第9章 9.5-6 价键理论和杂化轨道理论
- 格式:pptx
- 大小:472.39 KB
- 文档页数:23
分子轨道理论价键理论、杂化轨道理论虽能较好地说明共价键形成的本质和分子的空间构型,但由于其都是以电子配对为基础的,只考虑形成共价键的电子,而未将分子看成是一个整体,因此在应用中有其局限性。
按照价键理论,O 2分子的路易斯电子式是..O O ......,分子中应该没有成单电子,但是测定其磁性,表明氧为顺磁性物质,液态氧和固态氧极易为磁铁所吸引,故O 2分子中应该有成单电子。
高温下的B 2分子虽具有偶数的价电子,但它也是顺磁性物质。
而H 2+、O 2+、NO 、NO 2等奇数电子分子或离子也能够稳定存在。
这些事实,价键理论无法加以解释。
1932年,美国密立根和洪特等人提出了分子轨道理论(molecular orbital theory ,简称MO 法)。
该理论以量子力学为基础,把原子电子层结构的主要概念,推广到分子体系中去,很好地说明了上述实验事实,从另一个方面揭示了共价分子形成的本质。
1.分子轨道理论的基本要点 ⑴ 分子轨道理论认为,分子中的电子不再从属于某个特定的原子而是在整个分子空间范围内运动。
因此,分子中的电子运动状态应该用相应的波函数ψ(简称分子轨道)来描述。
每个分子轨道也具有相应的能量E ,由此可得到分子轨道能级图。
⑵ 分子轨道是由分子中原子的原子轨道线性组合(1inear combination of atomic orbitals )而成的。
n 个原子轨道线性组合,可以形成n 个分子轨道。
其中,2n个分子轨道的能量高于原子轨道,称为反键分子轨道(antibonding orbital ),2n 个分子轨道的能量低于原子轨道,称为成键分子轨道(bonding orbital )。
⑶ 原子轨道要有效组合成为分子轨道,必须遵循三个原则,即能量近似原则、轨道最大重叠原则和对称性匹配原则。
⑷ 分子中的电子将遵循保里不相容原理、能量最低原理和洪特规则,依次填入分子轨道之中。
2.原子轨道线性组合形成分子轨道原子轨道有效组合形成分子轨道必须遵循三个原则:能量近似原则、轨道最大重叠原则和对称性匹配原则。
杂化轨道理论在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫做杂化轨道。
1基本介绍杂化轨道理论(hybrid orbital theory)是1931年由鲍林(Pauling L)等人在价键理论的基础上提出,它实质上仍属于现代价键理论,但是它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。
核外电子在一般状态下总是处于一种较为稳定的状态,即基态。
而在某些外加作用下,电子也是可以吸收能量变为一个较活跃的状态,即激发态。
在形成分子的过程中,由于原子间的相互影响,单个原子中,具有能量相近的两个能级中,具有能量较低的能级的一个或多个电子会激发而变为激发态,进入能量较高的能级中去,即所谓的跃迁现象,从而新形成了一个或多个能量较高的能级。
此时,这一个或多个原来处于较低能量的能级的电子所具有的能量增加到与原来能量较高的能级中的电子相同。
这样,这些电子的轨道便混杂在一起,这便是杂化,而这些电子的状态也就是所谓的杂化态。
用化学语言讲,杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心电子所用的电子轨道不是原来纯粹的s轨道或p轨道,而是若干不同类型、能量相近的电子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的电子轨道——杂化轨道,以满足化学结合的需要。
这一过程称为电子轨道的杂化。
2基本要点只有最外电子层中不同能级中的电子可以进行轨道杂化,且在第一层的两个电子不参与反应。
不同能级中的电子在进行轨道杂化时,电子会从能量低的层跃迁到能量高的层,并且杂化以后的各电子轨道能量相等又高于原来的能量较低的能级的能量而低于原来能量较高的能级的能量。
当然的,有几个原子轨道参加杂化,杂化后就生成几个杂化轨道。
杂化轨道成键时,要满足原子轨道最大重叠原理。
杂化后的电子轨道与原来相比在角度分布上更加集中,从而使它在与其他原子的原子轨道成键时重叠的程度更大,形成的共价键更加牢固。
高中杂化轨道理论(图解)一、原子轨道角度分布图二、共价键理论和分子结构价键法(VB法)价键理论一:1、要点:⑴、共价键的形成条件:①、先决条件:原子具有未成对电子;②、配对电子参与成键的原子轨道要满足对称匹配、能量相近以及最大重叠的原则;③、两原子具有成单的自旋相反的电子配对,服从保里不相容原理。
⑵、共价键的本质:是由于原子相互接近时轨道重叠,原子间通过共用自旋相反的电子使能量降低而成键。
⑶、共价键的特征:①、饱和性,一个原子有几个未成对电子(包括激发后形成的未成对电子),便和几个自旋相反的电子配对成键;而未成对电子数是有限的,故形成化学键的数目是有限的。
②、根据原子轨道最大重叠原理,原子轨道沿其角度分布最大值方向重叠,即共价键具有一定的方向性。
⑷、共价键的类型:单键、双键和叁键。
①、σ键和π键。
ⅰ、σ键:沿键轴方向重叠,呈圆柱形对称,称为σ轨道,生成的键称为σ键σ是希腊字母,相当于英文的s,是对称Symmetry[`simitri]这个字的第一个字母)。
σ键形成的方式:ⅱ、π键:两个p 轨道彼此平行地重叠起来,轨道的对称面是通过键轴的平面,这个对称面就叫节面,这样的轨道称为π轨道,生成的键称为π键(π相当于英文的p ,是平行parallel[`p ?r ?lel]的第一个字母)。
π键的形成过程:,σ键和π键的比较 σ键(共价键中都存在σ键) π键 (只存在不饱和共价键中)重叠方式 (成建方向)沿两电子云(原子轨道)的键轴方向以“头碰头”的方式遵循原子轨道最大程度重叠原理进行重叠两互相平行的电子云(原子轨道)以“肩并肩”的方式遵循原子轨道最大程度重叠原理进行重叠 重叠程度重叠程度较大 重叠程度较小 电子云形状共价键电子云(重叠部分)呈轴对称 共价键电子云(重叠部分)呈镜像对称 牢固程度强度较大,键能大,较牢固,不易断裂 强度较小,键能较小,不很牢固,易断裂 化学活泼性不活泼,比π键稳定 活泼,易发生化学反应健 型项 目类型s-s、s-p、、p-p、s-SP杂化轨道、s-SP2杂化轨道、s-SP3杂化轨道、杂化轨道间p-pπ键,、p-p大π键是否能旋转可绕键轴旋转不可旋转,存在的规律共价单键是σ键,共价双键有一个σ键,有一个π键;共价叁键有一个σ键,有两个π键。