河北省石家庄市2017届高三复习教学质量检测(二)(文数)
- 格式:doc
- 大小:604.00 KB
- 文档页数:8
石家庄市2017届高三复习教学质量检测(二)语文试题1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用合乎要求的2B铅笔把答题卡上对应题目的答案标号涂黑。
非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.考试结束后,请将本试题卷和答题卡一并上交。
第I卷阅读题(70分)一、现代文阅读(35分)(一)论述类文本阅读(9分,每小题3分)阅读下面的文字,完成1-3题。
中华是礼仪之邦,礼是中国文化之心。
流传至今的儒家‚十三经‛中有三部礼学经典,习称‚三礼‛,一部是《仪礼》,记述周代冠、婚、丧、祭诸礼的仪式;另一部是《周礼》,记载理想国的官制体系;还有一部就是《礼记》,是孔门七十子后学阐发礼义的文集,凡四十九篇,虽以思想隽永、说理宏通见长,但亦不乏细节描述。
《礼记》全书主要有语录、条记、议论等形式,内容贴近生活,文字相对浅近。
令人读《礼记》,至少可以收获礼仪规范。
礼在社会生活层面属于行为规范,因而具有鲜明的可操作性的特点。
《礼记》记载了许多言谈举止方面的细节,尽管时代不同了,但其中不少内容依然可以继承。
例如《礼记》提到礼仪场合中的仪容仪态时说,‚足容重‛,步履要稳重;‚手容恭‛,拱手要高而端正;‚目容端‛,目光不可睇视;‚口容止‛,嘴形静止不妄动;‚声容静‛,不咳嗽、打喷嚏,哕咳;‚头容直‛,头部正直,不左右倾斜;‚气容肃‛,不喘大气;‚色容庄‛,神色庄重。
《礼记》还提及各种礼仪禁忌,如‚毋嗷应‛,不要用号呼之声回应对方的呼唤;‚毋怠荒‛,体态要整肃,不可懈怠;‚坐毋箕‛,坐着,不可将双腿向两侧张开;‚暑毋褰裳‛,即使是暑天,也不要将裳的下摆向上撩起。
这些都是文明时代民众必备的知识。
如何得体地访客、与尊长相处,也是《礼记》多次谈到的内容。
《礼记》说:‚将上堂,声必扬。
2017-2018学年一、选择题:共12小题,每小题5分,共60分.在每小题给出的两个选项中,只有一项是符合题目要求的.1.设集合{}{}211,|6M N x x x =-=-<,,则下列结论正确的是( )A. N M ⊆B. N M =∅C. M N ⊆D. M N R = 【答案】B. 【解析】试题分析:∵2623x x x -<⇒-<<,∴(2,3)N =-, 又∵{1,1}M =-,∴可知C 正确,A ,B ,D 错误,故选C . 【考点】本题主要考查集合的关系与解不等式.2. 已知i 是虚数单位,则复数()21-1i i+在复平面内对应的点在( )A.第一象限B. 第二象限C.第三象限D.第四象限 【答案】C. 【解析】试题分析:由题意得,2(1)2(1)111i ii i i i i--==--=--++,故对应的点在第三象限,故选C .【考点】本题主要考查复数的计算以及复平面的概念.3. 下列函数中,既是偶函数又在区间()0+∞,上单调递增的是( )A. 1y x =B. lg y x =C. 1y x =-D. ln 12xy ⎛⎫= ⎪⎝⎭【答案】B. 【解析】试题分析:A :偶函数与在(0,)+∞上单调递增均不满足,故A 错误;B :均满足,B 正确;C :不满足偶函数,故C 错误;D :不满足在(0,)+∞上单调递增,故选B . 【考点】本题主要考查函数的性质.4. 已知数列{}n a 的前项和为n S ,若()=2-4n n S a n N*∈,,则=na ( )A. 12n + B. 2n C. -12n D. -22n【答案】A . 【解析】试题分析:111124(24)2n n n n n n n a S S a a a a ++++=-=---⇒=,再令1n =, ∴111244S a a =-⇒=,∴数列{}n a 是以4为首项,2为公比是等比数列, ∴11422n n n a -+=⋅=,故选A. 【考点】本题主要考查数列的通项公式.5. 设,m n 是两条不同的直线,αβγ,,是三个不同的平面,给出下列四个: ①若,//m n αα⊂,则//m n ; ②若//,//,m αββγα⊥,则m γ⊥; ③若=//n m n αβ ,,则//m α且//m β; ④若αγβγ⊥⊥,,则//αβ; 其中真的个数是( )A. 0B. 1C. 2D. 3 【答案】B. 【解析】试题分析:①://m n 或m ,n 异面,故①错误;②:根据面面平行的性质以及线面垂直的性质可知②正确;③://m β或m β⊂,故③错误;④:根据面面垂直的性质以及面面平行的判定可知④错误,∴真的个数为1,故选B .【考点】本题主要考查空间中线面的位置关系判定及其性质. 6. 执行如图所示的程序框图,则输出的实数m 的值为( ) A. 9 B. 10 C. 11 D. 12【答案】C. 【解析】试题分析:分析框图可知输出的应为满足299m >的最小正整数解的后一个整数,故选C . 【考点】本题主要考查程序框图.7. 已知,x y 满足约束条件1,1,49,3,x y x y x y ≥⎧⎪≥-⎪⎨+≤⎪⎪+≤⎩,若目标函数()0z y mx m ==>的最大值为1,则m的值是( ) A. 20-9B. 1C. 2D. 5 【答案】B. 【解析】试题分析:如下图所示,画出不等式组所表示的区域,作直线l :y mx =,0m >, 则可知当1x =,2y =时,max 211z m m =-=⇒=,故选B .【考点】本题主要考查线性规划.8. 若0,0a b >>,且函数()32=422f x x ax bx --+在1x =处有极值,若t ab =,则t 的最大值为( )A. 2B. 3C. 6D. 9 【答案】D. 【解析】试题分析:∵32()422f x x ax bx =--+,∴2'()1222f x x ax b =--, 又∵()f x 在1x =取得极值,∴'(1)122206f a b a b =--=⇒+=,∴2(6)(3)9t ab a a a ==-=--+,∴当且仅当3a b ==时,max 9t =,故选D. 【考点】本题考查导数的运用与函数最值. 9. 如图,圆C 内切于扇形AOB, 3AOB π∠=,若向扇形AOB 内随机投掷600个点,则落入圆内的点的个数估计值为( )A. 100B. 200C. 400D. 450【答案】C. 【解析】试题分析:如下图所示,设扇形半径为R ,圆C 半径为r ,∴23R r r r =+=, ∴落入圆内的点的个数估计值为22600400(3)6r r ππ⋅=,故选C.【考点】本题考查几何概型.10. 一个三棱锥的正视图和俯视图如右图所示,则该三棱锥的侧视图可能为( )【答案】D. 【解析】试题分析:分析三视图可知,该几何体如下图所示三棱锥,期中平面ACD ⊥平面BCD ,故选D .【考点】本题主要考查三视图.11. 设[],0αβπ∈,,且满足sin cos cos sin 1,αβαβ-=,则()()sin 2sin 2αβαβ-+-的取值范围为( )A. []-1,1B. ⎡⎣C. ⎡⎤⎣⎦D. ⎡⎣【答案】C.【解析】试题分析:∵sin cos cos sin 1sin()1αβαβαβ-=⇒-=,α,[0,]βπ∈,∴2παβ-=,∴0202αππαππβαπ≤≤⎧⎪⇒≤≤⎨≤=-≤⎪⎩, ∴sin(2)sin(2)sin(2)sin(2)sin cos 2παβαβααααπαα-+-=-++-+=+)4πα=+,∵2παπ≤≤,∴35444ππαπ≤+≤,∴1)14πα-≤+≤,即取值范围是[1,1]-,故选C . 【考点】本题主要考查三角恒等变形.12. 设抛物线2:4C y x =的焦点为F ,过F 的直线l 与抛物线交于A,B 两点,M 为抛物线C 的准线与x轴的交点,若tan AMB ∠=AB =( )A. 4B. 8C. 【答案】B. 【解析】试题分析:根据对称性,如下图所示,设l :1x my =+,11(,)A x y ,22(,)B x y ,由2244401y x y my x my ⎧=⇒--=⎨=+⎩,∴124y y m +=,124y y =-,221212144y y x x =⋅=,21212()242x x m y y m +=++=+,又∵tan tan()AMB AMF BMF ∠=∠+∠,∴122121221121212121211(2)(2)(1)(1)111y y x x y my y my y y y y x x y y x x -++++-+=⇒=-=-+++-⋅++,∴221m =⇒=,∴212||||||11448AB AF BF x x m =+=+++=+=, 故选B.【考点】本题主要考查抛物线的标准方程及其性质.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 将高三(1)班参加体检的36名学生,编号为:1,2,3, ,36,若采用系统抽样的方法抽取一个容量为4的样本,已知样本中含有编号为6号、24号、33号的学生,则样本中剩余一名学生的编号是 . 【答案】15. 【解析】试题分析:根据系统抽样的特点可知抽取的4名学生的编号依次成等差数列,故穷举可知剩余一名学生的编号是15,故填:15. 【考点】本题主要考查系统抽样.14. 已知数列{}n a 满足21n n n a a a ++=-,且12=2=3a a ,,则2016a 的值为 . 【答案】0. 【解析】试题分析:由题意得,3211a a a =-=,4322a a a =-=-,5433a a a =-=-,6541a a a =-=-,7652a a a =-=,∴数列{}n a 是周期为6的周期数列,而20166336=⋅,∴201663360S S ==,故填:0. 【考点】本题主要考查数列求和.15. 在球O 的内接四面体A BCD -中,610,2AB AC ABC π==∠=,,且四面体A BCD-体积的最大值为200,则球O 的半径为 .【答案】13. 【解析】试题分析:由题意得,设球O 半径为r ,13A BCD D ABC ABC V V S h --∆==⋅⋅,∴max max 1168200251332h h r r ⋅⋅⋅=⇒=+=⇒=,故填:13. 【考点】本题主要考查球的性质.16. 设()f x '是奇函数()()f x x R ∈的导函数,()-2=0f ,当0x >时,()()0xf x f x '->,则使得()0f x >成立的x 的取值范围是 . 【答案】(2,0)(2,)-+∞U . 【解析】试题分析:设2()'()()()'()f x xf x f x g x g x x x-=⇒=,∴当0x >时,'()0g x >, 即()g x 在(0,)+∞上单调递增,又∵(2)(2)02f g ==,∴()0f x >的解为(2,0)(2,)-+∞U , 故填:(2,0)(2,)-+∞U . 【考点】本题主要考查导数的运用.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)ABC ∆中,角A,B,C 的对边分别为,,a b c ,且2cos 2.bc C a =(Ⅰ)求角B 的大小;(Ⅱ)若1cos 7A =,求ca 的值. 【答案】(1)3π=B ;(2)58.【解析】试题分析:本题主要考查正余弦定理解三角形、三角恒等变形、三角函数的性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,利用正弦定理先将边转化为角,再由内角和将A 转化为()B C π-+,解出1cos 2B =,再结合角B 的取值范围,确定角B 的值;第二问,利用平方关系先得到sin A ,再结合第一问中的结论,用两角和的正弦公式以及诱导公式计算sin C ,最后用正弦定理将边转化为角的正弦值求解. 试题解析:(Ⅰ) a c C b 2cos 2=+,由正弦定理,得A C C B sin 2sin cos sin 2=+,------------2分π=++C B AC B C B C B A sin cos cos sin )sin(sin +=+=∴…………………4分 )sin cos cos (sin 2sin cos sin 2C B C B C C B +=+ C B C sin cos 2sin =因为π<<C 0,所以0sin ≠C , 所以21cos =B , 因为π<<B 0,所以3π=B .------------6分 (Ⅱ)三角形ABC 中,3π=B ,1cos 7A =,所以sin A =-------------8分sin sin()sin cos cos sin 14C A B A B A B =+=+=…………………10分 sin 5sin 8c ACB a BAC ∠==∠ .------------12分 考点:本题主要考查:1.正余弦定理解三角形;2.三角恒等变形;3.三角函数的性质 18. (本小题满分12分)为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)和利润z 的影响,对近五年该农产品的年产量和价格统计如下表:(Ⅰ)求y 关于x 的线性回归方程y bx a =-)));(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z 取到最大值?(保留两位小数)参考公式:1122211()()()-()n niii ii i nni i i i x x y y x y nx yb a y b x x x x nx====---===--∑∑∑∑))),【答案】(1)ˆ8.69 1.23y x =-;(2) 2.72x =.【解析】试题分析:本题主要考查线性回归分析、函数最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用已知数据结合参考公式计算ˆb和ˆa ,从而得到线性回归方程;第二问,结合第一问,先列出z 的表达式,利用配方法求最值.试题解析:(Ⅰ)3x =,5y = 错误!未找到引用源。
2016-2017学年度石家庄质检二考试(数学文科答案)一、选择题:1-5CDABB 6-10BBADC 11-12DC16.15 二、填空题:13. 4 14.三、解答题(解答题只给出一种或两种答案,在评卷过程中遇到的不同答案,请参照此标准酌情给分)解:(Ⅰ)由已知得,………1分且,17.∴设数列的公差为,则有,分 (3),即,,得由∴.……………5分∴,∴,∴(Ⅱ)由(Ⅰ)知.………………,得7分∴项和为的前.设数列∴①②………………8分①-②,得分10………………∴分12……………18.在平面内的正投影为解析:(Ⅰ)证明:因为点又因为则, 2……………………分中其,菱2边是长为的形且点作过得由且,分 (4)易证又因为分6………………….(Ⅱ)则有由上问,分8……………又因为分10……分12….座以下私家车第四年续保时保费高于基本保费的频率为解:(Ⅰ)一辆普通.19.6 分 (4),(Ⅱ)①由统计数据可知,该销售商店内的六辆该品牌车龄已满三年的二手车有两辆事故车,设为,四辆非事故车设为,,),,.从六辆车中随机挑选两辆车共有(,),(,,,(),(,),),(,(),),,(,(),,),((,,),(,),(),(),(,,),(),总共,15 分种情况。
(6)),(),(,,,),(),(其中两辆车恰好有一辆事故车共有(,,),(),总共8,),(,,种情况。
所以该顾客在店内随机挑选的两),(辆车恰好有一辆事故车的概率为.……………………8分②由统计数据可知,该销售商一次购进120辆该品牌车龄已满三年的二手车有事故车40辆,非事故车80辆,…10分,所以一辆车盈利的平均值为元.……12分.…………2分,则直线20解:(Ⅰ)设的斜率为,直线的斜率为于是由,得,整理得. …………4分y=kx+2,点P,Q的坐标分别为(x的方程为,y),(x,y)直线PQ与椭,(Ⅱ)当直线PQ的斜率存在时设直线PQ212122+16kx-32=0(4k+3)x. 得圆方程联立分…………………,xx=-所以,x+x=-.622112+2k(xx+x·+,从而y=x·x+y+= 2(1+k)+4)x22112112………………………………=8分=-20+.·10·分+………………………-20·+·的值为PQ当直线斜率不存在时的取值范围为.+·综上所述…………………………12·分21.解析:(Ⅰ)当时,曲线…分2时,切线的斜率为,又切线过点所以切线方程为分4………………,(Ⅱ).分在上单调递减;……………6时,当,函数当时,令,上单调递增;……,此时8分,函数在当,时,即有两个不等实根时,即,方程当,,所以分10…)(上单调递增;在上单调递减在此时,函数综上所述,当的单减区间是时,;,单增时,的单减区间是当单增区间是时,区间是当12……分22.的直角坐标方程为为半径的圆;直线是以【解析(Ⅰ)曲线23.为圆心,以分2.所以:,解得:只有一个公共点,则可得(舍),由直线与圆4…分的极坐标方程为(Ⅱ)曲线,的极角为的极角为,,设 (6)8……分分10…所以当的面积最大值.取得最大值时,为半径的圆,且解法二:因为曲线是以为圆心,以.……………………………,所以6分由正弦定理得:8分……………………………由余弦定理得所以分.………………………………所以的面积最大值10x=分(如果没有此步骤,需要图中标示出……………223.【解析】(Ⅰ)对应的关键点,否则扣分),x=1, 画出图象如图……………5分.(Ⅱ由(Ⅰ)知分……………∵,7,,的最大值为∴∴分10等号成立.………………,时当且仅当.。
2017年石家庄市高中毕业班复习教学质量检测(二)高三数学(文科答案) 一、 选择题:1-5CCDCA 6-10DACCB 11-12DC 二、 填空题:13. 6 14. - 15. 9(2,2015)_______ 三、解答题:(解答题按步骤给分,本答案只给出一或两种答案,学生除标准答案的其他解法,参照标准酌情设定,且只给整数分) 17.解:(1)由正弦定理得(2sin sin )cos sin cos 0,C A B B A --= ……………………………………2分2sin cos sin()0,sin (2cos 1)0C B A B C B ∴-+=∴-=…………4分1sin 0,cos ,23C B B π≠∴=∴=……………………………………6分(2)22222cos ()22cos b a c ac B a c ac ac B =+-=+--…………………………8分7,13,3b ac B π=+== 40ac ∴=………………………………10分1sin 2S ac B ∴==12分18. 解:(Ⅰ)由已知,100位顾客中购物款不低于100元的顾客有103010060%n ++=⨯,20n =;…………………………………2分()1002030201020m =-+++=.……………………3分该商场每日应准备纪念品的数量大约为6050003000100⨯=.………………5分 (II )设购物款为a 元当[50,100)a ∈时,顾客有500020%=1000⨯人, 当[100,150)a ∈时,顾客有500030%=1500⨯人, 当[150,200)a ∈时,顾客有500020%=1000⨯人,当[200,)a ∈+∞时,顾客有500010%=500⨯人,…………………………7分 所以估计日均让利为756%1000+1258%150017510%100030500⨯⨯⨯⨯+⨯⨯+⨯…………10分52000=元……………12分19. 解:(1)取AB 中点Q ,连接MQ 、NQ ,∵AN=BN ∴AB NQ ⊥, ……………2分 ∵⊥PA 面ABC ,∴AB PA ⊥,又PA MQ ∥ ∴AB MQ ⊥,………………4分 所以AB ⊥平面MNQ ,又MN ⊂平面MNQ ∴AB ⊥MN ………………6分(2)设点P 到平面NMA 的距离为h , ∵M 为PB 的中点,∴PAM △S =4121PAB =△S 又AB NQ ⊥,PA NQ ⊥,∴B PA NQ 面⊥, ∵︒=∠30AB C ∴63=NQ ……………………………7分 又3322=+=MQ NQ MN ,33=AN ,22=AM , (9)分可得△NMA 边AM 上的高为1230, ∴241512302221=⋅⋅=NMA S △………………10分 由PAM N NMA P V V --= 得 =⋅⋅h S NMA △31NQ S PAM ⋅⋅△31 ∴55=h ……………………12分 20.解:(Ⅰ)设动圆圆心坐标为(,)C x y ,根据题意得=,……………………2分化简得24x y =. …………4分(Ⅱ)解法一:设直线PQ 的方程为y kx b =+,由24x y y kx bìï=ïíï=+ïî消去y 得2440x kx b --= 设1122(,),(,)P x y Q x y ,则121244x x k x x bì+=ïïíï=-ïî,且21616k b D =+……………6分以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=- 即2111124y x x x =- 同理过点Q 的切线的方程为2221124y x x x =- 设两条切线的交点为(,)A A A x y 在直线20x y --=上,12x x ¹Q ,解得1212224A A x x x k x x y b ì+ïï==ïïïíïï==-ïïïî,即(2,)A k b - 则:220k b +-=,即22b k =-……………………………………8分 代入222161616323216(1)160k b k k k D =+=+-=-+>12||||PQ x x \=-=(2,)A k b -到直线PQ的距离为2d =…………………………10分32221||4||4()2APQS PQ d k b k b D \=?+=+3322224(22)4[(1)1]k k k =-+=-+\当1k =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0). …………12分解法二:设00(,)A x y 在直线20x y --=上,点1122(,),(,)P x y Q x y 在抛物线24x y =上,则以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=- 即1112y x x y =- 同理以点Q 为切点的方程为2212y x x y =-…………………………6分 设两条切线的均过点00(,)A x y ,则010101011212y x x y y x x y ìïï=-ïïíïï=-ïïïî,\点,P Q 的坐标均满足方程0012y xx y =-,即直线PQ 的方程为:0012y x x y =-……………8分 代入抛物线方程24x y =消去y 可得:200240x x x y -+=12|||PQ x x \=-=00(,)A x y 到直线PQ的距离为2001|2|x y d -=………………10分32220000111|||4|(4)222APQS PQ d x y x y D \=?-=-33222200011(48)[(2)4]22x x x =-+=-+ \当02x =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0).…………12分21.解:(Ⅰ)依题意1(),f x a x '=+1()202f a '=+=,则2,a =-………………2分经检验,2a =-满足题意.…………………4分 (Ⅱ)由(Ⅰ)知()ln 22,f x x x =-+则2()ln ,F x x x x λ=--2121'()21x x F x x x xλλ--=---=.………………………6分令2()21t x x x λ=--。
2014质检二地理答案36.(26分)(1)(10分)海拔高,空气稀薄,水汽、杂质相对较少(2分)。
白天,大气对太阳辐射的削弱作用弱,到达地面的太阳辐射量大,气温较高(2分);晚上大气逆辐射弱,气温较低(2分),气温日较差较大。
河谷地形白天热量不易散发(2分),夜晚有沿坡下沉的冷空气(山风)(2分),增大了气温日较差。
(2)(8分)白天降水相对少,光照充足(2分),有利于光合作用,增加农作物有机质积累,可提高其产量、品质(2分);夜间降水多,气温较白天低,雨水消耗于蒸发的部分少(2分),渗入土壤中的水分多,有利于水分涵养,增加作物根系吸收(2分)。
(3)(8分)有利条件:海拔高,夏季凉爽;濒临拉萨河,夏季夜雨多,湿度适中;空气清新;晴天多,阳光充足。
(任答两点即可,每点2分共4分)不利条件:海拔高,空气稀薄,氧气不足;太阳紫外线辐射强烈;气温日较差大。
(任答两点即可,每点2分共4分)37. (20分)(1)(8分)位于墨西哥边境,邻近美国,距离美国“硅谷”较近,位置优越;有连接美国、墨西哥两国铁路、公路经过,交通便利;劳动力资源丰富、廉价;土地价格低;国家政策支持(任答四点即可,每点2分,共8分)。
(2)(6分)促进产业结构的调整和优化,带动相关产业发展;扩大就业领域,增加经济收入;培育科技人才,减少人才流失;加快基础设施建设。
(任答三点即可,每点2分,共6分)(3)(6分)河流水量减少,淡水资源匮乏;海水入侵,水质恶化;入海泥沙减少,海浪侵蚀加剧,三角洲面积萎缩;生态环境恶化,生物多样性减少;加剧了三角洲盐渍化现象。
(任答三点即可,每点2分,共6分)42.(10分)旅游地理(1)(4分)距离首都北京和石家庄较近(2分);有通往京津、太原方向等的高速公路,交通便利(2分)。
(2)(6分)自然景观和人文景观丰富多样(2分);美学价值和历史文化价值较高;(2分)旅游资源的集群状况和地域组合状况较好(2分)。
2017年河北省石家庄市高考数学二模试卷(文科)一、选择题本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U=R,A={﹣2,﹣1,0,1,2},B={x|x≥1},则A∩∁U B=()A.{1,2}B.{﹣1,0,1}C.{﹣2,﹣1,0}D.{﹣2,﹣1,0,1}2.在复平面中,复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.“x>1”是“x2+2x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若sin(π﹣α)=,且≤α≤π,则cosα=()A.B.﹣C.﹣D.5.执行如图的程序框图,则输出K的值为()A.98 B.99 C.100 D.1016.李冶(1192﹣1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)()A.10步、50步B.20步、60步C.30步、70步D.40步、80步7.某几何体的三视图如图所示,则该几何体的体积是()A.16 B.20 C.52 D.608.已知函数f(x)=sin(2x+)+cos2x,则f(x)的一个单调递减区间是()A.[,] B.[﹣,]C.[﹣,]D.[﹣,] 9.四棱锥P﹣ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是()A.6 B.5 C.D.10.若x,y满足约束条件,则z=的最小值为()A.﹣2 B.﹣ C.﹣D.11.已知函数f(x)=,若f(﹣a)+f(a)≤2f(1),则实数a的取值范围是()A.(﹣∞,﹣1]∪[1,+∞)B.[﹣1,0]C.[0,1]D.[﹣1,1]12.已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为()A.B.C.2 D.二、填空题:本大题共4小题,每小题5分,共20分13.设样本数据x1,x2,…,x2017的方差是4,若y i=2x i﹣1(i=1,2,…,2017),则y1,y2,…y2017的方差为.14.等比数列{a n}中,若a1=﹣2,a5=﹣4,则a3=.15.在△ABC中,角A、B、C的对边分别为a,b,c,若a=,b=2,B=45°,tanA•tanC >1,则角C的大小为.16.非零向量,的夹角为,且满足||=λ||(λ>0),向量组,,由一个和两个排列而成,向量组,,由两个和一个排列而成,若•+•+•所有可能值中的最小值为42,则λ=.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)已知等差数列{a n}的前n项和为S n,若S m﹣1=﹣4,S m=0,S m+2=14(m≥2,且m∈N*)(Ⅰ)求m的值;(Ⅱ)若数列{b n}满足=log2b n(n∈N+),求数列{(a n+6)•b n}的前n项和.18.(12分)如图,三棱柱ABC﹣DEF中,侧面ABED是边长为2的菱形,且∠ABE=,BC=,点F在平面ABED内的正投影为G,且G在AE上,FG=,点M在线段CF上,且CM=CF.(1)证明:直线GM∥平面DEF;(2)求三棱锥M﹣DEF的体积.19.(12分)交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:(Ⅰ)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车中恰好有一辆为事故车的概率;②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.20.(12分)已知椭圆C: +=1(a>b>0)的左、右顶点分别为A、B,且长轴长为8,T为椭圆上一点,直线TA、TB的斜率之积为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,过点M(0,2)的动直线与椭圆C交于P、Q两点,求•+•的取值范围.21.(12分)已知函数f(x)=mlnx,g(x)=(x>0).(Ⅰ)当m=1时,求曲线y=f(x)•g(x)在x=1处的切线方程;(Ⅱ)讨论函数F(x)=f(x)﹣g(x)在(0,+∞)上的单调性.四、请考生在22-23两题中,任选一题作答,如果多做,则按所做的第一题记分.22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(a >0,β为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程ρcos(θ﹣)=.(Ⅰ)若曲线C与l只有一个公共点,求a的值;(Ⅱ)A,B为曲线C上的两点,且∠AOB=,求△OAB的面积最大值.23.设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.(Ⅰ)作出函数f(x)的图象;(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.2017年河北省石家庄市高考数学二模试卷(文科)参考答案与试题解析一、选择题本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U=R,A={﹣2,﹣1,0,1,2},B={x|x≥1},则A∩∁U B=()A.{1,2}B.{﹣1,0,1}C.{﹣2,﹣1,0}D.{﹣2,﹣1,0,1}【考点】1H:交、并、补集的混合运算.【分析】根据补集与交集的定义,写出∁U B与A∩∁U B即可.【解答】解:因为全集U=R,集合B={x|x≥1},所以∁U B={x|x<1}=(﹣∞,1),且集合A={﹣2,﹣1,0,1,2},所以A∩∁U B={﹣2,﹣1,0}故选:C【点评】本题考查了集合的定义与计算问题,是基础题目.2.在复平面中,复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A5:复数代数形式的乘除运算;A4:复数的代数表示法及其几何意义.【分析】利用复数代数形式的乘除运算化简,求出复数对应的点的坐标得答案.【解答】解:∵=,∴复数对应的点的坐标为(),在第四象限.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.3.“x>1”是“x2+2x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】分别讨论能否由x>1推出x2+2x>0,能否由x2+2x>0推出x>1,即可得到正确答案.【解答】解:当x>1时,x2+2x>0成立,所以充分条件成立当x2+2x>0时,x<﹣1或x>0,所以必要条件不成立故选A.【点评】本题考查充分条件、必要条件的判定,间接考查一元二次不等式的解法,属简单题.4.若sin(π﹣α)=,且≤α≤π,则cosα=()A.B.﹣C.﹣D.【考点】GH:同角三角函数基本关系的运用.【分析】根据三角函数在各个象限中的符号,利用同角三角函数的基本关系,求得cosα的值.【解答】解:∵sin(π﹣α)=sinα=,且≤α≤π,则cosα=﹣=﹣,故选:B.【点评】本题主要考查同角三角函数的基本关系的应用,属于基础题.5.执行如图的程序框图,则输出K的值为()A.98 B.99 C.100 D.101【考点】EF:程序框图.【分析】模拟程序的运行,依次写出每次循环得到的K,S的值,观察规律,可得当K=99,S=2,满足条件S≥2,退出循环,输出K的值为99,从而得解.【解答】解:模拟程序的运行,可得K=1,S=0S=lg2不满足条件S≥2,执行循环体,K=2,S=lg2+lg=lg3不满足条件S≥2,执行循环体,K=3,S=lg3+lg=lg4…观察规律,可得:不满足条件S≥2,执行循环体,K=99,S=lg99+lg=lg100=2满足条件S≥2,退出循环,输出K的值为99.故选:B.【点评】本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,属于基础题.6.李冶(1192﹣1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)()A.10步、50步B.20步、60步C.30步、70步D.40步、80步【考点】HT:三角形中的几何计算.【分析】根据水池的边缘与方田四边之间的面积为13.75亩,即方田面积减去水池面积为13.75亩,方田的四边到水池的最近距离均为二十步,设圆池直径为m,方田边长为40步+m.从而建立关系求解即可.【解答】解:由题意,设圆池直径为m,方田边长为40步+m.方田面积减去水池面积为13.75亩,∴(40+m)2﹣=13.75×240.解得:m=20.即圆池直径20步那么:方田边长为40步+20步=60步.故选B.【点评】本题考查了对题意的理解和关系式的建立.读懂题意是关键,属于基础题.7.某几何体的三视图如图所示,则该几何体的体积是()A.16 B.20 C.52 D.60【考点】L!:由三视图求面积、体积.【分析】由三视图得到几何体为三棱柱与三棱锥的组合体,根据图中数据,计算体积即可.【解答】解:由题意,几何体为三棱柱与三棱锥的组合体,如图体积为=20;故选B.【点评】本题考查了由几何体的三视图求几何体的体积;关键是正确还原几何体,利用三视图的数据求体积.8.已知函数f(x)=sin(2x+)+cos2x,则f(x)的一个单调递减区间是()A.[,] B.[﹣,]C.[﹣,]D.[﹣,]【考点】H2:正弦函数的图象.【分析】利用两角和与差和辅助角公式化简,结合三角函数的图象及性质求解即可.【解答】解:函数f(x)=sin(2x+)+cos2x,化简可得:f(x)=sin2x+cos2x=sin(2x+),由(k∈Z).解得:≤x≤(k∈Z).则f(x)的单调递减区间为[,](k∈Z)∴f(x)的一个单调递减区间为[,].故选:A.【点评】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.9.四棱锥P﹣ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是()A.6 B.5 C.D.【考点】L3:棱锥的结构特征.【分析】由球的球心在四棱锥P﹣的高上,把空间问题平面化,作出过正四棱锥的高作组合体的轴截面,利用平面几何知识即可求出高.【解答】解:由题意,四棱锥P﹣ABCD是正四棱锥,球的球心O在四棱锥的高PH上;过正四棱锥的高作组合体的轴截面如图所示:其中PE,PF是斜高,A为球面与侧面的切点,设PH=h,由几何体可知,RT△PAO∽RT△PHF,∴=,即=,解得h=.故选:D.【点评】本题主要考查了球内切多面体、几何体的结构特征,把空间问题平面化,是解题的关键.10.若x,y满足约束条件,则z=的最小值为()A.﹣2 B.﹣ C.﹣D.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,由z=的几何意义,即可行域内的动点与定点P(﹣3,2)连线的斜率,结合直线与圆的位置关系求得答案.【解答】解:由约束条件作出可行域如图,z=的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.设过P的圆的切线的斜率为k,则切线方程为y﹣2=k(x+3),即kx﹣y+3k+2=0.由,解得k=0或k=﹣.∴z=的最小值为﹣.故选;C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.11.已知函数f(x)=,若f(﹣a)+f(a)≤2f(1),则实数a的取值范围是()A.(﹣∞,﹣1]∪[1,+∞)B.[﹣1,0]C.[0,1]D.[﹣1,1]【考点】5B:分段函数的应用.【分析】判断f(x)为偶函数,运用导数判断f(x)在[0,+∞)的单调性,则f(﹣a)+f(a)≤2f(1)转化为|a|≤1,解不等式即可得到a的范围.【解答】解:函数f(x)=,将x换为﹣x,函数值不变,即有f(x)图象关于y轴对称,即f(x)为偶函数,有f(﹣x)=f(x),当x≥0时,f(x)=xln(1+x)+x2的导数为f′(x)=ln(1+x)++2x≥0,则f(x)在[0,+∞)递增,f(﹣a)+f(a)≤2f(1),即为2f(a)≤2f(1),可得f(|a|))≤f(1),可得|a|≤1,解得﹣1≤a≤1.故选:D.【点评】本题考查函数的奇偶性和单调性的应用:解不等式,注意运用导数判断单调性,考查化简整理的运算能力,属于中档题.12.已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为()A.B.C.2 D.【考点】KC:双曲线的简单性质.【分析】由题意,△ABF2的周长为24,利用双曲线的定义,可得=24﹣4a,进而转化,利用导数的方法,即可得出结论.【解答】解:由题意,△ABF2的周长为24,∵|AF2|+|BF2|+|AB|=24,∵|AF2|+|BF2|﹣|AB|=4a,|AB|=,∴=24﹣4a,∴b2=a(6﹣a),∴y=a2b2=a3(6﹣a),∴y′=2a2(9﹣2a),0<a<4.5,y′>0,a>4.5,y′<0,∴a=4.5时,y=a2b2取得最大值,此时ab取得最大值,b=,∴c=3,∴e==,故选:D.【点评】本题考查双曲线的定义,考查导数知识的运用,考查学生分析解决问题的能力,知识综合性强.二、填空题:本大题共4小题,每小题5分,共20分13.设样本数据x1,x2,…,x2017的方差是4,若y i=2x i﹣1(i=1,2,…,2017),则y1,y2,…y2017的方差为16.【考点】BC:极差、方差与标准差.【分析】根据题意,设数据x1,x2,…,x2017的平均数为,由方差公式可得=[(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(x2017﹣)2]=4,进而对于数据y i=2x i ﹣1,可以求出其平均数,进而由方差公式计算可得答案.【解答】解:根据题意,设样本数据x1,x2,…,x2017的平均数为,又由其方差为4,则有= [(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(x2017﹣)2]=4,对于数据y i=2x i﹣1(i=1,2,…,2017),其平均数=(y1+y2+…+y2017)=[(2x1﹣1)+(2x2﹣1)+…+(2x2017﹣1)]=2﹣1,其方差= [(y1﹣)2+(y2﹣)2+(y3﹣)2+…+(y2017﹣)2]= [(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(x2017﹣)2]=16,故答案为:16.【点评】本题考查数据的方差计算,关键是掌握方差的计算公式.14.等比数列{a n}中,若a1=﹣2,a5=﹣4,则a3=.【考点】88:等比数列的通项公式.【分析】由题意,{a n}是等比数列,a1=﹣2,设出公比q,表示出a5=﹣4,建立关系,求q,可得a3的值【解答】解:由题意,{a n}是等比数列,a1=﹣2,设公比为q,∵a5=﹣4,即﹣2×q4=﹣4,可得:q4=2,则那么a3=故答案为.【点评】本题考查等比数列的第3项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用15.在△ABC中,角A、B、C的对边分别为a,b,c,若a=,b=2,B=45°,tanA•tanC >1,则角C的大小为75°.【考点】GR:两角和与差的正切函数.【分析】由条件利用正弦定理求得sinA的值,可得A的值,再利用三角形内角和公式求得C的值.【解答】解:△ABC中,∵a=,b=2,B=45°,tanA•tanC>1,∴A、C都是锐角,由正弦定理可得==,∴sinA=,∴A=60°.故C=180°﹣A﹣B=75°,故答案为:75°.【点评】本题主要考查正弦定理,三角形内角和公式,属于基础题.16.非零向量,的夹角为,且满足||=λ||(λ>0),向量组,,由一个和两个排列而成,向量组,,由两个和一个排列而成,若•+•+•所有可能值中的最小值为42,则λ=.【考点】9R:平面向量数量积的运算;9S:数量积表示两个向量的夹角.【分析】列出向量组的所有排列,计算所有可能的值,根据最小值列出不等式组解出.【解答】解:=||×λ||×cos=2,=λ22,向量组,,共有3种情况,即(,,),(),(),向量组,,共有3种情况,即(),(),(,),∴•+•+•所有可能值有2种情况,即++=(λ2+λ+1),3=,∵•+•+•所有可能值中的最小值为42,∴或.解得λ=.故答案为.【点评】本题考查了平面向量的数量积运算,属于中档题.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)(2017•晋中一模)已知等差数列{a n}的前n项和为S n,若S m﹣1=﹣4,S m=0,S m+2=14(m≥2,且m∈N*)(Ⅰ)求m的值;(Ⅱ)若数列{b n}满足=log2b n(n∈N+),求数列{(a n+6)•b n}的前n项和.【考点】8E:数列的求和;8H:数列递推式.【分析】(I)计算a m,a m+1+a m+2,利用等差数列的性质计算公差d,再代入求和公式计算m;(II)求出a n,b n,得出数列{(a n+6)•b n}的通项公式,利用错位相减法计算.【解答】解:(Ⅰ)∵S m﹣1=﹣4,S m=0,S m+2=14,∴a m=S m﹣S m﹣1=4,a m+1+a m+2=S m+2﹣S m=14,设数列{a n}的公差为d,则2a m+3d=14,∴d=2.∵S m=×m=0,∴a1=﹣a m=﹣4,∴a m=﹣4+2(m﹣1)=4,解得m=5.(Ⅱ)由(Ⅰ)知a n=﹣4+2(n﹣1)=2n﹣6,∴n﹣3=log2b n,即b n=2n﹣3.∴(a n+6)•b n=2n•2n﹣3=n•2n﹣2.设数列{(a n+6)•b n}的前n项和为T n,∴T n=1×+2×1+3×2+…+…n•2n﹣2,①∴2T n=1×1+2×2+3×22+…+n•2n﹣1,②①﹣②,得﹣T n=+1+2+…+2n﹣2﹣n•2n﹣1=﹣n•2n﹣1=(1﹣n)•2n﹣1﹣.∴T n=(n﹣1)•2n﹣1+.【点评】本题考查了等差数列,等比数列的性质,数列求和,属于中档题.18.(12分)(2017•晋中一模)如图,三棱柱ABC﹣DEF中,侧面ABED是边长为2的菱形,且∠ABE=,BC=,点F在平面ABED内的正投影为G,且G在AE上,FG=,点M在线段CF上,且CM=CF.(1)证明:直线GM∥平面DEF;(2)求三棱锥M﹣DEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(1)由已知可得AE=2,求解直角三角形可得EG=,则AG:HG=1:3,过G作SH∥AD,交AB于S,交DE于H,则SG:GH=1:3,再由已知可得CM:MF=1:3,得到MG∥FH,由线面平行的判定可得直线GM∥平面DEF;(2)设过MG且平行于平面DEF的平面交三棱柱于MNK,得三棱柱DEF﹣MNK,,由等积法求得三棱锥M﹣DEF的体积.可得=V M﹣NEK【解答】(1)证明:如图,∵面ABED是边长为2的菱形,且∠ABE=,∴△ABE为正三角形,且AE=2,∵FG⊥GE,FG=,EF=BC=,∴EG=,则AG:HG=1:3,过G作SH∥AD,交AB于S,交DE于H,则SG:GH=1:3,连接CS、FH,∵CM=CF,∴CM:MF=1:3,∴MG∥FH,又FH⊂平面DEF,MG⊄平面DEF,∴直线GM∥平面DEF;(2)解:设过MG且平行于平面DEF的平面交三棱柱于MNK,得三棱柱DEF﹣MNK,可得=V M,﹣NEK∵NK=2,NE=,∴.则.【点评】本题考查线面平行的判定,考查了空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.19.(12分)(2017•晋中一模)交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:(Ⅰ)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车中恰好有一辆为事故车的概率;②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】解:(Ⅰ)利用等可能事件概率计算公式,能求出一辆普通6座以下私家车第四年续保时保费高于基本保费的概率.(Ⅱ)①由统计数据可知,该销售商店内的六辆该品牌车龄已满三年的二手车有两辆事故车,设为b1,b2,四辆非事故车设为a1,a2,a3,a4.利用列举法求出从六辆车中随机挑选两辆车的基本事件总和其中两辆车恰好有一辆事故车包含的基本事件个数,由此能求出该顾客在店内随机挑选的两辆车恰好有一辆事故车的概率.②由统计数据可知,该销售商一次购进120辆该品牌车龄已满三年的二手车有事故车40辆,非事故车80辆,由此能求出一辆车盈利的平均值.【解答】解:(Ⅰ)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为p=.…(4分)(Ⅱ)①由统计数据可知,该销售商店内的六辆该品牌车龄已满三年的二手车有两辆事故车,设为b1,b2,四辆非事故车设为a1,a2,a3,a4.从六辆车中随机挑选两辆车共有(b1,b2),(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a4),总共15种情况.…(6分)其中两辆车恰好有一辆事故车共有(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),总共8种情况.所以该顾客在店内随机挑选的两辆车恰好有一辆事故车的概率为p=.…(8分)②由统计数据可知,该销售商一次购进120辆该品牌车龄已满三年的二手车有事故车40辆,非事故车80辆,…(10分)所以一辆车盈利的平均值为 [(﹣5000)×40+10000×80]=5000元.…(12分)【点评】本题考查概率的求法及应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式、列举法的合理运用.20.(12分)(2017•晋中一模)已知椭圆C: +=1(a>b>0)的左、右顶点分别为A、B,且长轴长为8,T为椭圆上一点,直线TA、TB的斜率之积为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,过点M(0,2)的动直线与椭圆C交于P、Q两点,求•+•的取值范围.【考点】KL:直线与椭圆的位置关系.【分析】(Ⅰ)求得直线TA,TB的斜率,由•=﹣,即可求得椭圆C 的方程;(Ⅱ)设直线PQ方程,代入椭圆方程,利用韦达定理及向量数量积的坐标,求函数的单调性,即可求得•+•的取值范围.【解答】解:(Ⅰ)设T(x,y),则直线TA的斜率为k1=,直线TB的斜率为k2=,.…(2分)于是由k1k2=﹣,得•=﹣,整理得;…(4分)(Ⅱ)当直线PQ的斜率存在时,设直线PQ的方程为y=kx+2,点P,Q的坐标分别为(x1,y1),(x2,y2),直线PQ与椭圆方程联立,得(4k2+3)x2+16kx﹣32=0.所以,x1+x2=﹣,x1x2=﹣.…(6分)从而•+•=x1x2+y1y2+[x1x2+(y1﹣2)(y2﹣2)],=2(1+k2)x1x2+2k(x1+x2)+4==﹣20+.…(8分)﹣20<•+•≤﹣,…(10分)当直线PQ斜率不存在时•+•的值为﹣20,综上所述•+•的取值范围为[﹣20,﹣].…(12分)【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系,考查韦达定理及向量数量积的坐标运算,函数单调性及最值与椭圆的综合应用,属于中档题.21.(12分)(2017•晋中一模)已知函数f(x)=mlnx,g(x)=(x>0).(Ⅰ)当m=1时,求曲线y=f(x)•g(x)在x=1处的切线方程;(Ⅱ)讨论函数F(x)=f(x)﹣g(x)在(0,+∞)上的单调性.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(I)利用导数的运算法则可得切线的斜率,利用点斜式即可得出.(Ⅱ)f′(x)=,g′(x)=,F′(x)=f′(x)﹣g′(x)=﹣=,对m分类讨论,利用导数研究函数的单调性即可得出.【解答】解:(Ⅰ)当m=1时,曲线y=f(x)g(x)=.y′==,…(2分)x=1时,切线的斜率为,又切线过点(1,0).所以切线方程为y=(x﹣1),化为:x﹣2y﹣1=0.…(4分)(Ⅱ)f′(x)=,g′(x)=,F′(x)=f′(x)﹣g′(x)=﹣=,当m≤0时,F′(x)<0,函数F(x)在(0,+∞)上单调递减;…(6分)当m>0时,令k(x)=mx2+(2m﹣1)x+m,△=(2m﹣1)2﹣4m2=1﹣4m,当△≤0时,即m≥,k(x)≥0,此时F′(x)≥0,函数F(x)在(0,+∞)上单调递增;…(8分)当△>0时,即,方程mx2+(2m﹣1)x+m=0有两个不等实根x1<x2,(x1=,x2=).∴x1+x2==﹣2>2,x1•x2=1,…(10分)所以0<x1<1<x2,此时,函数F(x)在(0,x1),(x2,+∞)上单调递增;在(x1,x2)上单调递减综上所述,当m≤0时,F(x)的单减区间是(0,+∞);当时,F(x)的单减区间是(x1,x2),单增区间是(0,x1),(x2,+∞)上单调递增;当时,F(x)单增区间是(0,+∞).…(12分)【点评】本题考查了利用导数研究函数的单调性、切线的斜率、一元二次方程的实数根与判别式的关系,考查了推理能力与计算能力,属于难题.四、请考生在22-23两题中,任选一题作答,如果多做,则按所做的第一题记分.22.(10分)(2017•晋中一模)在平面直角坐标系xOy中,曲线C的参数方程为(a>0,β为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程ρcos(θ﹣)=.(Ⅰ)若曲线C与l只有一个公共点,求a的值;(Ⅱ)A,B为曲线C上的两点,且∠AOB=,求△OAB的面积最大值.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(Ⅰ)根据sin2β+cos2β=1消去β为参数可得曲线C的普通方程,根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2,直线l的极坐标方程化为普通方程,曲线C与l只有一个公共点,即圆心到直线的距离等于半径,可得a的值.(Ⅱ)利用极坐标方程的几何意义求解即可.【解答】(Ⅰ)曲线C是以(a,0)为圆心,以a为半径的圆;直线l的直角坐标方程为由直线l与圆C只有一个公共点,则可得解得:a=﹣3(舍)或a=1所以:a=1.(Ⅱ)由题意,曲线C的极坐标方程为ρ=2acosθ(a>0)设A的极角为θ,B的极角为则:==∵cos=所以当时,取得最大值∴△OAB的面积最大值为.解法二:因为曲线C是以(a,0)为圆心,以a为半径的圆,且由正弦定理得:,所以|AB=由余弦定理得:|AB2=3a2=|0A|2+|OB|2﹣|OA||OB|≥|OA||OB|则:≤×=.∴△OAB的面积最大值为.【点评】本题考查参数方程、极坐标方程、普通方程的互化,以及应用,属于中档题23.(2017•石家庄二模)设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.(Ⅰ)作出函数f(x)的图象;(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.【考点】R5:绝对值不等式的解法;R4:绝对值三角不等式.【分析】(Ⅰ)利用分段函数,化简函数的解析式,从而作函数的图象,结合图象,求得函数的最大值m.(Ⅱ)由题意可得a2+2c2+3b2=m==(a2+b2)+2(c2+b2),利用基本不等式求它的最值.【解答】解:(Ⅰ)函数f(x)=|x﹣1|﹣|2x+1|=,画出图象如图,(Ⅱ)由(Ⅰ)知,当x=﹣时,函数f (x )取得最大值为m=.∵a 2+2c 2+3b 2=m==(a 2+b 2)+2(c 2+b 2)≥2ab +4bc ,∴ab +2bc ≤,当且仅当a=b=c=1时,取等号,故ab +2bc 的最大值为.【点评】本题主要考查分段函数的应用,作函数的图象,利用基本不等式求函数的最值,属于中档题.。
学习必备 欢迎下载鬲三数学(文科)质脸二 第1页(共4页)石家庄市2017届高三复习教学质量检测(二)高三数学(文科)(时间120分钟.满分150分)注意事项:1+本试卷分第I 卷(选择题)和第U 卷(IE 选择题)两部分,答卷前考生务必将自己的姓 名、准持证号填写在答题卡上.2.回答第I 卷时.选岀毎小题答案后,用铅笔把答题卡上对应题冃的答案标号涂黑.如 需改动,用橡皮擦干净后「再选涂其他答案标号.写在本试卷上无效.3*回答第H 卷时、将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回,第1卷(选择题,共60分}一、选择题:本题共12题■每小题5分,在每小题给出的四个选项中,只有一项是符合题目 要求的.1.设 t/=R,.4=(-2t -l,0J t 2|,B={xh^lh 则 A 门匚肛 A. (l t 2| B.{-1,0,1} C. {-2,-1+0( D* {-2,-1,0,1)N 在复平面中•宣数石+匚「对应的点在封龙山隐居讲学•数学著作名部•苴中《益古演段》丰要研究平面图形问题:求圆的直径、 正方形的边长等.其中一问:现有正方形的出地一块•内部有一个圆形水池,其中水池的 边缘与方田的四边之间的面积为13.75 FH\若方田的四边到水池的最近距离均为二十 步,则圆池直径和方田的边丘分别是(注;240平方步为1亩.圆周率按3近似计算)A* 10 步,50 步20 步,60 步 U 30 步,70 步 D. 40 步,80 步A •第一象限 氏第二象限 C 第三象限 I 〉.第四象限帀亍)3. 是的匸B.必要不充分条件】)•既不充分也不必要条件sint, 1T-Ot阳哼 B. ■芋C 一怔5. 执行右边的程序框图•则输出的K 的值为A. 98B. 99C. 1006. 夕冶(1192^1279),真定栾城(今属河北石家庄市}人,金元时期的数学家、诗人•晚年在D. 101Pm 否 Hl屉/输出K/高三数学(文科)质检二 第2页(共4页)-|dn (l+x )+x 2,x^0 -1, ,若人-韵祖小笔劄C1人则实数。
石家庄市2017届高三复习教学质量检测(二)高三数学(理科)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设{}{},3,2,1,0,1,2,|1U R A B x x ==---=≥,则U AC B = ( )A .{}1,2B .{}1,0,1,2-C .{}3,2,1,0---D .{}2 2.在复平面中,复数()2111i i +++对应的点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限3. 在ABC ∆中,角A B C 、、的对边分别为a b c 、、,则“sin sin A B >”是“a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D . 即不充分也不必要条件4.若()1sin 3πα-=,且2παπ≤≤,则sin 2α的值为 ( )A .9-B .9- C. 9 D .95.执行下面的程序框图,则输出K 的值为 ( )A .98B .99 C. 100 D .1016. 李冶(1192--1279 ),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( )A .10步,50步B .20步,60步 C. 30步,70步 D .40步,80步 7.某几何体的三视图如图所示,则该几何体的体积是 ( )A . 16B .20 C. 52 D .60 8. 已知函数()()sin 2,12f x x f x π⎛⎫'=+ ⎪⎝⎭是()f x 的导函数,则函数()()2y f x f x '=+的一个单调递减区间是( ) A .7,1212ππ⎡⎤⎢⎥⎣⎦ B .5,1212ππ⎡⎤-⎢⎥⎣⎦ C. 2,33ππ⎡⎤-⎢⎥⎣⎦ D .5,66ππ⎡⎤-⎢⎥⎣⎦9.若()332a x x dx -=+⎰,则在a的展开式中,x 的幂指数不是整数的项共有( ) A .13项 B .14项 C. 15项 D .16项10.在平面直角坐标系中,不等式组22200x y x y x y r +≤⎧⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为 ( )A .-1 B.17-C. 13 D .75- 11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,过点1F 且垂直于x 轴的直线与该双曲线的左支交于A B 、两点,22AF BF 、分别交y 轴于P Q 、两点,若2PQF ∆的周长 12,则ab 取得最大值时该双曲线的离心率为( )A C. .312.已知函数()221x f x e ax bx =-+-,其中,,a b R e ∈为自然对数的底数.若()()10,f f x '=是()f x 的导函数,函数()f x '在区间()0,1内有两个零点,则a 的取值范围是( )A .()223,1e e -+ B .()23,e -+∞ C. ()2,22e -∞+ D .()2226,22e e -+第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,满分20分. 13.设样本数据122017,,,x x x 的方差是4,若()211,2,,2017i i y x i =-=,则122017,,,y y y 的方差为 .14.在平面内将点()2,1A 绕原点按逆时针方向旋转34π,得到点B ,则点B 的坐标为 . 15.设二面角CD αβ--的大小为45°,A 点在平面α内,B 点在CD 上,且045ABC ∠=,则AB 与平面β所成的角的大小为 . 16.非零向量,m n 的夹角为3π,且满足()0n m λλ=>,向量组123,,x x x 由一个m 和两个n 排列而成,向量组123,,y y y 由两个m 和一个n 排列而成,若112233x y x y x y ++所有可能值中的最小值为24m ,则λ= .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知等差数列{}n a 的前n 项和为n S ,若()*124,0,142,m m m S S S m m N -+=-==≥∈且. (1)求m 的值; (2)若数列{}n b 满足()*2log 2nn a b n N =∈,求数列(){}6n n a b +的前n 项和.18.如图,三棱柱ABC DEF -中,侧面ABED 是边长为2的菱形,且,3ABE BC π∠==.四棱锥F ABED -的体积为2,点F 在平面ABED 内的正投影为G ,且G 在AE 上,点M 是在线段CF 上,且14CM CF =.GM平面DEF;(1)证明:直线//--的余弦值.(2)求二面角M AB F19.交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:a=.记X为某同学家(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,950里的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率; ②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.20.设M N T 、、椭圆2211612x y +=上三个点,M N 、在直线8x =上的射影分别为11,M N . (1)若直线MN 过原点O ,直线MT NT 、斜率分别为12,k k ,求证:12k k 为定值;(2)若M N 、不是椭圆长轴的端点,点L 坐标为()3,0,11M N L ∆与MNL ∆面积之比为5,求MN 中点K 的轨迹方程.21.已知函数()()()()ln 1,11xf x m xg x x x =+=>-+. (1)讨论函数()()()F x f x g x =-在()1,-+∞上的单调性;(2)若()y f x =与()y g x =的图象有且仅有一条公切线,试求实数m 的值. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin x a a y a ββ=+⎧⎨=⎩(0,a β>为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程3cos 32πρθ⎛⎫-= ⎪⎝⎭. (1)若曲线C 与l 只有一个公共点,求a 的值; (2),A B 为曲线C 上的两点,且3AOB π∠=,求OAB ∆的面积最大值.23.选修4-5:不等式选讲设函数()121f x x x =--+的最大值为m . (1)作出函数()f x 的图象;(2)若22223a c b m ++=,求2ab bc +的最大值.2016-2017学年度石家庄市质检二检测(数学理科答案)一、选择题:1-5CDCAB 6-10 BBACD 11-12DA 二、填空题13. 16 14. ⎛ ⎝⎭ 15. 30° 1683三、解答题:(解答题只给出一种或两种答案,在评卷过程中遇到的不同答案,请参照此标准酌情给分) 17.解:(Ⅰ)由已知得14m m m a S S -=-=, 且12214m m m m a a S S ++++=-=,设数列{}n a 的公差为d ,则有2314m a d +=, ∴2d =由0m S =,得()11202m m ma -+⨯=,即11a m =-, ∴()11214m a a m m =+-⨯=-= ∴5m =.(Ⅱ)由(Ⅰ)知14,2a d =-=,∴26n a n =-∴23log n n b -=,得32n n b -=.∴()32222n n n n a b b n n --+=⨯=⨯.设数列(){}nn ab b +的前n 项和为n T∴ ()1321222122n n n T n n ---=⨯+⨯++-⨯+⨯ ①()012121222122n n n T n n --=⨯+⨯++-⨯+⨯②① ②,得10212222n n n T n ----=+++-⨯()11212212n n n ---=-⨯-111222n n n --=--⨯∴()()1*1122n n T n n N -=-+∈18(Ⅰ)解析:因为四棱锥F ABED -的体积为2,即14223F ABED V FG -=⨯⨯=,所以FG =又BC EF ==,所以32EG =即点G 是靠近点A 的四等分点, 过点G 作//GK AD 交DE 于点K ,所以3344GK AD CF ==, 又34MF CF =,所以MF GK =且//MF GK , 所以四边形MFKG 为平行四边形,所以//GM FK ,所以直线//GM 平面DEF . (Ⅱ)设,AE BD 的交点为O ,OB 所在直线为x 轴,OE 所在直线为y 轴,过点O 作平面ABED 的垂线为z 轴,建立空间直角坐标系,如图所示:())150,1,0,,0,,244A BF M ⎛⎛--- ⎝⎝ ()3513,1,0,,,3,3,42BA BM BF ⎛⎫⎛=--=--=-- ⎪⎝⎝ 设平面,ABM ABF 的法向量为,m n ,00m BA m BM ⎧=⎪⎨=⎪⎩,则()1,1m =-, 00n BA n BF ⎧=⎪⎨=⎪⎩,则11,3,2n ⎛⎫=- ⎪⎝⎭ 785cos 85m n m nθ==. 19.解:(Ⅰ)由题意可知X 的可能取值为0.9,0.8,0.7,,1.1,1.3a a a a a a , 由统计数据可知:()()()()11110.9,0.8,0.7,612123P X a P X a P X a P X a ========,()()111.1, 1.3412P X a P X a ====.所以X 的分布列为:所以0.90.80.7 1.1 1.39426121234121212EX a a a a a a =⨯+⨯+⨯+⨯+⨯+⨯==≈.(Ⅱ) ①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为13,三辆车中至多有一辆事故车的概率为321311220133327P C ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭. ② Y 为该销售商购进并销售一辆二手车的利润,Y 的可能取值为5000,10000-. 所以Y 的分布列为:所以500010000500033EY =-⨯+⨯=.所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望值为10050EY ⨯=万元.20解:(Ⅰ)设()()()00,,,,,M p q N p q T x y --,则22012220y q k k x p -=-,又2222001161211612p q x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得22220001612x p y q --+=,即22022034y q x p-=--,1234k k =-. (Ⅱ)设直线MN 与x 轴相交于点()1,0,32MNL M N R r S r y y ∆=--,1111152M N L M N S y y ∆=-, 由于115M N L MNL S S ∆∆=且11M N M N y y y y -=-,得1111553,422M N M N y y r y y r -=--=(舍去)或2r =. 即直线MN 经过点()2,0F .设()()()112200,,,,,M x y N x y K x y , ① 直线MN 垂直于x 轴时,弦MN 中点为()2,0F ;② 直线MN 与x 轴不垂直时,设MN 的方程为()2y k x =-,则()()222222134161648016122x y k x k x k y k x ⎧+=⎪⇒+-+-=⎨⎪=-⎩. 22121222161648,3434k k x x x x k k -+==++.2002286,3434k kx y k k-==++. 消去k ,整理得()()220041103y x y -+=≠. 综上所述,点K 的轨迹方程为()()2241103y x x -+=>. 21.解析:(Ⅰ)()()()()()()()22111,1111m x m F x f x g x x x x x +-'''=-=-=>-+++ 当0m ≤时, ()0F x '<,函数()F x 在()1,-+∞上单调递减;当0m >时,令()101F x x m '<⇒<-+,函数()F x 在11,1m ⎛⎫--+ ⎪⎝⎭上单调递减;()101F x x m '>⇒>-+,函数()F x 在11,m ⎛⎫-++∞ ⎪⎝⎭上单调递增,综上所述,当0m ≤时,()F x 的单减区间是()1,-+∞; 当0m >时,()F x 的单减区间是11,1m ⎛⎫--+⎪⎝⎭, 单增区间是11,m ⎛⎫-++∞ ⎪⎝⎭(Ⅱ)函数()()ln 1f x m x =+在点()(),ln 1a m a +处的切线方程为()()ln 11my m a x a a -+=-+,即()ln 111m may x m a a a =++-++, 函数()1x g x x =+在点1,11b b ⎛⎫- ⎪+⎝⎭处的切线方程为()()211111y x b b b ⎛⎫--=- ⎪+⎝⎭+,即()()222111b y x b b =+++.()y f x =与()y g x =的图象有且仅有一条公切线. 所以()()()222111ln 111m a b ma b m a a b ⎧=⎪++⎪⎨⎪+-=⎪++⎩①② 有唯一一对(),a b 满足这个方程组,且0m >.由(1)得: ()211a m b +=+代入(2)消去a ,整理得:()22ln 1ln 101m b m m m b +++--=+,关于()1b b >-的方程有唯一解. 令()()22ln 1ln 11g b m b m m m b =+++--+,()()()()2221122111m b m g b b b b +-⎡⎤⎣⎦=-=+++方程组有解时,0m >,所以()g b 在11,1m ⎛⎫--+⎪⎝⎭单调递减,在11,m ⎛⎫-++∞ ⎪⎝⎭单调递增,所以()min 191ln 1g b m m m m ⎛⎫=-+=-- ⎪⎝⎭, 因为()(),,1,b g b b g b →+∞→+∞→-→+∞,只需ln 10m m m --=,令()ln 1m m m σ=--、()ln m m σ'=-在0m >为单减函数,且1m =时, ()0m σ'=,即()()max 10m σσ==,所以1m =时,关于b 的方程()22ln 1ln 101m b m m m b +++--=+有唯一解 此时0a b ==,公切线方程为y x =.22.【解析】(Ⅰ)曲线C 是以(),0a 为圆心,以a 为半径的圆;直线l的直角坐标方程为30x +-=. 由直线l 与圆C 只有一个公共点,则可得32a a -=, 解得: 3a =-(舍),1a =.所以:1a = (Ⅱ)曲线C 的极坐标方程为()2cos ,0a a ρθ=>,设A 的极角为θ, B 的极角为3πθ⎛⎫+ ⎪⎝⎭, 则213sin 2cos 2cos 3cos cos 23433OAES OA OB a a a πππθθθθ∆⎛⎫⎛⎫==+=+ ⎪ ⎪⎝⎭⎝⎭, 211cos 21111cos cos cos cos 2cos 22322222411cos 2234πθθθθθθθθθπθ⎛⎫+⎛⎫+===+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫=++ ⎪⎝⎭所以当6πθ=-时,11cos 2234πθ⎛⎫++ ⎪⎝⎭取得最大值34.OAB ∆的面积最大值24. 解法二:因为曲线C 是以(),0a 为圆心,以a 为半径的圆,且3AOB π∠= 由正弦定理得:2sin3ABa π=,所以AB =. 由余弦定理得22223AB a OA OB OA OB OA OB ==+-≥,所以211sin 3232OAB S OA OBa π∆=≤⨯= 所以OAB ∆ 23.【解析】(Ⅰ)()12,213,122,1x x f x x x x x ⎧+≤-⎪⎪⎪=--<<⎨⎪--≥⎪⎪⎩(如果没有此步骤,需要图中标示出1,12x x =-=对应的关键点,否则扣分)画出图象如图,(Ⅱ)由(Ⅰ)知32m =. ∵()()22222223232242m a c b a b c b ab bc ==++=+++≥+, ∴324ab bc +≤,∴2ab bc +的最大值为34,当且仅当12a b c ===时,等号成立.。
河北省石家庄市2017届高三复习教学质量检测(二)数学(文科)本试卷共23小题, 满分150分。
考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设{}{},2,1,0,1,2,|1U R A B x x ==--=≥,则U AC B = ( )A .{}1,2B .{}1,0,1-C .{}2,1,0--D .{}2,1,0,1-- 2.在复平面中,复数()2111i ++对应的点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 3.“1x >”是“220x x +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D . 即不充分也不必要条件 4.若()1sin 3πα-=,且2παπ≤≤,则cos α= ( )A B . C. D 5.执行下面的程序框图,则输出K 的值为 ( ) A .98 B .99 C. 100 D .1016.李冶(1192--1279 ),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( )A .10步,50步B .20步,60步 C. 30步,70步 D .40步,80步7.某几何体的三视图如图所示,则该几何体的体积是 ( ) A . 16 B .20 C. 52 D .60 8. 已知函数()sin 2cos 26f x x x π⎛⎫=++ ⎪⎝⎭,则()f x 的一个单调递减区间是( ) A .7,1212ππ⎡⎤⎢⎥⎣⎦ B .5,1212ππ⎡⎤-⎢⎥⎣⎦C. 2,33ππ⎡⎤-⎢⎥⎣⎦ D .5,66ππ⎡⎤-⎢⎥⎣⎦9.四棱锥P ABCD -的底面ABCD 是边长为6的正方形,且PA PB PC PD ===,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( ) A .6 B .5 C.92 D .9410.若,x y 满足约束条件22004x y x y x y +≤⎧⎪-≤⎨⎪+≤⎩,则23y z x -=+的最小值为 ( )A .-2B .23-C. 125- D.4711.已知函数()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩,若()()()21f a f a f -+≤,则实数a 的取值范围是( ) A .(][),11,-∞-+∞ B .[]1,0- C. []0,1 D .[]1,1-12.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,过点1F 且垂直于x 轴的直线与该双曲线的左支交于A B 、两点,22AF BF 、分别交y 轴于P Q 、两点,若2PQF ∆的周长为12,则ab 取得最大值时双曲线的离心率为( ) ABC.3 D.2第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,满分20分. 13.设样本数据122017,,,x x x 的方差是4,若()11,2,,2017i i y x i =-=,则122017,,,y y y 的方差为 .14.等比数列{}n a 中,若152,4a a =-=-,则3a = .15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若02,45,ta n ta n 1a b B A C ===>,1tan tan >⋅C A ,则角C 的大小为 . 16.非零向量,m n 的夹角为3π,且满足()0n m λλ=>,向量组123,,x x x 由一个m 和两个n 排列而成,向量组123,,y y y 由两个m 和一个n 排列而成,若332211y x y x y x ⋅+⋅+⋅所有可能值中的最小值为24m ,则λ= .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,若()*124,0,142,m m m S S S m m N -+=-==≥∈且.(1)求m 的值; (2)若数列{}n b 满足()*2log 2nn a b n N =∈,求数列{}n n b a ⋅+)(6的前n 项和. 18.(本小题满分12分)如图,三棱柱ABC DEF -中,侧面ABED 是边长为2的菱形,且,3ABE BC π∠==点F 在平面ABED 内的正投影为G ,且G 在AE 上,FG ,点M 在线段CF 上,且14CM CF =.(1)证明:直线//GM 平面DEF ; (2)求三棱锥M DEF -的体积.19.(本小题满分12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道同型号私家车的下一年续保时的情况,统计得到了下面的表格:(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元.且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值. 20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为A B 、,且长轴长为8,T 为椭圆上一点,直线TA TB 、的斜率之积为34-. (1)求椭圆C 的方程;(2)设O 为原点,过点()0,2M 的动直线与椭圆C 交于P 、Q 两点,求MQ MP OQ OP ⋅+⋅的取值范围.21.(本小题满分12分)已知函数()()()ln ,01xf x m xg x x x ==>+. (1)当1m =时,求曲线)()(x g x f y ⋅=在1x =处的切线方程; (2)讨论函数()()()F x f x g x =-在()0,+∞上的单调性.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin x a a y a ββ=+⎧⎨=⎩(0,a β>为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程3cos 32πρθ⎛⎫-= ⎪⎝⎭. (1)若曲线C 与l 只有一个公共点,求a 的值; (2),A B 为曲线C 上的两点,且3AOB π∠=,求OAB ∆的面积最大值.23.选修4-5:不等式选讲设函数()121f x x x =--+的最大值为m . (1)作出函数()f x 的图象;(2)若22223a c b m ++=,求2ab bc +的最大值.数学(文科)参考答案1-5CDABB 6-10BBADC 11-12DC13. 414. - 15 .75︒ 16.8317.解:(Ⅰ)由已知得14m m m a S S -=-=,…………………1分 且12214m m m m a a S S ++++=-=,设数列{}n a 的公差为d ,则有2314m a d +=, ∴2d = ………………3分由0m S =,得()11202m m ma -+⨯=,即11a m =-, ∴()11214m a a m m =+-⨯=-= ∴5m =.……………5分(Ⅱ)由(Ⅰ)知14a =-,2d =,∴26n a n =-∴23log n n b -=,得32n n b -=.………………7分∴()326222n n n n a b n n --+⋅=⨯=⨯.设数列(){}6nn ab +⋅的前n 项和为n T∴()10321222122n n n T n n ---=⨯+⨯++-⨯+⨯L ①()012121222122n n n T n n --=⨯+⨯++-⨯+⨯L ②………………8分①-②,得10212222n n n T n ----=+++-⨯L ………………10分()11212212n n n ---=-⨯-111222n n n --=--⨯∴()()11122n n T n n -*=-⋅+∈N ……………12分18.解析:(Ⅰ)证明:因为点F 在平面ABED 内的正投影为G 则,FG ABED FG GE ⊥⊥面,又因为BC EF =,FG 32GE ∴=…………………2分 其中ABED 是边长为2的菱形,且3ABE π∠=122AE AG ∴==,则过G 点作//GH AD DE H 交于点,并连接FH 3,2GH GE GH AD AE =∴=,且由14CM CF =得32MF GH ==………………4分 易证 ////GH AD MF //GHFM MG FH ∴为平行四边形,即 又因为,//GM DEF GM DEF ⊄∴面面.…………………6分 (Ⅱ)由上问//GM DEF 面,则有M DEF G DEF V V --=……………8分又因为11333344G DEF F DEG DEG DAE V V FG S FG S --∆∆==⋅=⋅=……………10分34M DEF V -∴=………………12分19.解:(Ⅰ)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为3160515=+. ……………………4分,设为1b ,2b ,四辆非事故车设为1a ,2a ,3a ,4a .从六辆车中随机挑选两辆车共有(1b ,2b ),(1b ,1a ),(1b ,2a ),(1b ,3a ),(1b ,4a ),(2b ,1a ),(2b ,2a ),(2b ,3a ),(2b ,4a ),(1a ,2a ),(1a ,3a ),(1a ,4a ),(2a ,3a ),(2a ,4a ),(3a ,4a ),总共15种情况。