .无实数根B .有两个相等的实数根C .有两个同号的相异的实数根D .有两个异号的相异的实数根4.等差数列}{n a 的前n 项和记为n S ,若1062a a a ++为一个确定的常数,则下列各数中也是常数的是 ( )A .6SB .11SC .12SD .13S5.设数列{}n a 为等差数列,且65867424,20042a a a a a a a 则=++等于 ( )A .501B .±501C .2004D .±20046.已知等差数列{}n a 的前n 项和为S n ,若m>1,且38,012211==-+-+-m m m m S a a a ,则m等于 ( )A .38B .20C .10D .97.设等比数列}{n a 的前n 项和为S n ,若2:1:36=S S ,则=39:S S ( )A .1:2B .2:3C .3:4D .1:38.某人为了观看2008年奥运会,从2001年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2008年将所有的存款及利息全部取回,则可取回的钱的总数(元)为 ( )A .7)1(p a +B .8)1(p a +C .)]1()1[(7p p p a+-+ D .()()[]p p pa+-+118 9.已知()1+=bx x f 为x 的一次函数,b 为不等于1的常量,且()=n g ⎩⎨⎧≥-=)1()],1([)0(1n n g f n , 设()()()+∈--=N n n g n g a n 1,则数列{}n a 为 ( )A .等差数列B .等比数列C .递增数列D .递减数列10.已知02log 2log >>a b ,则nn nn n b a b a ++∞→lim 的值为( ) A .1B .-1C .0D .不存在11.北京市为成功举办2008年奥运会,决定从2003年到2007年5年间更新市内现有全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新车辆数约为现有总车辆数的(参考数据1.14=1.46 1.15=1.61) ( )A .10%B .16.4%C .16.8%D .20%12.已知3)(32lim ,2)3(,2)3(3---='=→x x f x f f x 则的值为( )A .-4B .8C .0D .不存在二、填空题(本题每小题4分,共16分)13.已知等比数列}{n a 及等差数列}{n b ,其中01=b ,公差d ≠0.将这两个数列的对应项相加,得一新数列1,1,2,…,则这个新数列的前10项之和为_________________. 14.设数列{a n }满足a 1=6,a 2=4,a 3=3,且数列{a n+1-a n }(n ∈N *)是等差数列,求数列{a n }的通项公式__________________.15.设()244+=x xx f ,利用课本中推导等差数列前n 项和方法,求+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛112111f f …⎪⎭⎫⎝⎛+1110f 的值为______ ___.16.(文)黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖____________块.(理)已知nn a ⎪⎭⎫⎝⎛∙=312,把数列{}n a 的各项排成三角形状;1a 2a 3a 4a 5a 6a 7a 8a ……记A (m,n )表示第m 行,第n 列的项,则A (10,8)= .三、解答题(本大题共6小题,共74分。
课时规范训练[A 级 基础演练]1.若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12D .-15解析:选A.记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A.2.(2021·河北承德模拟)等差数列{a n }的前n 项和为S n (n =1,2,3,…),当首项a 1和公差d 变化时,若a 5+a 8+a 11是一个定值,则下列各数中为定值的是( )A .S 17B .S 18C .S 15D .S 16解析:选C.由等差数列的性质得a 5+a 11=2a 8,所以a 5+a 8+a 11为定值,即a 8为定值.又由于S 15=15(a 1+a 15)2=15×2a 82=15a 8,所以S 15为定值.故选C.3.已知数列{a n }的通项公式是a n =n 2sin ⎝ ⎛⎭⎪⎫2n +12π,则a 1+a 2+a 3+…+a 2 016=( )A.2 015×2 0162B .2 016×2 0172C.2 015×2 0152D .2 016×2 0162解析:选B.a n =n 2sin ⎝ ⎛⎭⎪⎫2n +12π=⎩⎪⎨⎪⎧-n 2n2(n 为奇数),(n 为偶数),∴a 1+a 2+a 3+…+a 2 016=-12+22-32+42-…-2 0152+2 0162=(22-12)+(42-32)+…+(2 0162-2 0152)=1+2+3+4+…+2 016=2 016×2 0172.4.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2D .2解析:选A.由等差数列性质及前n 项和公式,得 S 8=8(a 1+a 8)2=4(a 3+a 6)=4a 3,所以a 6=0.又a 7=-2,所以公差d =-2,所以a 9=a 7+2d =-6.5.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( )A .3 690B .3 660C .1 845D .1 830解析:选D.当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3, ∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3, ∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30×(3+119)2=30×61=1 830.6.已知数列{a n }中,a 1=1,a n +1=(-1)n(a n +1),记S n 为{a n }的前n 项和,则S 2 017= . 解析:由a 1=1,a n +1=(-1)n(a n +1)可得该数列是周期为4的数列,且a 1=1,a 2=-2,a 3=-1,a 4=0,a 5=1,所以S 2 017=504(a 1+a 2+a 3+a 4)+a 2 017=504×(-2)+1=-1 007.答案:-1 0077.(2021·江西八所中学联考)在数列{a n }中,已知a 1=1,a n +1+(-1)na n =cos(n +1)π,记S n 为数列{a n }的前n 项和,则S 2 017= .解析:∵a n +1+(-1)na n =cos(n +1)π=(-1)n +1,∴当n =2k 时,a 2k +1+a 2k =-1,k ∈N *,∴S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1+(-1)×1 008=-1 007.答案:-1 0078.等差数列{}a n 的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{}a n 的通项公式; (2)设b n =1a n a n +1,求数列{}b n 的前n 项和T n .解:(1)由a 1=10,a 2为整数,知等差数列{}a n 的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0. 解得-103≤d ≤-52.因此d =-3.数列{}a n 的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n10(10-3n ).9.(2021·辽宁五校联考)已知等差数列{}a n ,公差d >0,前n 项和为S n ,S 3=6且满足a 3-a 1,2a 2,a 8成等比数列.(1)求{}a n 的通项公式;(2)设b n =1a n ·a n +2,求数列{}b n 的前n 项和T n .解:(1)由S 3=6,得a 2=2. ∵a 3-a 1,2a 2,a 8成等比数列,∴2d ·(2+6d )=42,解得,d =1或d =-43.∵d >0,∴d =1,∴数列{}a n 的通项公式为a n =n . (2)∵b n =1a n ·a n +2=1n (n +2),∴T n =11×3+12×4+13×5+…+1n (n +2)=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=3n 2+5n 4(n +1)(n +2). [B 级 力量突破]1.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不犯难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公认真算相还.”其意思为:有一个人走378里路,第一天健步行走,从其次天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问其次天走了( )A .192里B .96里C .48里D .24里解析:选B.由题意,知每天所走路程形成以a 1为首项,公比为12的等比数列,则a 1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,则a 2=96,即其次天走了96里.故选B.2.已知数列5,6,1,-5,…,该数列的特点是从其次项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( )A .5B .6C .7D .16解析:选C.依据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发觉从第7项起,数字重复消灭,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又由于16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C. 3.数列{a n }的通项为a n =(-1)n(2n +1)sin n π2+1,前n 项和为S n ,则S 100= .解析:由a n =(-1)n(2n +1)sinn π2+1可得全部的偶数项为1,奇数项有以下规律:⎩⎪⎨⎪⎧a 1=-2,a 5=-10,a 9=-18,…⎩⎪⎨⎪⎧a 3=8,a 7=16,a 11=24,…所以a 1+a 5+…+a 97=25×(-2)+25×242×(-8)=-2 450,a 3+a 7+…+a 99=25×8+25×242×8=2 600,a 2+a 4+…+a 100=50×1=50 所以S 100=-2 450+2 600+50=200. 答案:2004.(2021·昆明调研)已知等差数列{}a n 中,a 2=4,a 4是a 2与a 8的等比中项. (1)求数列{}a n 的通项公式; (2)若a n +1≠a n ,求数列{}2n -1·a n 的前n 项和.解:(1)由a 2=4,且a 4是a 2,a 8的等比中项可得a 1+d =4,a 24=a 2a 8,即(4+2d )2=4(4+6d ),化简得d 2-2d =0, 则d =0或d =2,由于a 2=4,当d =0时,a n =4; 当d =2时,a 1=2,则a n =2n . (2)∵a n +1≠a n ,∴a n =2n ,则2n -1a n =2n -1·2n =2n ·n ,∵S n =21+2×22+3×23+…+(n -1)·2n -1+n ·2n,(*1)(*1)×2得,2S n =22+2×23+3×24+…+(n -1)·2n+n ·2n +1,(*2)(*1)-(*2)得,-S n =21+22+23+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.5.在等比数列{}a n 中,a 1>0,n ∈N *,且a 3-a 2=8,又a 1、a 5的等比中项为16. (1)求数列{}a n 的通项公式;(2)设b n =log 4a n ,数列{}b n 的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n<k 对任意n ∈N*恒成立?若存在,求出正整数k 的最小值;不存在,请说明理由.解:(1)设数列{}a n 的公比为q ,由题意可得a 3=16,∵a 3-a 2=8,则a 2=8,∴q =2.∴a n =2n +1.(2)∵b n =log 42n +1=n +12,∴S n =b 1+b 2+…+b n =n (n +3)4.∵1S n=4n (n +3)=43⎝ ⎛⎭⎪⎫1n -1n +3,∴1S 1+1S 2+1S 3+…+1S n=43⎝ ⎛⎭⎪⎫11-14+12-15+13-16+…+1n -1n +3=43⎝⎛⎭⎪⎫1+12+13-1n +1-1n +2-1n +3<43⎝ ⎛⎭⎪⎫1+12+13=229, ∴存在正整数k ,其最小值为3.。
山东省2014届高三文科数学一轮复习之2013届名校解析试题精选分类汇编5:数列一、选择题1 .(【解析】山东省青岛一中2013届高三1月调研考试文科数学)已知数列{n a }满足*331log 1log ()n n a a n ++=∈N ,且2469a a a ++=,则15793log ()a a a ++的值是 ( )A .15-B .5-C .5D .15【答案】B 【解析】由*331log 1log ()n n a a n ++=∈N ,得313log log 1n n a a +-=,即13log 1n na a +=,解得13n n a a +=,所以数列{}n a 是公比为3的等比数列.因为3579246()a a a a a a q ++=++,所以35579933a a a ++=⨯=.所以5515791333log ()log 3log 35a a a ++==-=-,选 B .2 .(【解析】山东省德州市2013届高三3月模拟检测文科数学)若正项数列{}n a 满足1111n n ga ga +=+,且a 2001+a 2002+a 2003+a 2010=2013,则a 2011+a 2012+a 2013+a 2020的值为( )A .2013·1010B .2013·1011C .2014·1010D .2014·1011【答案】A 由条件知1111lg1n n n n a ga ga a ++-==,即110n naa +=为公比是10的等比数列.因为102001201020112020()a a q a a ++=++ ,所以1020112020201310a a ++=⋅ ,选A .3 .(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)在各项均为正数的等比数列{}n a 中,31,1,s a a ==则2326372a a a a a ++=( )A .4B .6C .8D.8-【答案】C 【解析】在等比数列中,23752635,a a a a a a a ==,所以22232637335522a a a a a a a a a ++=++22235()11)8a a =+=+==,选C .4 .(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)已知函数()()2cos f n n n π=,且()()1,n a f n f n =++则123100a a a a +++⋅⋅⋅+=( )A .100-B .0C .100D .10200【答案】A 解:若n 为偶数,则()()221=(1)(21)na f n f n n n n =++-+=-+,为首项为25a =-,公差为4-的等差数列;若n 为奇数,则()()221=(1)21n a f n f n n n n =++-++=+,为首项为13a =,公差为4的等差数列.所以123100139924100()()a a a a a a a a a a +++⋅⋅⋅+=+++++++ 50495049503450(5)410022⨯⨯=⨯+⨯+⨯--⨯=-,选A . 5 .(【解析】山东省济南市2013届高三3月高考模拟文科数学)等差数列}{n a 中,482=+a a ,则它的前9项和=9S ( )A .9B .18C .36D .72【答案】B 在等差数列中,28194a a a a +=+=,所以1999()941822a a S +⨯===,选 B .6 .(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知各项为正的等比数列{}n a 中,4a 与14a 的等比数列中项为22,则1172a a +的最小值 ( )A .16B .8C .22D .4【答案】B 【解析】由题意知224149a a a ==,即9a =.所以设公比为(0)q q >,所以22971192228a a a a q q +=+=+≥=,2=,即42q =,所以q =,所以最小值为8,选B .7 .(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))在各项均为正数的数列{a n }中,对任意m 、*n N Î都有m n m a a +=·n a 若636,a =则9a 等于 ( )A .216B .510C .512D .l024【答案】A 解:由题意可知26336a a ==,所以36a =,所以93636636216a a a a +===⨯= ,选A .8 .(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))如果等差数列{}n a 中,15765=++a a a ,那么943...a a a +++等于 ( )A .21B .30C .35D .40【答案】C 【解析】在等差数列中,由15765=++a a a 得663155a a ==,.所以3496...=77535a a a a +++=⨯=,选C .9 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)已知等差数列{}n a 的前n 项和为n S ,满足1313113a S a ===,则 ( )A .14-B .13-C .12-D .11-【答案】D 在等差数列中,1131313()132a a S +==,所以1132a a +=,即113221311a a =-=-=-,选 D .10.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)两旅客坐火车外出旅游,希望座位连在一起,且仅有一个靠窗,已知火车上的座位的排法如表格所示,则下列座位号码符合要求的是( )A .48,49B .62,63C .84,85D .75,76【答案】C 根据座位排法可知,做在右窗口的座位号码应为5的倍数,所以C 符合要求.选 C .11.(山东省威海市2013届高三上学期期末考试文科数学){}n a 为等差数列,n S 为其前n 项和,已知77521a S ==,,则10S =( )A .40B .35C .30D .28【答案】【答案】A 设公差为d ,则由77521a S ==,得1777()2a a S +=,即17(5)212a +=,解得11a =,所以716a a d =+,所以23d =.所以1011091092101040223S a d ⨯⨯=+=+⨯=,选 ( )A .12.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)已知在等比数列{}n a 中,1346510,4a a a a +=+=,则该等比数列的公比为 ( )A .14B .12C .2D .8【答案】B 解:因为31346()a a q a a +=+,所以34613514108a a q a a +===+,即12q =,选B .13.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知等差数列{}n a 的公差为d 不为0,等比数列{}n b 的公比q 是小于1的正有理数,若211,d b d a ==,且321232221b b b a a a ++++是正整数,则q 的值可以是 ( )A .71 B .-71 C .21 D .21-【答案】C 【解析】由题意知21312,23a a d d a a d d =+==+=,22222131,b b q d q b b q d q ====,所以2222221232222212349141a a a d d d b b b d d q d q q q ++++==++++++,因为321232221b b b a a a ++++是正整数,所以令2141t q q=++,t 为正整数.所以2114t q q ++=,即21014t q q ++-=,解得q ===,因为t 为正整数,所以当8t =时,12122q -+===.符合题意,选C .14.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数列{}n a 为等差数例,其前n 项的和为n S ,若336,12a S ==,则公差d = ( )A .1B .2C .3D .53【答案】B 在等差数列中,13133()3(6)1222a a a S ++===,解得12a =所以解得2d =,选 B . 15.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知数列{}n a 的前n 项和为n S ,且122-=n S n , 则=3a( )A .-10B .6C .10D .14【答案】C 解:22332231(221)10a S S =-=⨯--⨯-=,选 C .16.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等差数列{n a }中,74a π=,则tan(678a a a ++)等于( )A .B .C .-1D .1【答案】C 在等差数列中6787334a a a a π++==,所以6784tan()tan14a a a π++==-,选 C . 17.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)已知等比数列{a n }的公比q=2,前n硕和为S n .若S 3=72,则S 6等于 ( )A .312B .632C .63D .1272【答案】B 【解析】3131(12)77122a S a -===-,所以112a =.所以6161(12)6363122a S a -===-,选 B .二、填空题18.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S =_____________ ;【答案】54- 由1532,3a a a ==得1143(2)a d a d +=+,即12d a =-=-,所以919899298542S a d ⨯=+=⨯-⨯=-. 19.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)等比数列}{n a ,2=q ,前n 项和为=24a S S n ,则____________. 【答案】215解:在等比数列中,4141(12)1512a S a -==-,所以4121151522S a a a ==.20.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)数列{}n a 满足113,1,n n n n a a a a A +=-=表示{}n a 前n 项之积,则2013A =_____________.【答案】1-【解析】由113,1,n n n a a a a +=-=得11n n na a a +-=,所以231233a -==,312a =-,43a =,所以{}n a 是以3为周期的周期数列,且1231a a a =-,又20133671=⨯,所以6712013(1)1A =-=-.21.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)在如图所示的数阵中,第9行的第2个数为___________.【答案】66 每行的第二个数构成一个数列{}n a ,由题意知23453,6,11,18a a a a ====,所以3243543,5,7,a a a a a a -=-=-=12(1)123n n a a n n --=--=-,等式两边同时相加得22[233](2)22n n n a a n n -+⨯--==-,所以()222223,2n a n n a n n n =-+=-+≥,所以29929366a =-⨯+=.22.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)正项数列{}n a 满足:()222*121171,2,2,2,n n n a a a a a n N n a +-===+∈≥=则______.【答案】因为()222*112,2n n n a a a n N n +-=+∈≥,所以数列2{}n a 是以211a =为首项,以2221413d a a =-=-=为公差的等差数列,所以213(1)32n a n n =+-=-,所以1n a n =≥,所以7a ==23.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10cm,最下面的三节长度之和为114cm,第6节的长度是首节与末节长度的等比中项,则n=_____.【答案】16 设对应的数列为{}n a ,公差为,(0)d d >.由题意知110a =,12114n n n a a a --++=,261n a a a =.由12114n n n a a a --++=得13114n a -=,解得138n a -=,即2111(5)()n a d a a d -+=+,即2(105)10(38)d d +=+,解得2d =,所以11(2)38n a a n d -=+-=,即102(2)38n +-=,解得16n =.24.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )已知等差数列{n a }中,35a a +=32,73a a -=8,则此数列的前10项和10S =____.【答案】190【解析】由7348a a d -==,解得2d =,由3532a a +=,解得110a =.所以101109101902S a d ⨯=+=. 25.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)已知等差数列{}n a 的前n 项和为n S ,若2,4,3a 成等比数列,则5S =_________.【答案】40因为2,4,3a 成等比数列,所以232416a ==,所以38a =.又153535()525584022a a a S a +⨯====⨯=. 26.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知等比数列{a n }中,6710111,16a a a a ==g g ,则89a a g 等于_______【答案】4【解析】在等比数列中2676()10a a a q ==>g ,所以0q >,所以289670a a a a q =>g .所以67101116a a a a =,即289()16a a =g ,所以894a a =g .27.(【解析】山东省泰安市2013届高三上学期期末考试数学文)下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n 个图形中小正方形的个数是___________.【答案】(1)2n n +【解析】12341,3,6,10a a a a ====,所以2132432,3,4a a a a a a -=-=-=, 1n n a a n --=,等式两边同时累加得123n a a n -=+++ ,即(1)122n n n a n +=+++=,所以第n 个图形中小正方形的个数是(1)2n n + 三、解答题28.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知数列{a n }的前n 项和为S n ,且22n n S a =-.(1)求数列{a n }的通项公式;(2)记1213(21)n n S a a n a =+++-g g L g ,求S n【答案】29.(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))设数列{}n a 为等差数列,且9,553==a a ;数列{}n b 的前n 项和为n S ,且2=+n n b S . (I)求数列{}n a ,{}n b 的通项公式; (II)若()+∈=N n b a c nnn ,n T 为数列{}n c 的前n 项和,求n T . 【答案】30.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数列{}n a 的前n 项和是n S ,且11()2n n S a n *+=∈N (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设113log (1)()n n b S n *+=-∈N ,令122311n T b b b b =++11n n b b ++,求n T . 【答案】31.(【解析】山东省临沂市2013届高三5月高考模拟文科数学)已知点(1,2)是函数()(01)x f x a a a =≠>且的图象上一点,数列{}n a 的前n 项和()1n S f n =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)将数列{}n a 前2013项中的第3项,第6项,,第3k 项删去,求数列{}n a 前2013项中剩余项的和.【答案】解:(Ⅰ)把点(1,2)代入函数()x f x a =,得2a =.()121,n n S f n ∴=-=-当1n =时,111211;a S ==-= 当2n ≥时,1n n n a S S -=-1(21)(21)n n -=---12n -=经验证可知1n =时,也适合上式,12n n a -∴=.(Ⅱ)由(Ⅰ)知数列{}n a 为等比数列,公比为2,故其第3项,第6项,,第2013项也为等比数列,首项31324,a -==公比32012201328,2a ==为其第671项∴此数列的和为67120134(18)4(21)187--=- 又数列{}n a 的前2013项和为2013201320131(12)21,12S ⨯-==--∴所求剩余项的和为2013201320134(21)3(21)(21)77----=32.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知数列}{n a 的前n 项和为n S ,且)(14*∈+=N n a S n n . (Ⅰ)求21,a a ;(Ⅱ)设||log 3n n a b =,求数列{}n b 的通项公式.【答案】解:(1)由已知1411+=a S ,即31,14111=∴+=a a a ,又1422+=a S ,即91,1)42221-=∴+=+a a a a (;(2)当1>n 时,)1(41)1(4111+-+=-=--n n n n n a a S S a ,即13--=n n a a ,易知数列各项不为零(注:可不证不说),311-=∴-n n a a 对2≥n 恒成立, {}n a ∴是首项为31,公比为-31的等比数列,n n n n a ----=-=∴3)1()31(3111,n a n n -==∴-3log ||log 33,即n b n -=33.(【解析】山东省泰安市2013届高三上学期期末考试数学文)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且222212,,n n S b S q a b b +==求与; 【答案】34.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)设数列{}n a 的前n 项和为n S ,若对于任意的正整数n 都有23n n S a n =-.(I)设3n n b a =+,求证:数列{}n b 是等比数列,并求出{}n a 的通项公式; (II)求数列{}n nb 的前n 项和T n .【答案】35.(【解析】山东省德州市2013届高三3月模拟检测文科数学)数列{}n a 是公差不小0的等差数列a 1、a 3,是函数2()1(66)f x n x x =-+的零点,数列{}n b 的前n 项和为n T ,且*12()n n T b n N =-∈ (1)求数列{}n a ,{}n b 的通项公式;(2)记n n n c a b =,求数列{}n c 的前n 项和S n .【答案】36.(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))已知数列{a n }的公差为2的等差数列,它的前n 项和为n S ,且1321,1,1a a a +++成等比数列. (I)求{a n }的通项公式; (2)13{},.4n n n n T T S <记数列的前项求证: 【答案】37.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知等差数列{}n a 的前n 项和为n S ,且满足24a =,3417a a +=. (1)求{}n a 的通项公式; (2)设22n a n b +=,证明数列{}n b 是等比数列并求其前n 项和n T .【答案】解:(1)设等差数列{}n a 的公差为d .由题意知3411212317,4,a a a d a d a a d +=+++=⎧⎨=+=⎩解得,11a =,3d =, ∴32n a n =-(n N *∈) (2)由题意知, 2322n a n n b +==(n N *∈),3(1)33122n n n b ---==(,2n N n *∈≥)∴333312282n n n n b b --===(,2n N n *∈≥),又18b = ∴{}n b 是以18b =,公比为8的等比数列()()818881187n nn T -==-- 38.(山东省烟台市2013届高三3月诊断性测试数学文)设{a n }是正数组成的数列,a 1=3.若点()2*11,2()n n n a aa n N ++-∈在函数321()23f x x x =+-的导函数()y f x '=图像上. (1)求数列{a n }的通项公式; (2)设12n n nb a a +=⋅,是否存在最小的正数M,使得对任意n *N ∈都有b 1+b 2++b n <M 成立?请说明理由.【答案】39.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )(本小题满分l2分)设数列{n a }满足:a 1=5,a n+1+4a n =5,(n ∈N*)(I)是否存在实数t ,使{a n +t }是等比数列?(Ⅱ)设数列b n =|a n |,求{b n }的前2013项和S 2013.【答案】解:(I)由+1+4=5n n a a 得+1=4+5n n a a -令()+1+=4+n n a t a t -,得+1=45n n a a t -- 则5=5t -,=1t - 从而()+11=41n n a a --- .又11=4a -, {}1n a ∴-是首项为4,公比为4-的等比数列,∴存在这样的实数=1t -,使{}+n a t 是等比数列(II)由(I)得()11=44n n a --⋅- ()=14nn a ∴--{1+4, 41==n n n n n n b a -∴为奇数,为偶数()()()()()123420132013122013=++=1+4+41+1+4+41++1+4S b b b ∴--1232013=4+4+4++4+1 201420144441=+1=143--- 40.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)已知等比数列13212{}1,6,,8n a q a a a a a >=-的公比且成等差数列.(1)求数列{a n }的通项公式;(2)设(1),: 1.n n nn n b b a +=≤求证 【答案】41.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)已知N n *∈,数列{}n d 满足2)1(3nn d -+=,数列{}n a 满足1232n n a d d d d =+++⋅⋅⋅+;数列{}n b 为公比大于1的等比数列,且42,b b 为方程064202=+-x x 的两个不相等的实根.(Ⅰ)求数列{}n a 和数列{}n b 的通项公式;(Ⅱ)将数列{}n b 中的第.1a 项,第.2a 项,第.3a 项,,第.n a 项,删去后剩余的项按从小到大的顺序排成新数列{}n c ,求数列{}n c 的前2013项和.【答案】解:(Ⅰ)2)1(3n n d -+= ,∴1232n n a d d d d =+++⋅⋅⋅+3232nn ⨯== 因为42,b b 为方程064202=+-x x 的两个不相等的实数根. 所以2042=+b b ,6442=⋅b b 解得:42=b ,164=b ,所以:n n b 2=(Ⅱ)由题知将数列{}n b 中的第3项、第6项、第9项删去后构成的新数列{}n c 中的奇数列与偶数列仍成等比数列,首项分别是12b =,24b =公比均是,8201313520132462012()()T c c c c c c c c =+++⋅⋅⋅+++++⋅⋅⋅+ 1007100610062(18)4(18)208618187⨯-⨯-⨯-=+=-- 42.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值; (Ⅱ)设122111n n n nT S S S ++=++⋅⋅⋅+,求n T.【答案】解:(Ⅰ){}n b 为等差数列,设公差为155,1,15,51015,1d b S S d d ==∴=+== 1(1)1.n b n n ∴=+-⨯=设从第3行起,每行的公比都是q ,且0q >,2294,416,2,a b q q q === 1.+2+3++9=45,故50a 是数阵中第10行第5个数, 而445010102160.a b q ==⨯= (Ⅱ)12n S =++ (1),2n n n ++=1211n n n T S S ++∴=++21nS +22(1)(2)(2)(3)n n n n =++++++22(21)n n ++11112(1223n n n n =-+-+++++11)221n n +-+ 1122().121(1)(21)n n n n n =-=++++43.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)等差数列}{n a 中,9,155432==++a a a a . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设213+=n a n b ,求数列},21{n n b a +的前n 项和n S 【答案】解:(Ⅰ)设数列{}由题意得首项的公差为,1a d a n且⎩⎨⎧=+=+⎩⎨⎧==++941563915115432d a d a a a a a 即 解得⎩⎨⎧==211d a所以数列{}12-=n a a n n 的通项公式为 (Ⅱ)由(Ⅰ)可得n n n a b 3231==+ 所以n n n n b a 3..21=+ 所以+++=323.33.23.11n S 13.+n n两式相减得++++-=433333(22n S 13.)3+++n n n 10 分43).12(323..1233.31313111+++-+=-+=+---=n n n n n n S n n n 即)()(44.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第一年的维护费用是4万元,从第二年到第七年,每年的维护费用均比上年增加2万元,从第八年开始,每年的维护费用比上年增加25%(I)设第n 年该生产线的维护费用为n a ,求n a 的表达式; (Ⅱ)设该生产线前n 年维护费为n S ,求n S .【答案】45.(山东省威海市2013届高三上学期期末考试文科数学)已知数列{}n a ,15a =-,22a =-,记()A n =12n a a a +++ ,23()B n a a =+1n a +++ ,()C n =342+n a a a +++ (*N n ∈),若对于任意*N n ∈,()A n ,()B n ,()C n 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ) 求数列{}||n a 的前n 项和.【答案】解:(Ⅰ)根据题意()A n ,()B n ,()C n 成等差数列∴()+()2()A n C n B n =整理得2121253n n a a a a ++-=-=-+= ∴数列{}n a 是首项为5-,公差为3的等差数列 ∴53(1)38n a n n =-+-=- (Ⅱ)38,2||38,3n n n a n n -+≤⎧=⎨-≥⎩记数列{}||n a 的前n 项和为n S .当2n ≤时,2(583)313222n n n n S n +-==-+ 当3n ≥时,2(2)(138)313714222n n n n S n -+-=+=-+综上,2231322231314322n n n n S n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩ 46.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)已知{}n a 是公比大于1的等经数列,13,a a 是函数9()10f x x x=+-的两个零点(1)求数列{}n a 的通项公式;(2)若数列{}n a 满足312312,80n n b og n b b b b =+++++≥ 且,求n 的最小值.【答案】47.(【解析】山东省济南市2013届高三3月高考模拟文科数学)正项等比数列}{n a 的前n 项和为n S ,164=a ,且32,a a 的等差中项为2S . (1)求数列}{n a 的通项公式; (2)设12-=n n a n b ,求数列}{n b 的前n 项和n T .【答案】解:(1)设等比数列}{n a 的公比为)0(>q q ,由题意,得⎪⎩⎪⎨⎧+=+=)(2161121131q a a q a q a q a ,解得⎩⎨⎧==221q a所以n n a 2= (2)因为12122--==n n n n a n b ,所以12753224232221-+++++=n n nT , 121275322123222141+-+-++++=n n n nn T , 所以12127532212121212143+--+++++=n n n n T122411)411(21+---=n n n 12233432+⋅+-=n n故2181612992n n nT ++=-⋅ 48.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)等比数列....{}n c 满足(){}1*1104,n n n n c c n N a -++=⋅∈数列的前n 项和为n S ,且2log .n n a c =(I)求,n n a S ;(II)数列{}{}1,41n n n n n b b T b S =-满足为数列的前n 项和,是否存在正整数m,()1m >,使得16,,m m T T T 成等比数列?若存在,求出所有m 的值;若不存在,请说明理由.【答案】解: (Ⅰ)40,103221=+=+c c c c ,所以公比4=q10411=+c c 得21=c121242--=⋅=n n n c所以212log 221n n a n -==-21()[1(21)]22n n n a a n n S n ++-=== (Ⅱ)由(Ⅰ)知211114122121n b n n n ⎛⎫==- ⎪--+⎝⎭于是11111112335212121n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦假设存在正整数()1m m >,使得16,,m m T T T 成等比数列,则216213121m m m m ⎛⎫=⨯ ⎪++⎝⎭, 整理得24720m m --=, 解得14m =-或 2m = 由,1m N m *∈>,得2m =, 因此,存在正整数2m =,使得16,,m m T T T 成等比数列49.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等比数列{n a }的首项为l,公比q≠1,n S 为其前n 项和,a l ,a 2,a 3分别为某等差数列的第一、第二、第四项.(I)求n a 和n S ;(Ⅱ)设21n n b log a +=,数列{21n n b b +}的前n 项和为T n ,求证:34n T <.【答案】50.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)在等差数列{}n a 中,a 1 =3,其前n项和为S n ,等比数列{b n }的各项均为正数,b 1 =1,公比为q,且b 2 +S 2 =12, q=22S b . (1)求a n 与b n ; (2)设数列{C n }满足c n =1nS ,求{n c }的前n 项和T n . 【答案】51.(【解析】山东省青岛一中2013届高三1月调研考试文科数学)已知等差数列{}n a 的首项1a =1,公差d>0,且第2项、第5项、第14项分别为等比数列{}n b 的第2项、第3项、第4项. (1)求数列{}n a 与{}n b 的通项公式; (2)设数列{n c }对n ∈N +均有11c b +22c b ++nnc b =1n a +成立,求1c +2c 3c ++2012c . 【答案】.解答:(1)由已知得2a =1+d, 5a =1+4d, 14a =1+13d,∴2(14)d +=(1+d)(1+13d), ∴d=2, n a =2n-1又2b =2a =3,3b = 5a =9 ∴数列{n b }的公比为3,n b =3⋅23n -=13n -(2)由11c b +22c b ++nnc b =1n a + (1) 当n=1时,11c b =2a =3, ∴1c =3当n>1时,11c b +22c b ++11n n c b --= n a (2) (1)-(2)得nnc b =1n a +-n a =2 ∴n c =2n b =2⋅13n - 对1c 不适用∴n c =131232n n n -=⎧⎨∙≥⎩∴123c c c +++2012c =3+2⋅3+2⋅23++2⋅20113=1+2⋅1+2⋅3+2⋅23++2⋅20113=1+2⋅20121313--=2012352.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)设等比数列{}n a 的前n 项和为,415349,,,n S a a a a a =-成等差数列.(I)求数列{}n a 的通项公式;(II)证明:对任意21,,,k k k R N S S S +++∈成等差数列.【答案】。
2020年高考数学(4月份)第一次模拟试卷一、选择题(共10小题).1.已知集合A={x|x(x+1)≤0},集合B={x|﹣1<x<1},则A∪B=()A.{x|﹣1≤x≤1}B.{x|﹣1<x≤0}C.{x|﹣1≤x<1}D.{x|0<x<1}2.已知复数z=(其中i是虚数单位),则|z|=()A.B.C.1D.23.抛物线x2=4y的准线与y轴的交点的坐标为()A.B.(0,﹣1)C.(0,﹣2)D.(0,﹣4)4.设函数f(x)=x+﹣2(x<0),则f(x)()A.有最大值B.有最小值C.是增函数D.是减函数5.已知曲线C的方程为,则“a>b”是“曲线C为焦点在x轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.一排6个座位坐了2个三口之家.若每家人坐在一起,则不同的坐法种数为()A.12B.36C.72D.7207.已知圆C与直线y=﹣x及x+y﹣4=0的相切,圆心在直线y=x上,则圆C的方程为()A.(x﹣1)2 +(y﹣1)2 =2B.(x﹣1)2 +(y+1)2 =2C.(x+1)2 +(y﹣1)2 =4D.(x+1)2 +(y+1)2 =48.已知正项等比数列{a n}中,a1a5a9=27,a6与a7的等差中项为9,则a10=()A.729B.332C.181D.969.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了()A.10天B.15天C.19天D.2天10.某学校高三教师周一、周二、周三坐地铁上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A.8B.7C.6D.5二、填空题共5题,每题5分,共25分.11.设向量,不平行,向量λ+与+2平行,则实数λ=.12.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),则sinα=.13.某四棱锥的三视图如图所示,那么该四棱锥的体积为.14.若顶点在原点的抛物线经过四个点(1,1),,(2,1),(4,2)中的2个点,则该抛物线的标准方程可以是.15.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是.(填写所有正确说法的编号)三、解答题16.如图1,在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,如图.(Ⅰ)求证:A1O⊥BD;(Ⅱ)求直线A1C和平面A1BD所成角的正弦值;17.在①b2+ac=a2+c2,②a cos B=b sin A,③sin B+cos B=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,_______,A=,b=,求△ABC的面积.18.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.19.已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.20.已知椭圆C:x2+3y2=6的右焦点为F.(Ⅰ)求点F的坐标和椭圆C的离心率;(Ⅱ)直线l:y=kx+m(k≠0)过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为P′,判断直线P'Q是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.21.各项均为非负整数的数列{a n}同时满足下列条件:①a1=m(m∈N*);②a n≤n﹣1(n≥2);③n是a1+a2+…+a n的因数(n≥1).(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)若数列{a n}的前三项互不相等,且n≥3时,a n为常数,求m的值;(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M时,a n为常数.参考答案一、选择题共10题,每题4分,共40分.在每题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x(x+1)≤0},集合B={x|﹣1<x<1},则A∪B=()A.{x|﹣1≤x≤1}B.{x|﹣1<x≤0}C.{x|﹣1≤x<1}D.{x|0<x<1}【分析】先求出集合A,集合B,由此能求出A∪B.解:∵集合A={x|x(x+1)≤0}={x|﹣1≤x≤0},集合B={x|﹣1<x<1},∴A∪B={x|﹣1≤x<1}.故选:C.2.已知复数z=(其中i是虚数单位),则|z|=()A.B.C.1D.2【分析】利用复数模长的性质即可求解.解:∵复数z=,∴==,故选:A.3.抛物线x2=4y的准线与y轴的交点的坐标为()A.B.(0,﹣1)C.(0,﹣2)D.(0,﹣4)【分析】利用抛物线x2=4y的准线方程为y=﹣1,即可求出抛物线x2=4y的准线与y轴的交点的坐标.解:抛物线x2=4y的准线方程为y=﹣1,∴抛物线x2=4y的准线与y轴的交点的坐标为(0,﹣1),故选:B.4.设函数f(x)=x+﹣2(x<0),则f(x)()A.有最大值B.有最小值C.是增函数D.是减函数【分析】根据x<0即可根据基本不等式得出,从而可得出f(x)≤﹣4,并且x=﹣1时取等号,从而得出f(x)有最大值,没有单调性,从而得出正确的选项.解:∵x<0,∴,当且仅当,即x=﹣1时取等号,∴f(x)有最大值,∴f(x)在(﹣∞,0)上没有单调性.故选:A.5.已知曲线C的方程为,则“a>b”是“曲线C为焦点在x轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据椭圆方程的特点,结合充分条件和必要条件的定义进行判断即可.解:若a>b>0,则对应的曲线为双曲线,不是椭圆,即充分性不成立,若曲线C为焦点在x轴上的椭圆,则满足a>﹣b>0,即a>0,b<0,满足a>b,即必要性成立,即“a>b”是“曲线C为焦点在x轴上的椭圆”的必要不充分条件,故选:B.6.一排6个座位坐了2个三口之家.若每家人坐在一起,则不同的坐法种数为()A.12B.36C.72D.720【分析】根据题意,由捆绑法分析:先将2个三口之家的成员进行全排列,再对2个三口之家整体进行全排列,由分步计数原理计算可得答案.解:根据题意,先将2个三口之家的成员进行全排列,有=36种情况,再对2个三口之家整体进行全排列,有=2种情况,则有36×2=72种不同的坐法;故选:C.7.已知圆C与直线y=﹣x及x+y﹣4=0的相切,圆心在直线y=x上,则圆C的方程为()A.(x﹣1)2 +(y﹣1)2 =2B.(x﹣1)2 +(y+1)2 =2C.(x+1)2 +(y﹣1)2 =4D.(x+1)2 +(y+1)2 =4【分析】根据圆心在直线y=x上,设出圆心坐标为(a,a),利用圆C与直线y=﹣x及x+y﹣4=0的相切,求得圆心坐标,再求圆的半径,可得圆的方程.解:圆心在y=x上,设圆心为(a,a),∵圆C与直线y=﹣x及x+y﹣4=0的相切,∴圆心到两直线y=﹣x及x+y﹣4=0的距离相等,即:⇒a=1,∴圆心坐标为(1,1),R==,圆C的标准方程为(x﹣1)2+(y﹣1)2=2.故选:A.8.已知正项等比数列{a n}中,a1a5a9=27,a6与a7的等差中项为9,则a10=()A.729B.332C.181D.96【分析】正项等比数列{a n}的公比设为q,q>0,运用等差数列的中项性质和等比数列的通项公式及性质,解方程可得公比q,再由等比数列的通项公式计算可得所求值.解:正项等比数列{a n}的公比设为q,q>0,由a1a5a9=27,可得a53=27,即a5=3,即a1q4=3,①a6与a7的等差中项为9,可得a6+a7=18,即a1q5+a1q6=18,②①②相除可得q2+q﹣6=0,解得q=2(﹣3舍去),则a10=a5q5=3×32=96.故选:D.9.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了()A.10天B.15天C.19天D.2天【分析】由题意设荷叶覆盖水面的初始面积,再列出解析式,并注明x的范围,列出方程求解即可.解:设荷叶覆盖水面的初始面积为a,则x天后荷叶覆盖水面的面积y=a•2x(x∈N+),根据题意,令2(a•2x)=a•220,解得x=19,故选:C.10.某学校高三教师周一、周二、周三坐地铁上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A.8B.7C.6D.5【分析】设周三,周二,周一开车上班的职工组成的集合分别为A,B,C,集合A,B,C 中元素个数分别为n(A),n(B),n(C),根据n(A∪B∪C)=n(A)+n(B)+n (C)﹣n(A∩B)﹣n(A∩C)﹣n(B∩C)+n(A∩B∩C),且n(A∩B)≥n(A∩B ∩C),n(A∩C)≥n(A∩B∩C),n(B∩C)≥n(A∩B∩C)可得.解:设周三,周二,周一开车上班的职工组成的集合分别为A,B,C,集合A,B,C中元素个数分别为n(A),n(B),n(C),则n(A)=14,n(B)=10,n(C)=8,n(A∪B∪C)=20,因为n(A∪B∪C)=n(A)+n(B)+n(C)﹣n(A∩B)﹣n(A∩C)﹣n(B∩C)+n (A∩B∩C),且n(A∩B)≥n(A∩B∩C),n(A∩C)≥n(A∩B∩C),n(B∩C)≥n(A∩B∩C),所以14+10+8﹣20+n(A∩B∩C)≥3n(A∩B∩C),即n(A∩B∩C)≤=6.故选:C.二、填空题共5题,每题5分,共25分.11.设向量,不平行,向量λ+与+2平行,则实数λ=.【分析】利用向量平行的条件直接求解.解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.12.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),则sinα=1.【分析】由题意利用任意角的三角函数的定义,先求得α的值,可得sinα的值.解:∵角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),∴tan(α+)==﹣,故α+为第二象限角.∴可令α+=,此时,α=,sinα=1,故答案为:1.13.某四棱锥的三视图如图所示,那么该四棱锥的体积为.【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积.解:几何体的直观图如图:是长方体的一部分,长方体的棱长为:2,1,2,四棱锥的体积为:×1×2×2=.故答案为:.14.若顶点在原点的抛物线经过四个点(1,1),,(2,1),(4,2)中的2个点,则该抛物线的标准方程可以是x2=8y或y2=x.【分析】由题意可设抛物线方程为y2=2px(p>0)或x2=2py(p>0),然后分类求解得答案.解:由题意可得,抛物线方程为y2=2px(p>0)或x2=2py(p>0).若抛物线方程为y2=2px(p>0),代入(1,1),得p=,则抛物线方程为y2=x,此时(4,2)在抛物线上,符合题意;若抛物线方程为x2=2py(p>0),代入(2,1),得p=2,则抛物线方程为x2=8y,此时(2,)在抛物线上,符合题意.∴抛物线的标准方程可以是x2=8y或y2=x.故答案为:x2=8y或y2=x.15.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是②③.(填写所有正确说法的编号)【分析】解题的关键是理解图象表示的实际意义,进而得解.解:由图可知,点A纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图(2)降低了成本,但票价保持不变,即②对;图(3)成本保持不变,但提高了票价,即③对;故选:②③.三、解答题共6题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图1,在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,如图.(Ⅰ)求证:A1O⊥BD;(Ⅱ)求直线A1C和平面A1BD所成角的正弦值;【分析】(Ⅰ)推导出A1O⊥DE,从而A1O⊥平面BCDE,由此能证明A1O⊥BD.(Ⅱ)以O为原点,在平面BCED中过点O作DE的垂线为x轴,以OE为y轴,OA1为z轴,建立空间直角坐标系,由此能求出直线A1C和平面A1BD所成角的正弦值.解:(Ⅰ)证明:∵在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.∴A1O⊥DE,∵将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,∴A1O⊥平面BCDE,∵BD⊂平面BCDE,∴A1O⊥BD.(Ⅱ)解:以O为原点,在平面BCED中过点O作DE的垂线为x轴,以OE为y轴,OA1为z轴,建立空间直角坐标系,A1(0,0,2),C(2,2,0),B(2,﹣2,0),D(0,﹣1,0),=(2,2,﹣2),=(2,﹣1,0),=(0,1,2),设平面A1BD的法向量为=(x,y,z),则,取x=1,得=(1,2,﹣1),设直线A1C和平面A1BD所成角为θ,则直线A1C和平面A1BD所成角的正弦值为:sinθ===.17.在①b2+ac=a2+c2,②a cos B=b sin A,③sin B+cos B=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,_______,A=,b=,求△ABC的面积.【分析】取①,由余弦定理可得cos B=进而解得B,C的大小也可得出,再由正弦定理可得a,最后利用三角形的面积公式计算即可得出;取②a cos B=b sin A,由正弦定理可得:tan B=1,B∈(0,π),解得B,可得sin C=sin(A+B),由正弦定理可得:a,利用三角形面积计算公式即可得出;取③,可得,由此可求出B的大小,C的大小也可得出,再由正弦定理可得a,最后利用三角形的面积公式计算即可得出;解:(1)若选择①,由余弦定理,……………因为B∈(0,π),所以;……………………由正弦定理,得,……………因为,,所以,……………所以………所以.……………(2)若选择②a cos B=b sin A,则sin A cos B=sin B sin A,……………因为sin A≠0,所以sin B=cos B,……………因为B∈(0,π),所以;……………由正弦定理,得,……………因为,,所以,……………所以,…所以.……………(3)若选择③,则,所以,……………因为B∈(0,π),所以,所以,所以;……………由正弦定理,得,……………因为,,所以,……………所以,………18.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.【分析】(Ⅰ)由茎叶图能求出甲公司员工A投递快递件数的平均数和众数.(Ⅱ)由题意能求出X的可能取值为136,147,154,189,203,分别求出相对应的概率,由此能求出X的分布列和数学期望.(Ⅲ)利用(Ⅱ)的结果能估算算两公司的每位员工在该月所得的劳务费.解:(Ⅰ)甲公司员工A投递快递件数的平均数为:=(32+33+33+38+35+36+39+33+41+40)=36,众数为33.(Ⅱ)设a为乙公司员工B投递件数,则当a=34时,X=136元,当a>35时,X=35×4+(a﹣35)×7元,∴X的可能取值为136,147,154,189,203,P(X=136)=,P(X=147)=,P(X=154)=,P(X=189)=,P(X=203)=,X的分布列为:X136147154189203P=.(Ⅲ)根据图中数据,由(Ⅱ)可估算:甲公司被抽取员工该月收入=36×4.5×30=4860元,乙公司被抽取员工该月收入=165.5×30=4965元.19.已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.【分析】(1)求出函数的导数,问题转化为x2+x+a=0存在大于0的实数根,根据y=x2+x+a 在x>0时递增,求出a的范围即可;(2)求出函数f(x)的导数,通过讨论a的范围,判断导函数的符号,求出函数的单调区间即可;(3)求出函数g(x)的导数,根据f(e)=﹣>0,得到存在x0∈(1,e)满足g′(x0)=0,从而得到函数的单调区间,求出函数的极小值,证出结论即可.解:(1)由f(x)=lnx﹣﹣1得:f′(x)=,(x>0),由已知曲线y=f(x)存在斜率为﹣1的切线,∴f′(x)=﹣1存在大于0的实数根,即x2+x+a=0存在大于0的实数根,∵y=x2+x+a在x>0时递增,∴a的范围是(﹣∞,0);(2)由f′(x)=,(x>0),得:a≥0时,f′(x)>0,∴f(x)在(0,+∞)递增;a<0时,若x∈(﹣a,+∞)时,f′(x)>0,若x∈(0,﹣a),则f′(x)<0,故f(x)在(﹣a,+∞)递增,在(0,﹣a)递减;(3)由g(x)=及题设得:g′(x)==,由﹣1<a<0,得:0<﹣a<1,由(2)得:f(x)在(﹣a,+∞)递增,∴f(1)=﹣a﹣1<0,取x=e,显然e>1,f(e)=﹣>0,∴存在x0∈(1,e)满足f(x0)=0,即存在x0∈(1,e)满足g′(x0)=0,令g′(x)>0,解得:x>x0,令g′(x)<0,解得:1<x<x0,故g(x)在(1,x0)递减,在(x0,+∞)递增,∴﹣1<a<0时,g(x)在(1,+∞)存在极小值.20.已知椭圆C:x2+3y2=6的右焦点为F.(Ⅰ)求点F的坐标和椭圆C的离心率;(Ⅱ)直线l:y=kx+m(k≠0)过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为P′,判断直线P'Q是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.【分析】(I)由椭圆的标准方程即可得出;(II)直线l:y=kx+m(k≠0)过点F,可得l:y=k(x﹣2).代入椭圆的标准方程可得:(3k2+1)x2﹣12k2x+12k2﹣6=0.(依题意△>0).设P(x1,y1),Q(x2,y2),可得根与系数的关系.点P关于x轴的对称点为P',则P'(x1,﹣y1).可得直线P'Q的方程可以为,令y=0,,把根与系数的关系代入化简即可得出.解:(Ⅰ)∵椭圆C:,∴c2=a2﹣b2=4,解得c=2,∴焦点F(2,0),离心率.(Ⅱ)直线l:y=kx+m(k≠0)过点F,∴m=﹣2k,∴l:y=k(x﹣2).由,得(3k2+1)x2﹣12k2x+12k2﹣6=0.(依题意△>0).设P(x1,y1),Q(x2,y2),则,.∵点P关于x轴的对称点为P',则P'(x1,﹣y1).∴直线P'Q的方程可以设为,令y=0,====3.∴直线P'Q过x轴上定点(3,0).21.各项均为非负整数的数列{a n}同时满足下列条件:①a1=m(m∈N*);②a n≤n﹣1(n≥2);③n是a1+a2+…+a n的因数(n≥1).(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)若数列{a n}的前三项互不相等,且n≥3时,a n为常数,求m的值;(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M时,a n为常数.【分析】(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)对a2、a3分类取值,再结合各项均为非负整数列式求m的值;(Ⅲ)令S n=a1+a2+…+a n,则.进一步推得存在正整数M>m,当n>M时,必有成立.再由成立证明a n为常数.【解答】(Ⅰ)解:m=5时,数列{a n}的前五项分别为:5,1,0,2,2.(Ⅱ)解:∵0≤a n≤n﹣1,∴0≤a2≤1,0≤a3≤2,又数列{a n}的前3项互不相等,(1)当a2=0时,若a3=1,则a3=a4=a5= (1)且对n≥3,都为整数,∴m=2;若a3=2,则a3=a4=a5= (2)且对n≥3,都为整数,∴m=4;(2)当a2=1时,若a3=0,则a3=a4=a5= 0且对n≥3,都为整数,∴m=﹣1,不符合题意;若a3=2,则a3=a4=a5= (2)且对n≥3,都为整数,∴m=3;综上,m的值为2,3,4.(Ⅲ)证明:对于n≥1,令S n=a1+a2+…+a n,则.又对每一个n,都为正整数,∴,其中“<”至多出现m﹣1个.故存在正整数M>m,当n>M时,必有成立.当时,则.从而.由题设知,又及a n+1均为整数,∴=a n+1=,故=常数.从而=常数.故存在正整数M,使得n≥M时,a n为常数.。
课时规范训练A 组 基础演练1.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.明显,n ∈N *,a n ,a n +1,a n +2成等比数列,则a 2n +1=a n a n +2,反之,不肯定成立,举反例,如数列为1,0,0,0,….2.设{}a n 是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ) A .2 B .-2 C.12D .-12解析:选D.由于等差数列{}a n 的前n 项和为S n =na 1+n (n -1)2d ,所以S 1,S 2,S 4分别为a 1,2a 1-1,4a 1-6.由于S 1,S 2,S 4成等比数列,所以(2a 1-1)2=a 1·(4a 1-6).解得a 1=-12.3.在等比数列{a n }中,若a 4,a 8是方程x 2-3x +2=0的两根,则a 6的值是( ) A .±2 B .- 2 C. 2D .±2解析:选C.由于a 4,a 8是方程的两根,则⎩⎪⎨⎪⎧a 4+a 8=3>0a 4a 8=2>0,∴a 4>0,a 8>0,又a 26=a 4a 8=2,∴a 6= 2.4.已知等比数列{a n }的公比q =2,且2a 4,a 6,48成等差数列,则{a n }的前8项和为( ) A .127 B .255 C .511D .1 023解析:选B.∵2a 6=2a 4+48,即a 6=a 4+24 ∴25a 1=23a 1+24,从而a 1=1.于是S 8=1×(1-28)1-2=28-1=255.5.设数列{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=( ) A.152 B.314 C.334D.172解析:选B.设此数列的公比为q (q >0),由已知a 2a 4=1,得a 23=1,∴a 3=1,由S 3=7,知a 3+a 3q +a 3q 2=7,即6q 2-q -1=0,解得q =12,从而a 1=4, 所以S 5=4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=314. 6.等比数列{a n }中,S n 表示前n 项和,a 3=2S 2+1,a 4=2S 3+1,则公比q 为________. 解析:由a 3=2S 2+1,a 4=2S 3+1得 a 4-a 3=2(S 3-S 2)=2a 3, ∴a 4=3a 3,∴q =a 4a 3=3.答案:37.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.解析:由已知条件得2S n =S n +1+S n +2, 即2S n =2S n +2a n +1+a n +2,即a n +2a n +1=q =-2.答案:-28.等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.解析:由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0. 由q 2+q -2=0解得q =-2或q =1(舍去), ∴S 5=a 1(1-q 5)1-q=1-(-2)53=11.答案:119.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1. 解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列, ∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -2(2-1)=2n -2. 当n =1时,a 1=1,不适合上式. ∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+a 5+…+a 2n +1=2(4n -1)3+1=22n +1+13.10.已知成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5. (1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列. 解:(1)设成等差数列的三个正数分别为a -d ,a ,a +d .依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去), ∴b 3=5,公比q =2,因此b 1=54,故b n =54·2n -1=5·2n -3.(2)证明:由(1)知b 1=54,公比q =2,∴S n =54(1-2n)1-2=5·2n -2-54,则S n +54=5·2n -2,因此S 1+54=52,S n +54S n -1+54=5·2n -25·2n -3=2(n ≥2). ∴数列⎩⎨⎧⎭⎬⎫S n +54是以52为首项,公比为2的等比数列.B 组 力量突破1.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为( ) A .-2 B .2 C .-3D .3解析:选B.设公比为q ,若q =1,则S 2mS m=2, 与题中条件冲突,故q ≠1.∵S 2m S m =a 1(1-q 2m )1-q a 1(1-q m )1-q=q m +1=9,∴q m=8. ∴a 2m a m =a 1q 2m -1a 1q m -1=q m=8=5m +1m -1, ∴m =3,∴q 3=8,∴q =2.2.等比数列{a n }中,|a 1|=1,a 5=-8a 2.a 5>a 2,则a n 等于( ) A .(-2)n -1 B .-(-2)n -1 C .(-2)nD .-(-2)n解析:选A.∵|a 1|=1,∴a 1=1或a 1=-1. ∵a 5=-8a 2=a 2·q 3,∴q 3=-8,∴q =-2. 又a 5>a 2,即a 2q 3>a 2,∴a 2<0.而a 2=a 1q =a 1·(-2)<0,∴a 1=1. 故a n =a 1·(-2)n -1=(-2)n -1.3.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 33+…+a 2n 等于( )A .(3n -1)2 B.12(9n -1) C .9n-1D.14(3n-1)解析:选B.∵a 1+a 2+…+a n =3n -1,n ∈N *, n ≥2时,a 1+a 2+…+a n -1=3n -1-1, ∴当n ≥2时,a n =3n -3n -1=2·3n -1, 又n =1时,a 1=2适合上式,∴a n =2·3n -1, 故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 4.已知等比数列{a n }满足a 1+a 2+a 3=-8,a 4+a 5+a 6=1,则a 11-q =__________.解析:∵a 4+a 5+a 6a 1+a 2+a 3=q 3=-18,∴q =-12,把q =-12代入a 1+a 2+a 3=-8, 解得a 1=-323,∴a 11-q =-649.答案:-6495.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2), ∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).。
数列02解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)1.函数f(x)定义在[0,1]上,满足且f(1)=1,在每个区间=1,2,…)上, y=f(x) 的图象都是平行于x轴的直线的一部分.(Ⅰ)求f(0)及的值,并归纳出)的表达式;(Ⅱ)设直线轴及y=f(x)的图象围成的矩形的面积为, 求a1,a2及的值.【答案】 (Ⅰ) 由f(0)=2f(0), 得f(0)=0.由及f(1)=1, 得.同理,归纳得(Ⅱ) 当时,所以是首项为,公比为的等比数列.所以2.已知等差数列满足;又数列满足+…+,其中是首项为1,公比为的等比数列的前项和。
(I )求的表达式;(Ⅱ)若,试问数列中是否存在整数,使得对任意的正整数都有成立?并证明你的结论。
【答案】(I )设的首项为,公差为d ,于是由解得(Ⅱ)由 ① 得 ② ①—②得 即当时,,当时,于是设存在正整数,使对恒成立当时,,即 {}n a 34269,10a a a a +=+={}n b 12(1)nb n b +-12n n n b b S -+=n S 89n n a n n n c a b =-{}n c k n n k c c ≤{}n a 1a 1111239510a d a d a d a d +++=⎧⎨+++=⎩121a d =⎧⎨=⎩2(1)1n a n n ∴=-=+218881()()999n n S -=++++ (121231888)(1)(2)2()()1999n n n n nb n b n b b b ---+-+-+++=++++ (231221)888(1)(2)2()()1999n n n n n b n b b b -----+-+++=++++......1128()9n n b b b -+++= (1)128()9n n n T b b b -=+++=…1n =111b T =+2n ≥12218818()()()9999n n n n n n b T T ----=-=-=-⋅21(1)18()(2)99n n n b n -=⎧⎪∴=⎨-⋅≥⎪⎩22(1)18()(1)(2)99n n n n n C a b n n --=⎧⎪=-=⎨⋅⋅+≥⎪⎩k ,n k n N C C *∈≤1n =21703C C -=>21C C >当时, 当时,当时,,当时, 存在正整数或8,对于任意正整数都有成立。
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)一、单选题1.已知集合{}24xA x =<,{}1B =≤,则A B =( )A .()0,2B .[)1,2C .[]1,2D .()0,12.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为( ) A .1B .1-C .15D .15-3.()()51223x x -+的展开式中,x 的系数为( ) A .154B .162C .176D .1804.已知1tan 5α=,则2cos 2sin sin 2ααα=-( ) A .83-B .83C .38-D .385.何尊是我国西周早期的青铜礼器,其造形浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词的最早文字记载.何尊的形状可以近似地看作是圆台与圆柱的组合体,高约为40cm ,上口直径约为28cm ,下端圆柱的直径约为18cm .经测量知圆柱的高约为24cm ,则估计该何尊可以装酒(不计何尊的厚度,403π1266≈,1944π6107≈)( )A .312750cmB .312800cmC .312850cmD .312900cm6.已知()f x 是定义域为R 的奇函数,满足()()2f x f x =-,则()2022f =( ) A .2B .1C .1-D .07.在四棱锥P ABCD -中,ABCD 是边长为2的正方形,AP PD ==PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为( )A .4πB .8πC .136π9D .68π38.已知抛物线C :24y x =,O 为坐标原点,A ,B 是抛物线C 上两点,记直线OA ,OB 的斜率分别为1k ,2k ,且1212k k =-,直线AB 与x 轴的交点为P ,直线OA 、OB 与抛物线C 的准线分别交于点M ,N ,则△PMN 的面积的最小值为( )A B C D二、多选题9.已知函数()()1cos 02f x x x ωωω=>的图像关于直线6x π=对称,则ω的取值可以为( ) A .2B .4C .6D .810.在菱形ABCD 中,2AB =,60DAB ∠=,点E 为线段CD 的中点,AC 和BD 交于点O ,则( ) A .0AC BD ⋅= B .2AB AD ⋅= C .14OE BA ⋅=-D .52OE AE ⋅=11.一袋中有3个红球,4个白球,这些球除颜色外,其他完全相同,现从袋中任取3个球,事件A “这3个球都是红球”,事件B “这3个球中至少有1个红球”,事件C “这3个球中至多有1个红球”,则下列判断错误的是( )A .事件A 发生的概率为15B .事件B 发生的概率为310C .事件C 发生的概率为335D .1(|)31P A B =12.对于函数()()32,f x x x cx d c d =+++∈R ,下列说法正确的是( )A .若0d =,则函数()f x 为奇函数B .函数()f x 有极值的充要条件是13c <C .若函数f (x )有两个极值点1x ,2x ,则4412281x x +>D .若2c d ==-,则过点()20,作曲线()y f x =的切线有且仅有3条三、填空题13.已知样本数据1-,1-,2,2,3,若该样本的方差为2s ,极差为t ,则2s t=______. 14.已知圆O :221x y +=与直线l :=1x -,写出一个半径为1,且与圆O 及直线都相切的圆的方程:______.15.已知椭圆()222210x y a b a b+=>>的左顶点为A ,左焦点为F ,过F 作x 轴的垂线在x轴上方交椭圆于点B ,若直线AB 的斜率为32,则该椭圆的离心率为______.16.已知f (x )是偶函数,当0x ≥时,()()2log 1f x x =+,则满足()2f x x >的实数x 的取值范围是______.四、解答题17.已知数列{}n a 是等差数列,1324,,a a a a +成等比数列,56a =. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:()221n n S n +<+.18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos sin cos c B a A b C =-. (1)判断ABC 的形状; (2)若3ab ,D 在BC 边上,2BD CD =,求cos ADB ∠的值.19.如图,在直三棱柱111ABC A B C 中,D 、E 分别是AB 、1BB 的中点,12AA AC CB ==,AB =.(1)求证:1//BC 平面1A CD ;(2)若1BC =,求四棱锥1C A DBE -的体积; (3)求直线1BC 与平面1ACE 所成角的正弦值.20.新高考模式下,数学试卷不分文理卷,学生想得高分比较困难.为了调动学生学习数学的积极性,提高学生的学习成绩,张老师对自己的教学方法进行改革,经过一学期的教学实验,张老师所教的80名学生,参加一次测试,数学学科成绩都在[]50,100内,按区间分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)求这80名学生的平均成绩(同一区间的数据用该区间中点值作代表);(2)按优秀与非优秀用分层抽样方法随机抽取10名学生座谈,再在这10名学生中,选3名学生发言,记优秀学生发言的人数为随机变量X ,求X 的分布列和期望.21.已知12,F F 分别为双曲线()222210,0x ya b a b-=>>左、右焦点,(P 在双曲线上,且124PF PF ⋅=. (1)求此双曲线的方程;(2)若双曲线的虚轴端点分别为12,B B (2B 在y 轴正半轴上),点,A B 在双曲线上,且()22B A B B μμ=∈R ,11B A B B ⊥,试求直线AB 的方程.22.已知函数()()211e 12x f x a x a x ax a =---+++,()R a ∈.(1)当1a =时,求f (x )的单调区间;(2)当310,e a ⎛⎫∈ ⎪⎝⎭时,求证:函数f (x )有3个零点.参考答案:1.B【分析】化简集合A 和B ,即可得出A B ⋂的取值范围. 【详解】解:由题意在{}24xA x =<,{}1B =≤中,{}2A x x =<,{}12B x x =≤≤ ∴{}12A B x x ⋂=≤< 故选:B. 2.D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-, 故实部与虚部的和为431555-+=-,故选:D. 3.C【分析】根据二项式定理可求得()523x +展开式通项,由此可确定12,T T ,结合多项式乘法运算进行整理即可确定x 的系数. 【详解】()523x +展开式的通项公式为:()55155C 2323C rr r r r r rr T x x --+=⋅⋅=⋅; 当1r =时,412523C 240T x x =⨯=;当0r =时,51232T ==;x ∴的系数为24023224064176-⨯=-=.故选:C. 4.A【分析】利用二倍角公式化简为正、余弦的齐次分式,分式上下同除2cos α,代入1tan 5α=可得答案.【详解】2222cos 2cos sin sin sin 2sin 2sin cos αααααααα-=--22111tan 825123tan 2tan 255ααα--===---, 故选:A. 5.C【分析】根据圆柱和圆台的体积公式计算可得结果. 【详解】下端圆柱的体积为:224π91944π⋅=6107≈3cm ,上端圆台的体积为:()22116π1414993⨯+⨯+16π4033=⨯1612663≈⨯6752=3cm , 所以该何尊的体积估计为61076752+=128593cm . 因为12850最接近12859,所以估计该何尊可以装酒128503cm . 故选:C 6.D【分析】根据函数()f x 是定义域为R 的奇函数,且()()2f x f x =-得出函数()f x 是周期为4的周期函数,进而求解.【详解】因为函数()f x 是定义域为R 的奇函数,且()()2f x f x =-, 所以(2)()()f x f x f x +=-=-,所以(4)()f x f x +=, 即函数()f x 是周期为4的周期函数,因为函数()f x 是定义域为R 的奇函数,所以(0)0f =, 因为()()2f x f x =-,所以(2)(0)0f f ==, 又因为202245052=⨯+,所以(2022)(2)0f f ==, 故选:D . 7.C【分析】将该四棱锥的外接球放在一个长方体内,画出图形,利用已知条件找出球心,建立相应的关系式,求出外接球的半径,利用球体表面积公式计算即可. 【详解】由题意将该四棱锥放在一个长方体的中, 如图∴所示:取AD 的中点H ,连接PH ,连接,AC BD 交于1O ,由AP PD =则在等腰PAD 中有:PH AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD=AD , 则PH ⊥平面ABCD , 又112AH AD ==, 所以在Rt PAH △中,3PH ===,由底面为正方形ABCD ,所以它的外接圆的圆心为对角线的交点1O , 连接1O H ,则1PH O H ⊥,PAD 外接圆的圆心为2O ,且在PH 上,过点1O ,2O 分别作平面ABCD 与平面PAD 的垂线,则两垂线必交于点O ,点O 即为四棱锥P ABCD -外接球的球心, 且1OO ⊥平面ABCD ,又PH ⊥平面ABCD ,即2O H ⊥平面ABCD , 所以1OO ∥PH ,所以四边形12OO HO 为矩形. 如图∴连接2AO ,则22AO PO =,在2Rt AO H 中,22223O H PH PO PH AO AO =-=-=-,所以()2222222213AO AH HO AO =+=+-,解得253AO =,所以254333O H =-=,所以1243OO O H ==, 在图∴中连接OB ,由112O B BD =所以在1Rt OO B 中,OB ==即四棱锥P ABCD -外接球的半径为R OB ==, 所以四棱锥P ABCD -外接球的表面积为: 221364πR 4ππ9S ==⨯=⎝⎭,故选:C. 8.D【分析】设出A 、B 的坐标,由1212k k =-解得12y y 的值,再分别求出点M 、点N 的坐标,求得||MN 的式子,研究AB l 恒过x 轴上的定点可得点P 的坐标,进而用方法1基本不等式或方法2函数思想求得三角形面积的最小值.【详解】设211(,)4y A y ,222(,)4y B y ,则114k y =,224k y =, ∴12121612k k y y ==- ∴1232y y =-, ∴设OA l :14y x y =,令=1x -得:14y y =-,∴14(1,)M y --,同理:24(1,)N y -- ∴12121212||44||||4||8y y y y MN y y y y --=-+==, 设AB l :x my t =+,221044x my t y my t y x=+⎧⇒--=⎨=⎩ 20m t ∆=+>,124y y m +=,124y y t ,又∴1232y y =-,∴432t -=-,解得:8t =, ∴AB l :8x my =+恒过点(8,0),∴AB l 与x 轴交点P 的坐标为(8,0),即:(8,0)P , ∴点P 到准线=1x -的距离为8+1=9. 方法1:1211||1321||||888y y MN y y -==+≥⨯=1||y =.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN的面积的最小值为2. 方法2:12||||8y y MN -==∴20m ≥∴||MN ≥m =0时取得最小值.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN故选:D. 9.AD【分析】首先将函数()f x 化成一个三角函数,然后根据对称轴公式求得ω的表达式,对整数k 赋值求得结果.【详解】()()1cos sin 26f x x x x ωωωπ=+=+,因为函数()f x 的图象关于直线6x π=对称,所以662k ωπππ+=+π,k ∈Z ,解得26k ω=+,因为0ω>,所以当0k =时,2ω=;所以当1k =时,8ω=. 故选:AD. 10.ABD【分析】以O 为坐标原点可建立平面直角坐标系,利用平面向量数量积的坐标运算依次验证各个选项即可.【详解】四边形ABCD 为菱形,AC BD ∴⊥,则以O 为坐标原点,,OC OD 正方向为,x y 轴,可建立如图所示平面直角坐标系,2AB AD ==,60DAB ∠=,2BD ∴=,OA OC ===()0,0O ∴,()A ,()0,1B -,()0,1D ,12E ⎫⎪⎪⎝⎭,对于A ,ACBD ,0AC BD ∴⋅=,A 正确;对于B ,()3,1AB =-,()3,1AD =,312AB AD ∴⋅=-=,B 正确;对于C ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,()BA =-,31122OE BA ∴⋅=-+=-,C 错误; 对于D ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,3122AE ⎛⎫= ⎪ ⎪⎝⎭,915442OE AE ∴⋅=+=,D 正确. 故选:ABD. 11.ABC【分析】根据题意求出基本事件总数、满足条件的基本事件数,利用古典概型概率公式及条件概率公式求解即可.【详解】由题意7个球中任取3个球的基本事件总数为:37C 35=这3个球都是红球的基本事件数为:33C 1=,所以事件A 发生的概率为:1()35P A =,故A 错误, 这3个球中至少有1个红球的基本事件数为:1221334343C C C C +C 1812131⋅+⋅=++=,所以事件B 发生的概率为:31()35P B =,故B 错误, 这3个球中至多有1个红球的基本事件数为:123344C C C 18422⋅+=+=,事件C 发生的概率为22()35P C =,故C 错误, 因为1()()35P AB P A ==, 所以由条件概率公式得:1()135(|)31()3135P AB P A B P B ===, 故D 正确, 故选:ABC. 12.BCD【分析】对于A :利用奇偶性的定义直接判断;对于B :利用极值的计算方法直接求解;对于C :先求出13c <,表示出244122161692781c x x c +=-+,即可求出;对于D :设切点()00,x y ,由导数的几何意义得到3200025460x x x --+=.设()322546g x x x x =--+,利用导数判断出函数()g x 有三个零点,即可求解.【详解】对于A :当0d =时,()32f x x x cx =++定义域为R .因为()()()()()3232f x x x c x x x cx f x -=-+-+-=-+-≠-, 所以函数()f x 不是奇函数.故A 错误;对于B :函数()f x 有极值⇔ ()f x 在R 上不单调.由()32f x x x cx d =+++求导得:()232f x x x c =++'.()f x 在R 上不单调⇔()f x '在R 上有正有负⇔4430c ∆=-⨯>⇔13c <.故B 正确.对于C :若函数f (x )有两个极值点1x ,2x ,必满足0∆>,即13c <.此时1x ,2x 为2320x x c ++=的两根,所以1212233x x c x x ⎧+=-⎪⎪⎨⎪=⎪⎩. 所以()22212121242293c x x x x x x +=+-=-.所以()()222244222212121242216162293992781cc c x x x xx x c +=+-=--=-+ 对称轴164272329c -=-=⨯,所以当13c <时,()224412216162116116292781932738181c x x c +=-+>⨯-⨯+=. 即4412281x x +>.故C 正确;对于D :若2c d ==-时,()3222f x x x x =+--.所以()2322f x x x '=+-.设切点()00,x y ,则有:()3200002000002203222y x x x y f x x x x ⎧=+--⎪-⎨=+-=⎪-⎩', 消去0y ,整理得:3200025460x x x --+=不妨设()322546g x x x x =--+,则()26104g x x x '=--.令()0g x '>,解得:2x >或13x <-;令()0g x '<,解得: 123x -<<.所以()g x 在1,3⎛⎫-∞- ⎪⎝⎭,()2,+∞上单调递增,在1,23⎛⎫- ⎪⎝⎭上单调递减.所以()()()()()32111119254660333327g x g =-=-----+=>极大值, ()()322225242660g x g ==⨯-⨯-⨯+=-<极小值.所以作出的图像如图所示:因为函数()g x 有三个零点,所以方程3200025460x x x --+=有三个根,所以过点()20,作曲线()y f x =的切线有且仅有3条.故D 正确. 故选:BCD. 13.710##0.7 【分析】根据极差的定义可得()314t =--=,先求出平均数,再从方差,从而可求2s t.【详解】极差()314t =--=,平均数为()()1122315-+-+++=,故方差()()()()()222222114111*********s ⎡⎤=--+--+-+-+-=⎣⎦. 所以21475410s t ==.故答案为:710. 14.()2221x y +-=(答案不唯一)【分析】根据圆的圆心和半径,结合直线和圆的位置关系及两个圆的位置关系计算即可. 【详解】设圆心C 为()00,x y ,由已知圆C 与直线l :=1x -相切, 圆C 与圆O :221x y +=相切,可得0112x ⎧--=,即得0002x y =⎧⎨=⎩或0002x y =⎧⎨=-⎩或0020x y =-⎧⎨=⎩, 且已知半径为1,所以圆的方程可以为: ()2221x y +-=或()2221x y ++=或2221x y故答案为: ()2221x y +-=(答案不唯一) 15.12##0.5【分析】由题意设(),0A a -,2,b B c a ⎛⎫- ⎪⎝⎭,再由232AB b a k c a -==-+结合222a b c =+,即可得出答案.【详解】由题意可得,(),0A a -,(),0F c -,令椭圆()222210x y a b a b +=>>中x c =-,解得:2b y a=±,所以2,b B c a ⎛⎫- ⎪⎝⎭,而2032AB b a k c a -==-+,则2232a c a c a c a a -+==-+, 解得:12e =. 故答案为:12. 16.()(),01,-∞⋃+∞【分析】利用奇偶性和函数的单调性解不等式.【详解】当0x ≥时,()()2log 1f x x +,函数在[)0,∞+上单调递增,∴()(0)0f x f ≥=,又()f x 是偶函数,所以()f x 的值域为[)0,∞+.当0x ≥时,()()2log 1f x x +,不等式()2f x x >()22log 1x x +>,即()22log 10x x+->,设()22()log 1g x x x =+-,由函数y =()2log 1y x =+,2y x=-在()0,∞+上都是增函数, 得()g x 在()0,∞+上是增函数,由(1)0g =,则()0(1)g x g >=解得1x >; 当0x <时,由函数值域可知()0f x >,此时20x<,所以()2f x x >恒成立;综上可知,满足()2f x x>的实数x 的取值范围是()(),01,-∞⋃+∞.故答案为:()(),01,-∞⋃+∞ 17.(1)1n a n =+ (2)证明见解析【分析】(1)根据等比数列定义和等差数列通项公式可构造方程组求得1,a d ,进而确定n a ; (2)利用裂项相消法可求得n S ,整理即可证得结论. 【详解】(1)设等差数列{}n a 的公差为d ,1324,,a a a a +成等比数列,()23124a a a a ∴=+,即()()2111224a d a a d +=+,又5146a a d =+=,则由()()2111122446a d a a d a d ⎧+=+⎪⎨+=⎪⎩得:121a d =⎧⎨=⎩或163a d =-⎧⎨=⎩, 当16a =-,3d =时,30a =,不满足1324,,a a a a +成等比数列,舍去; 12a ∴=,1d =,()211n a n n ∴=+-=+.(2)由(1)得:()()111111212n n a a n n n n +==-++++, 1111111111233445112n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()112222n n n =-=++, ()221n n S n n ∴+=<+.18.(1)直角三角形 (2)0【分析】(1)根据正弦定理的边角互化,即可得到结果;(2)由(1)中结论即可得到cos B ∠,从而得到AD 的值,然后在ABD △中结合余弦定理即可得到结果.【详解】(1)因为cos sin cos c B a A b C =-,由正弦定理可得, 2sin cos sin cos sin C B B C A +=即()2sin sin B C A +=所以()2sin sin ,0,πsin 1A A A A =∈⇒=且()0,πA ∈,所以π2A =即ABC 是直角三角形.(2)在直角ABC 中,有22223b c a b +==,即222c b =,所以c =, 又因为2BD CD =,所以23BD BC ==且cos c B a === 在ABD △中,由余弦定理可得,22222242cos 2b b AD AB BD AD B AB BD +-+-∠===⋅解得AD =, 在ABD △中由余弦定理可得,222222242cos 02b b b AD BD AB ADB AD BD +-+-∠===⋅19.(1)证明见解析 (2)23【分析】(1)连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点,利用中位线的性质可得出1DF //BC ,再利用线面平行的判定定理可证得结论成立;(2)过点C 在平面ABC 内作CM AB ⊥,垂足为点M ,证明出CM ⊥平面11AA B B ,计算出CM 的长以及四边形1A DBE 的面积,利用锥体的体积公式可求得四棱锥1C A DBE -的体积; (3)设1BC =,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面1A CE 所成角的正弦值. 【详解】(1)证明:连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点, 因为D 、F 分别为AB 、1AC 的中点,则1DF //BC ,因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,1//BC ∴平面1A CD . (2)解:因为1BC =,则122AA AC CB ===,AB == 222AC BC AB ∴+=,即AC BC ⊥,过点C 在平面ABC 内作CM AB ⊥,垂足为点M , 因为1AA ⊥平面ABC ,CM ⊂平面ABC ,1CM AA ∴⊥,又因为CM AB ⊥,1AB AA A ⋂=,AB 、1AA ⊂平面11AA B B ,CM ∴⊥平面11AA B B ,由等面积法可得AC BC CM AB ⋅==因为1AA ⊥平面ABC ,AB ⊂平面ABC ,1AA AB ∴⊥,又因为11//AA BB 且11AA BB =,故四边形11AA B B 为矩形,所以,1111111212AA D A B E AA B B A DBE S S S S ⎫=--==⎪⎪⎝⎭△△矩形四边形11112333C A DBE A DBE V S CM -∴=⋅==四边形.(3)解:不妨设1BC =,因为AC BC ⊥,1CC ⊥平面ABC ,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,1,0B 、()0,0,0C 、()10,0,2C 、()12,0,2A 、()0,1,1E , 设平面1A CE 的法向量为(),,n x y z =,()12,0,2CA =,()0,1,1CE =, 则1220n CA x z n CE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,可得()1,1,1n =-, 因为()10,1,2BC =-,则111cos ,BC n BC n BC n⋅<>==-=⋅因此,直线1BC 与平面1A CE20.(1)73.5(2)分布列见解析;期望()910E X =【分析】(1)根据频率分布直方图估计平均数的方法直接计算即可;(2)根据频率分布直方图可确定优秀与非优秀学生对应的频率,根据分层抽样原则可确定10名学生中优秀学员的人数,由此可得X 所有可能的取值,根据超几何分布概率公式可求得X 每个取值对应的概率,由此可得分布列;由数学期望计算公式可求得期望. 【详解】(1)80名学生的平均成绩为()550.01650.03750.03850.025950.00510⨯+⨯+⨯+⨯+⨯⨯=73.5.(2)根据频率分布直方图知:优秀学员对应的频率为()0.0250.005100.3+⨯=,则非优秀学员对应的频率为10.30.7-=,∴抽取的10名学生中,有优秀学生100.33⨯=人,非优秀学生100.77⨯=人;则X 所有可能的取值为0,1,2,3,()37310C 3570C 12024P X ====;()1237310C C 63211C 12040P X ====;()2137310C C 2172C 12040P X ====;()33310C 13C 120P X ===;X ∴的分布列为:∴数学期望()721719012324404012010E X =⨯+⨯+⨯+⨯=. 21.(1)22145x y -=(2)y x =+y =【分析】(1)根据平面向量数量积坐标运算和点在双曲线上,可构造方程组求得22,a b 的值,由此可得双曲线方程;(2)由2,,A B B 三点共线可设:AB y kx =+用向量垂直的坐标表示,代入韦达定理结论可解方程求得k 的值,由此可得直线AB 方程. 【详解】(1)设()1,0F c -,()()2,00F c c >,则(1PF c =--,(2PF c =-,212854PF PF c ∴⋅=-+=,解得:3c =,229a b ∴+=;又P 在双曲线上,则22851a b-=,24a ∴=,25b =, ∴双曲线的方程为:22145x y -=.(2)由(1)得:(10,B,(2B ,()22B A B B μμ=∈R ,2,,A B B ∴三点共线,直线AB斜率显然存在,可设:AB y kx =+()11,A x y ,()22,B x y ,由22145y kx x y ⎧=⎪⎨-=⎪⎩得:()2254400k x ---=,()22540Δ801040k k ⎧-≠⎪∴⎨=->⎪⎩,即252k <且254k ≠,12x x ∴+=1224054x x k =--, 11B A B B ⊥,110B A B B ∴⋅=,又(111,B A x y =,(122,B B x y =,()1112121212125B A B B x x y y x x y y y y ∴⋅=+=+++(()1212125x x kx kx k x x =++++()()()222121222401801202005454k k kx xx x k k+=++++=-++=--,解得:k =252k <且254k ≠,∴直线AB方程为:y x =y = 【点睛】关键点点睛:本题考查直线与椭圆的综合应用问题,解题关键是能够利用平面向量垂直关系的坐标表示来构造等量关系,结合韦达定理的结论得到关于所求变量的方程的形式,从而解方程求得变量的值.22.(1)函数()f x 的单调递增区间为(,0)-∞和(1,)+∞,单调递减区间为(0,1). (2)证明过程见详解【分析】(1) 因为1a =,所以函数()()212e 22x f x x x x =--++,对函数求导,利用导函数的正负来判断函数的单调性即可求解;(2)对函数进行求导,求出导函数的零点,根据条件可得:函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,然后利用零点存在性定理即可证明.【详解】(1)因为1a =,所以函数()()212e 22x f x x x x =--++,所以()e (2)e 1(1)(e 1)x x x f x x x x '=+--+=--,当1x >或0x <时,()0f x '>,此时函数()f x 单调递增; 当01x <<时,()0f x '<,此时函数()f x 单调递减; 综上:函数()f x 的单调递增区间为(,0)-∞和(1,)+∞, 单调递减区间为(0,1).(2)因为函数()()211e 12x f x a x a x ax a =---+++,所以()e (1)e ()e ()()(e 1)x x x x f x a a x a x a a x a x a x a a '=+---+=---=--,令()0f x '=可得:x a =或ln x a =-,因为310,e a ⎛⎫∈ ⎪⎝⎭,所以ln 3a ->,当x a <或ln x a >-时,()0f x '>,此时函数()f x 单调递增; 当ln a x a <<-时,()0f x '<,此时函数()f x 单调递减;所以函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,故当x a =时,函数取极大值()()22e 10102aaf a a a f a =-+++>=->,因为当2x =-时,221(2)(3)10ef a a a -=-+--<;所以0(2,)x a ∃∈-,使得0()0f x =; 当ln x a =-时,函数取极小值,ln 2211(ln )(ln 1)e (ln )ln 1ln ln (ln )22a f a a a a a a a a a a a a --=-----++=---1ln (1ln )02a a a =-++<,(因为ln 3a ->,所以13ln 22a <-,因为3110e 2a <<<,所以312a +<,也即11ln 02a a ++<)所以0(,ln )x a a '∃∈-,使得0()0f x '=;又当x →+∞时,()f x →+∞,所以0(ln ,)x a ''∃∈-+∞,使得0()0f x ''=;故当310,e a ⎛⎫∈ ⎪⎝⎭时,函数()f x 有3个零点.【点睛】函数零点的求解与判断方法:答案第17页,共17页 (1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用导数求出函数的极值点,再利用零点存在性定理进行判断零点的个数.。
盐城市、南京市 2020 届高三年级第一次模拟考试数学2020.01注意事项:1. 本试卷共 4 页,包括填空题(第 1 题~第 14 题)、解答题(第 15 题~第 20 题)两部分.本试卷满分为 160 分,考试时间为 120 分钟.2. 答题前,请务必将自己的姓名、学校、班级、学号写在答题卡的密封线内.试题的答案写在答.题.卡.上对应题目的答案空格内.考试结束后,交回答题卡. 参考公式:柱体体积公式:V =Sh ,锥体体积公式:V =1Sh ,其中 S 为底面积,h 为高.3n n样本数据 x 1,x 2,···,x n 的方差 s 2=1 ∑ (x i -)2,其中=1 ∑ x i .n i =1 n i =1一、 填空题:本大题共 14 小题,每小题 5 分,计 70 分.不需写出解答过程,请把答案写在答题卡的指定位置上.1.已知集合 A =(0,+∞),全集 U =R ,则∁ A = ▲. U2. 设复数 z =2+i ,其中 i 为虚数单位,则 z ·—z =▲.3. 学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查, 则甲被选中的概率为 ▲ . 4. 命题“ θ∈R ,cos θ+sin θ>1”的否定是 ▲ 命题.(填“真”或“假”) 5. 运行如图所示的伪代码,则输出的 I 的值为 ▲ . 6. 已知样本 7,8,9,x ,y 的平均数是 9,且 xy =110,则此样本的方差是 ▲ .(第 5 题图)7. 在平面直角坐标系 xOy 中,若抛物线 y 2=4x 上的点 P 到其焦点的距离为 3,则点 P 到点 O的距离为 ▲ .8. 若数列{a n }是公差不为0 的等差数列,ln a 1、ln a 2、ln a 5 成等差数列,则a 2的值为 ▲ . a 19. 在三棱柱 ABC -A 1B 1C 1 中,点 P 是棱 CC 1 上一点,记三棱柱 ABC -A 1B 1C 1 与四棱锥 P -ABB 1A 1 的体积分别为 V 1 与 V 2,则V 2= ▲ .V 110. 设函数 f (x )=sin(ωx +φ)(ω>0,0<φ<π)的图象与 y y 轴右侧第一个22最低点的横坐标为π,则ω的值为 ▲.6S ←0I ←0 While S ≤10 S ←S +I I ←I +1End WhilePrint I→11.已知H 是△ABC 的垂心(三角形三条高所在直线的交点),AH =的值为▲.→AB +4→AC ,则cos∠BAC212.若无穷数列{cos(ωn)}(ω∈R)是等差数列,则其前10 项的和为▲.13.已知集合P={(x,y)|x|x|+y|y|=16},集合Q={(x,y)|kx+b1≤y≤kx+b2},若P Q,则|b1-b2|k2+1 的最小值为▲.14.若对任意实数x∈(-∞,1],都有| e xx2-2ax+1|≤1 成立,则实数a 的值为▲.二、解答题:本大题共 6 小题,计90 分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内.15.(本小题满分14 分)已知△ABC 满足sin(B+π)=2cos B.6(1)若cos C AC=3,求AB;3(2)若A∈(0,π),且cos(B-A)=4,求sin A.3 516.(本小题满分14 分)如图,长方体ABCD-A1B1C1D1 中,已知底面ABCD 是正方形,点P 是侧棱CC1 上的一点.(1)若AC1//平面PBD,求PC1的值;PC(2)求证:BD⊥A1P.1A(第16 题图)11QA DOB CPyPA F1 O F2 xB如图,是一块半径为4 米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从⊙O 中裁剪出两块全等的圆形铁皮⊙P 与⊙Q 做圆柱的底面,裁剪出一个矩形ABCD 做圆柱的侧面(接缝忽略不计),AB 为圆柱的一条母线,点A、B 在⊙O 上,点P、Q 在⊙O 的一条直径上,AB∥PQ,⊙P、⊙Q 分别与直线BC、AD 相切,都与⊙O 内切.(1)求圆形铁皮⊙P 半径的取值范围;(2)请确定圆形铁皮⊙P 与⊙Q 半径的值,使得油桶的体积最大.(不取近似值)(第17 题图)18.(本小题满分16 分)设椭圆C:x2+y2=1(a>b>0)的左右焦点分别为F1,F2,离心率是e,动点P(x0,y0)在椭圆C 上a2 b2运动.当PF2⊥x 轴时,x0=1,y0=e.(1)求椭圆C 的方程;→→→→(2)延长PF ,PF 分别交椭圆C 于点A,B(A,B 不重合).设=,=,1 2AF1λF1P BF2 μF2P 求λ+μ的最小值.(第18 题图)定义:若无穷数列{a n}满足{a n+1-a n}是公比为q的等比数列,则称数列{a n}为“M(q)数列”.设数列{b n}中b1=1,b3=7.(1)若b2=4,且数列{b n}是“M(q)数列”,求数列{b n}的通项公式;(2)设数列{b n}的前n项和为S n,且b n+1=2S n-1n+λ,请判断数列{b n}是否为“M(q)数列”,2并说明理由;(3)若数列{b n}是“M(2)数列”,是否存在正整数m,n 使得4039<b m<4040?若存在,请求2019b n2019出所有满足条件的正整数m,n;若不存在,请说明理由.20.(本小题满分16 分)若函数f(x)=e x-a e-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a 的值;(2)求实数m 的取值范围;(3)若f(x0)≥-2恒成立,求实数m 的取值范围.e盐城市、南京市 2020 届高三年级第一次模拟考试数学附加题2020.01注意事项:1.附加题供选修物理的考生使用.2.本试卷共40 分,考试时间30 分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题卡的密封线内.试题的答案写在答.题.卡.上对应题目的答案空格内.考试结束后,交回答题纸卡.21.【选做题】在A、B、C 三小题中只能选做2 题,每小题10 分,共计20 分.请在答.卷.卡.指.定.区.域.内.作答.解答应写出文字说明、证明过程或演算步骤.A.选修4—2:矩阵与变换a 3已知圆C 经矩阵M=3 -2 变换后得到圆C′:x2+y2=13,求实数a 的值.B.选修4—4:坐标系与参数方程在极坐标系中,直线ρcosθ+2ρsinθ=m 被曲线ρ=4sinθ截得的弦为AB,当AB 是最长弦时,求实数m 的值.C.选修4—5:不等式选讲已知正实数a,b,c 满足1+2+3=1,求a+2b+3c 的最小值.a b c【必做题】第22 题、第23 题,每题10 分,共计20 分.请在答.卷.卡.指.定.区.域.内.作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10 分)如图,AA1、BB1 是圆柱的两条母线,A1B1、AB 分别经过上下底面圆的圆心O1、O,CD 是下底面与AB 垂直的直径,CD=2.(1)若AA1=3,求异面直线A1C 与B1D 所成角的余弦值;(2)若二面角A1-CD-B1 的大小为π,求母线AA1 的长.3(第22 题图)23.(本小题满分10 分)2n设∑ (1-2x)i=a0+a1x+a2x2+…+a2n x2n(n∈N*),记S n=a0+a2+a4+…+a2n.i=1(1)求S n;(2)记T n=-S1C1+S2C2-S3C3+…+(-1)n S n C n,求证:|T n|≥6n3恒成立.n n n n盐城市、南京市2020 届高三年级第一次模拟考试数学参考答案及评分标准2020.01说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14 小题,每小题 5 分,计70 分. 不需写出解答过程,请把答案写在答题纸的指定位置上)4.真5.6 6.2 7.2 31.(-∞,0] 2.5 3.238.3 9.210.7 1112.10 13.414.-1332二、解答题:本大题共 6 小题,计90 分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.(本小题满分14 分)解:(1)由sin(B+π)=2cos B,可知B+1cos B=2cos B,即sin B=3cos B.6 2 2因为cos B≠0,所以tan B=3.又B∈(0,π),故B=π......................................... 2 分3由cos C C∈(0,π),3可知sin C=1-cos2C................................... 4 分3AC =AB ,在△ABC 中,由正弦定理b = c ,可得sin Csin B sin C sinπ3所以AB=2................................................. 7 分(2)由(1)知B=π,所以A∈(0,π)时,π-A∈(0,π),3 3 3 3由 cos(B -A )=4,即 cos(π-A )=4,所以 sin(π-A )= 1-cos 2(π-A )=3, ................. 10 分3 3 5 所以 sin A =sin[π-(π-A )]=sin πcos(π-A )-cos πsin(π-A )3 3 3 3 3 3= 3×4-1×3=4 3-3. ............................. 14 分2 5 2 5 1016.(本小题满分 14 分)证明:(1)连结 AC 交 BD 于点 O ,连结 OP .因为 AC 1//平面 PBD ,AC 1 平面 ACC 1, 平面 ACC 1∩平面 BDP =OP ,所以 AC 1//OP . ............................. 3 分因为四边形 ABCD 是正方形,对角线 AC 交 BD 于点 O , 所以点 O 是 AC 的中点,所以 AO =OC ,所以在△ACC 1 中,PC 1=AO=1. ................ 6 分D 1C 1A 1B 1PD C(2)连结 A 1C 1.PC OC O因为 ABCD -A 1B 1C 1D 1 为长方体,所以侧棱 C 1C ⊥平面 ABCD . (第 16 题图)又 BD 平面 ABCD ,所以 CC 1⊥BD . ...................... 8 分因为底面 ABCD 是正方形,所以 AC ⊥BD . ................. 10 分又 AC ∩CC 1=C ,AC 面 ACC 1A 1, CC 1面 ACC 1A 1,所以 BD ⊥面 ACC 1A 1. .......................................... 12 分又因为 A 1P 面 ACC 1A 1,所以 BD ⊥A 1P . .......................... 14 分17.(本小题满分 14 分)解:(1)设⊙P 半径为 r ,则 AB =4(2-r ),所以⊙P 的周长 2πr =BC ≤2 16-4(2-r )2, ............................ 4 分 解 得 r ≤ 16 ,π2+4故⊙P 半径的取值范围为(0, 16 ]. ................................. 6 分π2+4 (2)在(1)的条件下,油桶的体积 V =πr 2·AB =4πr 2(2-r ). ..................... 8 分设函数 f (x )=x 2(2-x ),x ∈(0, 16 ],π2+4所以 f '(x)=4x-3x2,由于16 <4,π2+4 3所以 f '(x)>0 在定义域上恒成立,故f(x)在定义域上单调递增,即当r=16 时,体积取到最大值.................................. 13 分π2+4答:⊙P 半径的取值范围为(0,16 ].当r=16 米时,体积取到最大值. ....... 14 分18.(本小题满分16 分)π2+4 π2+4解:(1)由当PF2⊥x轴时,x0=1,可知c=1. ................................................... 2分将x0=1,y0=e 代入椭圆方程得1 +e2=1.a2 b2由e=c=1,b2=a2-c2=a2-1,所以1 + 1 =1,a a a2 a2(a2-1)解得a2=2,故b2=1,所以椭圆C 的方程为x2+y2=1...................................... 4分2→→1-x1=λ(x0+1),(2)方法一:设A(x1,y1),由AF1=λF1P y1=λy0,1=-λx0-λ-1,y1=-λy0,代入椭圆方程,得(-λx0-λ-1)2+(-λy)2=1....................... 8 分2x2(λx)2 2 2(λ+1)(2λx0+λ+1) 2又由0+y0=1,得20 +(λy0) =λ ,两式相减得2 2=1-λ .因为λ+1≠0,所以2λx0+λ+1=2(1-λ),故λ= 1 ................................................... 12 分3+2x0同理可得μ= 1 ,............................................ 14 分3-2x0故λ+μ= 1 + 1 = 6 ≥2,3+2x0 3-2x0 9-4x23当且仅当x0=0 时取等号,故λ+μ的最小值为2. ....................... 16 分3方法二:由点A,B 不重合可知直线PA 与x 轴不重合,故可设直线PA 的方程为x=my-1,x2 22+y =1,消去x,得(m2+2)y2-2my-1=0.x=my-1,设A(x1,y1),则y0y1=-1m2+2,所以y1=-1 ................. 8 分(m2+2)y0将点P(x ,y ) x2 y 2=1,0 0代入椭圆的方程得0+020 0 0 0代入直线 PA 的方程得 x 0=my 0-1,所以 m =x 0+1.y 0→ → y 1 1 1 由AF 1=λF 1P ,得-y 1=λy 0,故λ=- = =y 0 (m 2+2)y 2 (x 0+1)2+2y 2= 1= 1 . .................................... 12 分 (x 0+1)2+2(1-1x 2) 3+2x 02同理可得μ= 1 . ............................................. 14 分3-2x 0故λ+μ= 1 + 1 = 6 ≥2,3+2x 0 3-2x 0 9-4x 23 当且仅当 x 0=0 时取等号,故λ+μ的最小值为2. ...................... 16 分3注:(1)也可设 P ( 2cos θ,sin θ)得λ= 1 ,其余同理. 3+2 2cos θ(2)也可由1+1=6,运用基本不等式求解λ+μ的最小值.λ μ 19.(本小题满分 16 分)解:(1)因为 b 2=4,且数列{b n }是“M (q )数列”,所以 q =b 3-b 2=7-4=1,所以b n +1-b n =1,n ≥2,b 2-b 1 4-1b n -b n -1 即 b n +1-b n =b n -b n -1 ,n ≥2, .................................................................. 2 分 所以数列{b n }是等差数列,其公差为 b 2-b 1=3,所以数列{b n }通项公式为 b n =1+(n -1)×3,即 b n =3n -2. ............... 4 分 (2)由 b n +1=2S n -1n +λ,得 b 2=3+λ,b 3=4+3λ=7,故λ=1.2 2方法一:由 b n +1=2S n -1n +1,得 b n +2=2S n +1-1(n +1)+1,2 2 两式作差得 b n +2-b n +1=2b n +1-1,即 b n +2=3b n +1-1,n ∈N *.2 2又 b 2=5,所以 b 2=3b 1-1,22所以 b n +1=3b n -1对 n ∈N *恒成立, ............................................ 6 分2b n +1-1则 b n +1-1=3(b n -1).因为 b 1-1=3≠0,所以 b n -1≠0,所以4=3, 4 4 4 4 4 b n -14 即{b n -1}是等比数列, ....................................... 8 分4+ 所以 b n -1=(1-1)×3n -1=1×3n ,即 b n =1×3n +1,4 4 4 4 4(1×3n +2+1)-(1×3n +1+1)所以b n +2-b n +1= 44 4 4 =3, b n +1-b n(1×3n +1+1)-(1×3n +1)4444所以{b n +1-b n }是公比为 3 的等比数列,故数列{b n }是“M (q )数列”.………10 分 方法二:同方法一得 b n +1=3b n -1对 n ∈N *恒成立, ....................................... 6 分2 则 b n +2=3b n +1-1,两式作差得 b n +2-b n +1=3(b n +1-b n ). .............................. 8 分2因为 b 2-b 1=3≠0,所以 b n +1-b n ≠0,所以b n +2-b n +1=3,2b n +1-b n所以{b n +1-b n }是公比为 3 的等比数列,故数列{b n }是“M (q )数列”.………10 分(3)由数列{b n }是“M (2)数列”,得 b n 1-b n =(b 2-b 1)×2n -1. 又b 3-b 2=2,即7-b 2=2,所以 b 2=3,所以 b 2-b 1=2,所以 b n +1-b n =2n ,b 2-b 1 b 2-1 所以当 n ≥2 时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=2n -1.当 n =1 时上式也成立,所以 b n =2n -1. ...........................12 分 假设存在正整数 m ,n ,使得4039<b m <4040,则4039<2m-1<4040.2019 b n 2019 2019 2n -1 2019由2m-1>4039>1,可知 2m -1>2n -1,所以 m >n .2n -1 2019又 m ,n 为正整数,所以 m -n ≥1.又2m -1=2m -n (2n -1)+2m -n -1=2m -n +2m -n-1<4040, 2n -1 2n -1 2n -1 2019所以 2m -n <4040<3,所以 m -n =1, .............................................................. 14 分2019 所以2m-1=2+ 1 ,即4039<2+ 1 <4040,所以2021<2n <2020,2n -12n -1 2019 2n -1 2019 2 所以 n =10,m =11,故存在满足条件的正整数 m ,n ,其中 m =11,n =10. ................... 16 分20.(本小题满分 16 分)解:(1)由函数 f (x )为奇函数,得 f (x )+f (-x )=0 在定义域上恒成立,所以 e x -a e -x -mx +e -x -a e x +mx =0,化简可得 (1-a )·(e x +e -x )=0,所以 a =1. .................................................. 3 分(2)方法一:由(1)可得f(x)=e x-e-x-mx,所以f'(x)=e x+e-x-m=e2x-m e x+1.e x①当m≤2 时,由于e2x-m e x+1≥0 恒成立,即f '(x)≥0 恒成立,故不存在极小值............................ 5 分②当m>2 时,令e x=t,则方程t2-mt+1=0 有两个不等的正根t1,t2 (t1<t2),故可知函数f(x)=e x-e-x-mx在(-∞,ln t1),(ln t2,+∞)上单调递增,在(ln t1,ln t2)上单调递减,即在ln t2 处取到极小值,所以,m 的取值范围是(2,+∞).................................. 9分方法二:由(1)可得f(x)=e x-e-x-mx,令g(x)=f'(x)=e x+e-x-m,则g′(x)=e x-e-x=e2x-1.e x故当x≥0 时,g′(x)≥0;当x<0 时,g′(x)<0,........................... 5 分故g(x)在(-∞,0)上递减,在(0,+∞)上递增,所以g(x)min=g(0)=2-m.①若2-m≥0,则g(x)≥0 恒成立,所以f(x)单调递增,此时f(x)无极值点.……6 分②若2-m<0,即m>2 时,g(0)=2-m<0.取t=ln m,则g(t)=1 >0.m又函数g(x)的图象在区间[0,t]上不间断,所以存在x0∈(0,t),使得g(x0)=0.又g(x)在(0,+∞)上递增,所以x∈(0,x0)时,g(x)<0,即f '(x)<0;x∈(x0,+∞)时,g(x)>0,即f '(x)>0,所以f(x0)为f(x)极小值,符合题意.所以,m 的取值范围是(2,+∞).................................. 9 分(3)由x0满足e x0+e-x0=m,代入f(x)=e x-e-x-mx,消去m,可得f(x0)=(1-x0)e x0-(1+x0)e-x0. ................................................ 11分构造函数h(x)=(1-x)e x-(1+x)e-x,所以h′(x)=x(e-x-e x).当x≥0时,e-x-e x=1-e2x0,所以当x≥0 时,h′(x)≤0 恒成立,e x故h(x)在[0,+∞)上为单调减函数,其中h(1)=-2, ............................... 13 分e则f(x0)≥-2可转化为h(x0)≥h(1),故x0≤1..................... 15 分e由e x0+e-x0=m,设y=e x+e-x,可得当x≥0时,y’=e x-e-x≥0,所以y=e x+e-x在(0,1]上递增,故m≤e+1.e 综上,m 的取值范围是(2,e+1]. .............................. 16 分e≤盐城市、南京市 2020 届高三年级第一次模拟考试数学附加题参考答案及评分标准2020.01说明:1. 本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照 评分标准制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的 解答有较严重的错误,就不再给分.3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.4. 只给整数分数,填空题不给中间分数.21.【选做题】在 A 、B 、C 三小题中只能选做 2 题,每小题 10 分,共计 20 分.请在答.卷.纸.指.定.区.域.内.作答.解答应写出文字说明、证明过程或演算步骤. A. 选修 4—2:矩阵与变换解:设圆 C 上任一点(x ,y ),经矩阵 M 变换后得到圆 C’上一点(x’,y’),a 3所以 3 -2x =x′y y′ ax +3y =x′,3x -2y =y′. ......................... 5 分又因为(x′)2+(y′)2=13,所以圆 C 的方程为(ax +3y )2+(3x -2y )2=13, 化简得(a 2+9)x 2+(6a -12)xy +13y 2=13, a 2+9=13,6a -12=0 解得 a =2.所以,实数 a 的值为 2. ........................................... 10 分B. 选修 4—4:坐标系与参数方程解:以极点为原点,极轴为 x 轴的正半轴(单位长度相同)建立平面直角坐标系,由直线ρcos θ+2ρsin θ=m ,可得直角坐标方程为 x +2y -m =0.又曲线ρ=4sin θ,所以ρ2=4ρsin θ,其直角坐标方程为 x 2+(y -2)2=4, ........... 5 分所以曲线ρ=4sin θ是以(0,2)为圆心,2 为半径的圆.为使直线被曲线(圆)截得的弦 AB 最长,所以直线过圆心(0,2), 于是 0+2×2-m =0,解得 m =4.所以,实数 m 的值为 4. ............................................ 10 分C. 选修 4—5:不等式选讲解:因为1+2+3=1,所以1+ 4 + 9 =1. a b c a 2b 3c,由柯西不等式得a+2b+3c=(a+2b+3c)(1+4 +9 )≥(1+2+3)2,a 2b 3c即a+2b+3c≥36,....................................................... 5分1 4 9当且仅当a=2b=3c,即a=b=c 时取等号,解得a=b=c=6,a 2b 3c所以当且仅当a=b=c=6 时,a+2b+3c 取最小值36.......................... 10 分22.(本小题满分10分)解:(1)以CD,AB,OO1所在直线建立如图所示空间直角坐标系O-xyz.由CD=2,AA1=3,所以A(0,-1,0),B(0,1,0),C(-1,0,0),D(1,0,0),A1(0,-1,3),B1(0,1,3),→→从而A1C=(-1,1,-3),B1D=(1,-1,-3),→→-1×1+1×(-1)+(-3)×(-3) 7所以cos<A1C,B1D>==,(-1)2+12+(-3)2×12+(-1)2+(-3)2 11所以异面直线A1C 与B1D 所成角的余弦值为7 . ........... 4 分11(2)设AA1=m>0,则A1(0,-1,m),B1(0,1,m),→→→所以A1C=(-1,1,-m),B1D=(1,-1,-m),CD=(2,0,0),→n1·CD=2x1=0,设平面A1CD 的一个法向量n1=(x1,y1,z1),则所以x1=0,令z1=1,则y1=m,所以平面A1CD 的一个法向量n1=(0,m,1).→n1·A1C=-x1+y1-mz1=0,同理可得平面B1CD 的一个法向量n2=(0,-m,1).因为二面角A1-CD-B1 的大小为π,3所以|cos<n1,n2>|=|m×(-m)+1×1 |=1,m2+12×(-m)2+12 2解得m=3或m=3,3由图形可知当二面角A1-CD-B1 的大小为π时,m=3................ 10 分3注:用传统方法也可,请参照评分.23.(本小题满分10分)解:(1)令x=1,得a0+a1+a2+…+a2n=0.令x=-1,得a0-a1+a2-a3+…-a2n-1+a2n=31+32+…+32n=3(9n-1).2两式相加得2(a0+a2+a4+…+a2n)=3(9n-1),2所以S n=3(9n-1).......................... 3 分4(2)T n=-S1C1+S2C2-S3C3+…+(-1)n S n C nn n n n=3{[-91C1+92C2-93C3+…+(-1)n9n C n]-[-C1+C2-C3+…+(-1)n C n]}n n n4n n n n n=3{[90C0-91C1+92C2-93C3+…+(-1)n9n C n]-[C0-C1+C2-C3+…+(-1)n C n]} n n n n4n n n n n n =3[90C0-91C1+92C2-93C3+…+(-1)n9n C n]n n n n n4=3[C0(-9)0+C1(-9)1+C2(-9)2+…+C n(-9)n]n n n n4=3[1+(-9)]n=3×(-8)n....................................... 7 分4 4要证|T n|≥6n3,即证3×8n≥6n3,只需证明8n-1≥n3,即证2n-1≥n.4当n=1,2时,2n-1≥n显然成立.当n≥3时,2n-1=C0+C1+…+C n-1≥C0+C1=1+(n-1)=n,即2n-1≥n,n-1 n-1 n-1 n-1 n-1所以2n-1≥n对n∈N*恒成立.综上,|T n|≥6n3恒成立.......................................... 10 分注:用数学归纳法或数列的单调性也可证明2n -1≥n 恒成立,请参照评分.。
课时规范训练[A 级 基础演练]1.数列1,23,35,47,59,…的一个通项公式a n 是( )A.n2n +1B.n 2n -1C.n 2n -3 D .n 2n +3解析:选B.由已知得,数列可写成11,23,35,…,故通项为n2n -1.2.在数列{a n }中,a 1=1,a n =1a n -1+1,则a 4等于( )A.53 B .43 C .1D .23 解析:选A.由a 1=1,a n =1a n -1+1得,a 2=1a 1+1=2,a 3=1a 2+1=12+1=32,a 4=1a 3+1=23+1=53.3.(2021·保定高三调研)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式为a n =( ) A .2n-1 B .2n -1+1C .2n -1D .2n -2解析:选A.由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n,∴a n =2n-1.4.(2021·银川模拟)设数列{}a n 满足:a 1=2,a n +1=1-1a n,记数列{}a n 的前n 项之积为T n ,则T 2 016的值为( )A .-12B .1 C.12D .2解析:选B.由a 2=12,a 3=-1,a 4=2,a 5=12可知,数列{}a n 是周期为3的数列,且a 1·a 2·a 3=-1,从而T 2 016=(-1)672=1.5.(2021·吉林长春质量检测)设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n =( ) A.13n -1B .2n (n +1)C.6(n +1)(n +2)D .5-2n 3解析:选B.由题意知,S n +na n =2,当n ≥2时,S n -1+(n -1)a n -1=2,∴(n +1)a n =(n -1)a n -1从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,则a n =2n (n +1),当n =1时上式成立,所以a n =2n (n +1),故选B.6.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10等于( ) A .15 B .12 C .-12D .-15解析:选A.由题意知,a 1+a 2+…+a 10 =-1+4-7+10+…+(-1)10×(3×10-2) =(-1+4)+(-7+10)+…+ =3×5=15.7.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A .2n -1B .⎝ ⎛⎭⎪⎫n +1n n -1C .n 2D .n解析:选D.法一:由已知整理得(n +1)a n =na n +1,∴a n +1n +1=a n n ,∴数列⎩⎨⎧⎭⎬⎫a n n 是常数列,且a n n =a 11=1,∴a n=n .法二(累乘法):当n ≥2时,a n a n -1=n n -1. a n -1a n -2=n -1n -2,…,a 3a 2=32,a 2a 1=21,两边分别相乘得a na 1=n . 又∵a 1=1,∴a n =n .8.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44B .3×44+1 C .45D .45+1解析:选A.法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.故选A.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1, ∴该数列从第2项开头是以4为公比的等比数列,又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2(n ≥2). ∴当n =6时,a 6=3×46-2=3×44.9.(2021·云南文山检测)设S n 是数列{a n }的前n 项和,假如S n =3a n -2,那么数列{a n }的通项公式为 .解析:当n =1时,a 1=S 1=3a 1-2,解得a 1=1.当n ≥2时,S n =3a n -2,S n -1=3a n -1-2,两式相减得a n=3a n -3a n -1,故a n a n -1=32,数列{a n }为首项为1,公比为32的等比数列,其通项公式为a n =⎝ ⎛⎭⎪⎫32n -1.答案:a n =⎝ ⎛⎭⎪⎫32n -110.若数列{}a n 的前n 项和S n =23a n +13,则{}a n 的通项公式是a n = .解析:当n =1时,S 1=23a 1+13,∴a 1=1.当n ≥2时,a n =S n -S n -1=23a n +13-⎝ ⎛⎭⎪⎫23a n -1+13=23(a n -a n -1),∴a n =-2a n -1,即a na n -1=-2, ∴{}a n 是以1为首项的等比数列,其公比为-2, ∴a n =1×(-2)n -1,即a n =(-2)n -1.答案:(-2)n -1[B 级 力量突破]1.(2021·哈三中一模)设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44B .45C.13×(46-1) D .14×(45-1) 解析:选B.由a n +1=3S n 得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n≥2,则数列{a n }从其次项起构成以3为首项,4为公比的等比数列,所以S 6=a 73=3×453=45,故选B.2.(2021·浙江台州调考)现定义a n =5n+⎝ ⎛⎭⎪⎫15n,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为( )A.110 B .15 C.12D .1解析:选A.令5n=t >0,考虑函数y =t +1t,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函数t =5x,当0<x ≤1时,t ∈(1,5],可知当n =110时,a n 取得最小值.3.(2021·东北三校联考)已知数列{a n }满足:a n =13n 3-54n 2+3+m ,若数列的最小项为1,则m 的值为( )A.14 B .13 C .-14D .-13解析:选B.令f (x )=13x 3-54x 2+3+m ,x ∈(0,+∞),则f ′(x )=x 2-52x =x ⎝ ⎛⎭⎪⎫x -52,当x ∈⎝ ⎛⎭⎪⎫0,52时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫52,+∞时,f ′(x )>0,故x =52为函数f (x )的微小值点,也是最小值点.由于n ∈N *,且a 2=23+m ,a 3=34+m ,故a 2<a 3,即a 2为数列{a n }的最小项,故23+m =1,解得m =13,故选B.4.在数列{a n }中,a 1=1,对于全部的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5= . 解析:由题意知:a 1·a 2·a 3·…·a n -1=(n -1)2,∴a n =⎝ ⎛⎭⎪⎫n n -12(n ≥2),∴a 3+a 5=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫542=6116. 答案:61165.已知数列{a 2n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018= . 解析:∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的周期数列,∴a 2 018=a 2=0. 答案:06.(2021·山东潍坊调研)已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是 .解析:法一(定义法):由于{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1)(*).由于n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.法二(函数法):设f (n )=a n =n 2+λn ,其图象的对称轴为直线n =-λ2,要使数列{a n }为递增数列,只需使定义域在正整数上的函数f (n )为增函数,故只需满足f (1)<f (2),即λ>-3.答案:λ>-3。
数列058、 数列{}n a ,记123()n A n a a a a =+++⋅⋅⋅⋅⋅⋅+, 2341()n B n a a a a +=+++⋅⋅⋅⋅⋅⋅+,3452()n C n a a a a +=+++⋅⋅⋅⋅⋅⋅+, (1,2,3,......)n = ,并且对于任意n N *∈ ,恒有0n a >成立. (1 )假设121,5a a == ,且对任意n N *∈ ,三个数(),(),()A n B n C n 组成等差数列 ,求数列{}n a 的通项公式;(2 )证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n N *∈ ,三个数(),(),()A n B n C n 组成公比为q 的等比数列.【答案】解: (1 )2B(n)=A(n)+C(n)*+2121-=-=4,n N n n a a a a +⇒∈ ,所以{}n a 为等差数列 .*=4-3,n N n a n ∴∈(2 ) (必要性 )假设数列{}n a 是公比为q 的等比数列 ,那么23+112+++(n)==(n)++n n a a a B q A a a a ,34+223+1+++(n)==(n)++n n a a a C q B a a a ,所以A(n)、B(n)、C(n)组成公比为q 的等比数列 .(充分性 ):假设对于任意N n *∈ ,三个数(),(),()A n B n C n 组成公比为q 的等比数列 , 那么()(),()()B n qA n C n qB n == ,于是[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即2121.n n a qa a a ++-=- 由1n =有(1)(1),B qA =即21a qa = ,从而210n n a qa ++-=. 因为0n a > ,所以2211n n a a q a a ++== ,故数列{}n a 是首||项为1a ,公比为q 的等比数列 . 综上 ,数列{}n a 是公比为q 的等比数列的充要条件是对任意的*n N ∈ ,都有A(n)、B(n)、C(n)组成公比为q 的等比数列 .9、对于数列{}n x ,从中选取假设干项 ,不改变它们在原来数列中的先后次序 ,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后 ,打算研究首||项为1a ,公差为d 的无穷等差数列{}n a 的子数列问题 ,为此 ,他取了其中第|一项1a ,第三项3a 和第五项5a .(1) 假设135,,a a a 成等比数列,求d 的值;(2) 在11a =, 3d =的无穷等差数列{}n a 中 ,是否存在无穷子数列{}n b ,使得数列{}n b 为等比数列 ?假设存在 ,请给出数列{}n b 的通项公式并证明;假设不存在 ,说明理由;(3) 他在研究过程中猜想了一个命题: "对于首||项为正整数a ,公比为正整数q (1q >)的无穷等比数 列{}n c ,总可以找到一个子数列{}n d ,使得{}n d 构成等差数列〞. 于是 ,他在数列{}n c 中任取三项,,()k m n c c c k m n << ,由k n c c +与2m c 的大小关系去判断该命题是否正确. 他将得到什么结论 ?【答案】(1)由a 32 =a 1a 5 , ………… ……………………..2分即(a 1 +2d)2 =a 1(a 1 +4d) ,得d =0. ………… …………..4分(2) 解:a n =1 +3(n -1) ,如b n =4n -1便为符合条件的一个子数列. …… ……..7分因为b n =4n -1 =(1 +3)n -1 =1 +11n C -3 +21n C -32 +… +11n n C --3n -1 =1 +3M, ………..9分这里M =11n C - +21n C -3 +… +11n n C --3n -2为正整数 ,所以,b n =1 +3M =1 +3 [(M +1) -1]是{a n }中的第M +1项 ,得证. ……………….11分(注:b n 的通项公式不唯一)(3) 该命题为假命题. ……………………….12分由可得111,,k m n k m n c aq c aq c aq ---===,因此,11k n k n c c aq aq --+=+,又122m m c aq -=,故 1111()22(12)k n m k n k m k k n m c c c aq aq aq aq q q ------+-=+-=+-, ..15分 由于,,k m n 是正整数 ,且n m > ,那么1,1n m n k m k ≥+-≥-+,又q 是满足1q >的正整数 ,那么2q ≥,112121212210n k m k m k m k m k m k m k m k q q q q qq q q q ---+-----+-≥+-=+-≥+-=>, 所以 ,k n c c +>2m c ,从而原命题为假命题. ……..18分10、在平面直角坐标系xOy 中 ,点n A 满足)1,0(1=OA ,且)1,1(1=+n n A A ;点n B 满足)0,3(1=OB ,且)0,)32(3(1n n n B B ⋅=+ ,其中*n N ∈. (1 )求2OA 的坐标 ,并证明..点n A 在直线1y x =+上;(2 )记四边形11n n n n A B B A ++的面积为n a ,求n a 的表达式;(3 )对于 (2 )中的n a ,是否存在最||小的正整数P ,使得对任意*n N ∈都有P a n <成立 ?假设存在 ,求P 的值;假设不存在 ,请说明理由.【答案】 (1 )由条件得 ,(1,1)21=A A ,=21A A 2OA 1OA -,所以(1,2)2=OA ……2分(1,1)1=+n n A A ,那么)1,1(1=-+n n OA OA 设),(n n n y x OA = ,那么11=-+n n x x ,11=-+n n y y所以11)1(0-=⋅-+=n n x n ;n n y n =⋅-+=1)1(1………2分即),1(n n A n -=满足方程1y x =+ ,所以点n A 在直线1y x =+上. ……1分 (证明n A 在直线1y x =+上也可以用数学归纳法证明. )(2 )由 (1 )得),1(n n A n -)0,)32(3(11n n n n n OB OB B B ⋅=-=++ ………1分 设),(n n n v u B ,那么31=u ,01=v01=-+n n v v ,所以0=n vn n n u u )32(31⋅=-+ , 逐差累和得 ,))32(1(9n n u -= , 所以)0),)32(1(9(n n B -………2分 设直线1y x =+与x 轴的交点()1,0P - ,那么()111121************n n n n n n n PA B PA B a S S n n +++∆∆⎡⎤⎡⎤⎛⎫⎛⎫=-=-+--⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦n a 1)32)(2(5--+=n n ,*N n ∈……2分 (3 )由 (2 )n a 1)32)(2(5--+=n n ,*N n ∈ ()()111224251523333n n n n n n a a n n --+⎡⎤⎡⎤-⎛⎫⎛⎫⎛⎫-=+--+-=⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦…2分 于是 ,54321a a a a a =<<< , >>>765a a a ………2分数列{}n a 中项的最||大值为4516527a a ==+ ,那么27165>P ,即最||小的正整数p 的值为6 ,所以 ,存在最||小的自然数6=p ,对一切*n N ∈都有p a n <成立.……2分11、设数列{}n x 满足0>n x 且1≠n x (n ∈*N ),前n 项和为n S .点),(111S x P , ),(222S x P ,()n n n S x P ,,⋅⋅⋅都在直线b kx y +=上(其中常数k b 、且0≠k ,1≠k ,0≠b ),又n n x y 21log =.(1 )求证:数列{}n x 是等比数列;(2 )假设n y n 318-= ,求实数k ,b 的值;(3 )如果存在t 、∈s n ∈*N ,t s ≠使得点()s y t ,和点()t y s ,都在直线12+=x y 上.问是否存在正整数M ,当M n >时 ,1>n x 恒成立 ?假设存在 ,求出M 的最||小值 ,假设不存在 ,请说明理由.【答案】 (1 )因为点1,+n n P P 都在直线b kx y +=上 , 所以k x x S S n n n n =--++11 ,得n n kx x k =-+1)1( , ………2分 其中0111≠-=k x . ………3分 因为常数0≠k ,且1≠k ,所以11-=+k k x x nn 为非零常数. 所以数列{}n x 是等比数列. ………4分(2 )由n n x y 21log = ,得6821-=⎪⎭⎫ ⎝⎛=n y n n x , ………7分 所以81=-k k ,得78=k . ………8分 由n P 在直线上 ,得b kx S n n += , ………9分令1=n 得7871785111--=-=-=x x S b . ………10分 (3 )由nn x y 21log =知1>n x 恒成立等价于0<n y . 因为存在t 、∈s n∈*N ,t s ≠使得点()s y t ,和点()t y s ,都在直线12+=x y 上. 由12+=t y s 与12+=s y t 做差得:)(2s t y y t s -=-. ………12分 易证{}n y 是等差数列 ,设其公差为d ,那么有d t s y y t s )(-=- ,因为t s ≠ ,所以02<-=d ,又由2)(2++=+s t y y t s, 而4)(22)2)(1()2)(1(111++-=--++--+=+t s y t y s y y y t s得2)(24)(221++=++-s t t s y 得 01)(21>-+=t s y即:数列是首||项为正 ,公差为负的等差数列 ,所以一定存在一个最||小自然数M , ………16分使 ,⎩⎨⎧<≥+001M M y y , 即⎩⎨⎧<-+-+≥--+-+0)2(1)(20)2)(1(1)(2M t s M t s 解得2121++≤<-+t s M t s 因为*∈N M ,所以t s M += ,即存在自然数M ,其最||小值为t s + ,使得当M n > 时 ,1>nx 恒成立. ………18分。
数列
、已知数列,记, ,
, ,并且对于任意,恒有成立.()若,且对任意,三个数组成等差数列,求数列的通项公式;
()证明:数列是公比为的等比数列的充分必要条件是:对任意,三个数
组成公比为的等比数列.
【答案】解:()
,所以为等差数列。
()(必要性)若数列是公比为的等比数列,则,
,所以()、()、()组成公比为的等比数列。
(充分性):若对于任意,三个数组成公比为的等比数列,
则,
于是得即
由有即,从而.
因为,所以,故数列是首项为,公比为的等比数列。
综上,数列是公比为的等比数列的充要条件是对任意的,都有()、()、()组成公比为的等比数列。
、对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为,公差为的无穷等差数列的子数列问题,为此,他取了其中第一项,第三项和第五项.
() 若成等比数列,求的值;
() 在,的无穷等差数列中,是否存在无穷子数列,使得数列为等比数列?若存在,请给出数列的通项公式并证明;若不存在,说明理由;
() 他在研究过程中猜想了一个命题:“对于首项为正整数,公比为正整数()的无穷等比数列,总可以找到一个子数列,使得构成等差数列”. 于是,他在数列中
任取三项,由与的大小关系去判断该命题是否正确. 他将得到什么结论?
【答案】()由,………………………………分
即()(),得. ……………………分
() 解:(),如便为符合条件的一个子数列.…………分
因为()…, ………分。