二元一次方程组解决实际问题典型例题
- 格式:ppt
- 大小:700.50 KB
- 文档页数:14
借助方程不定解,分类计算寻找最省钱方案例 1 小明家新购置了一套经济实用房,房屋装饰需用 480 块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包 50 块,价格为 30 元;小包装每包 30 块,价格为 20 块,若大、小包装均不拆开零售,那么制定什么样的购买方案才能使所付费用最少?分析:利用二元一次方程,求出两种规格的瓷砖各买多少包,再计算出每种方案所需要的费用,进行比较后作出决定.解:设需要大包装x 包,小包装 y 包.根据题意,可列方程 50x+30y=480.因为 x,y 都是非负整数, 所以方程的解有x=0,y=16x=3,y=11x=6,y=6x=9,y=1所以有四种方案,所需费用分别是20×16=320(元);30×3+20×11=310(元);30×6+20×6=300(元);30×9+20×1=290(元).答:购买9 个大包装,1 个小包装所付的费用最少点评:虽然二元一次方程有无数个解,但 x,y 表示的是瓷砖的包装箱数,所以 x,y 是非负整数.本题主要是借助方程的解是非负整数,确定购买方案,再冲中找出最省钱的方案。
知道相应的距离,难以列出方程.由于小明与迎面而来的车相遇可视为行程问题中的相遇问题,而背后的车越过就是追及问题,故设间接未知数,即设小明和车的速度以及两辆车之间的距离可使问题巧妙获解.解:设公共汽车的速度为 x 米/分,小明的步行速度为 y 米/分,同一车站发的相邻两辆汽车相隔 m 米.根据题意,列方程组得12(x-y)=m,4(x+y)=m.题中只要求求出汽车站每隔几分钟双方各发一趟车, 所以我们无需将三个未知数均解出来,只要求出mx 的值即可.由①+②×3,得 24x=4m,所以 m/x =6.。
《应用二元一次方程组---里程碑上的数》典型例题例1有一个两位数,个位上的数比十位上的数大5,如果把两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.例2下表是某一周甲、乙两种股票每天的收盘价:(收盘价:股票每天交易结束时的价格)某人在该周内持有若干甲、乙两种股票,若按照两种股票每天收盘价计算(不计手续费、税费等),该人账户上星期二比星期一获利200元,星期三比星期二获利1300元,试问该人持有甲、乙股票各多少股.例3 一个三位数,各数位上的数字之和为13,十位上的数字比个位上的数字大2,如果把百位上的数字与个位上的数字对调,那么所得新数比原来的三位数大99.求这个三位数.例4一个两位数除以它各位数字之和的商为7,余数为6,如果它十位上的数字与个位上的数字对调,所得的新数去除以各位数字之和,商为3,余数为5,求这个两位数.参考答案例 1 分析 若设这个两位数的十位数字为x ,个位数字为y ,则这个两位数是x y +10.再根据“个位上的数比十位上的数大5”,“新数与原数的和为143”可以列出两个方程.解 设这个两位数的十位数字为x ,个位数字为y ,根据题意,得⎩⎨⎧=+++=-.143)10()10(,5x y y x x y 整理,得⎩⎨⎧=+=-.13,5y x x y 解得⎩⎨⎧==.9,4y x 答:这个两位数是49.说明:本题若设这个两位数的十位数字为x ,则个位数字为)5(+x ,列出一元一次方程求解也很方便.例2 解 设该人持有甲、乙股票分别是x 、y 股,根据题意,得⎩⎨⎧=-+-=-+-,1300)3.139.13()5.129.12(,200)5.133.13()125.12(y x y x 解得⎩⎨⎧==.1500,1000y x 答:该人持有甲、乙股票分别为1000,1500股.例3 分析:这里有三个未知数——个位上的数字,百位上的数字及十位上的数字.有三个相等关系:(1)百位上数字 + 十位上数字+个位上数字=13(2)十位上的数字=个位上数字+2(3)百位上数字与个位上数字交换后的三位数=原三位数+99解:设这个三位数个位上的数字为x ,十位上的数字为y ,百位上数字为z ,根据题意,得 ⎪⎩⎪⎨⎧+++=+++==++991010010100213x y z z y x x y z y x解方程组,得 ⎪⎩⎪⎨⎧===364z y x答:这个三位数是364.例4 分析:设这个两位数的十位数字为x ,个位数字为y ,那么这个两位数是10x +y ,两个数字之和是(x 十y ),个位数字与十位数字对调后的两位数是10y十x ,由题意可列出两个等式.解:设两位数的十位数字为x ,个位数字为y ,根据题意,得⎩⎨⎧++=+++=+)2(5)(310)1(6)(710y x x y y x y x )4(2)3(-⨯得 ,93=y 3=y ,把3=y 代入(3),得8=x .答:这个两位数是83.说明:数字问题要善于抓住其特征,正确地表示出三位数,然后找出等量关系,列出方程组.。
二元一次方程组经典例题一、例题例1:解方程组2x + y = 5 x - y = 1解析:1. 观察方程组的特点- 这个方程组中y的系数分别为1和-1,可以采用加减消元法。
2. 消元求解- 将方程2x + y = 5与方程x - y = 1相加,得到(2x + y)+(x - y)=5 + 1。
- 化简得2x+y+x - y=6,即3x=6,解得x = 2。
3. 回代求y- 把x = 2代入x - y = 1中,得到2 - y = 1,解得y=1。
所以方程组的解为x = 2 y = 1例2:解方程组3x+2y = 8 2x - 3y=-5解析:1. 选择消元方法- 为了消去其中一个未知数,我们可以给第一个方程乘以3,第二个方程乘以2,然后再相加来消去y。
2. 消元计算- 方程3x + 2y = 8两边乘以3得9x+6y = 24。
- 方程2x - 3y=-5两边乘以2得4x-6y=-10。
- 将这两个新方程相加:(9x + 6y)+(4x-6y)=24+( - 10)。
- 化简得9x+6y + 4x-6y = 14,即13x=14,解得x=(14)/(13)。
3. 回代求y- 把x=(14)/(13)代入3x + 2y = 8中,得到3×(14)/(13)+2y = 8。
- 即(42)/(13)+2y = 8,移项得2y = 8-(42)/(13)。
- 2y=(104 - 42)/(13)=(62)/(13),解得y=(31)/(13)。
所以方程组的解为x=(14)/(13) y=(31)/(13)例3:某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,问购买甲、乙两种票各多少张?设购买甲种票x张,购买乙种票y张。
根据题意可列方程组x + y = 40 10x+8y = 370解析:1. 消元方法选择- 由第一个方程x + y = 40可得y = 40 - x,我们可以采用代入消元法。
二元一次方程组在应用题(实际问题)中的应用二元一次方程组解实际问题的方法步骤:对于含有多个未知数的问题,利用列方程组来解,一般要比列一元一次方程解题容易,列方程组解应用题有以下几个步骤: 1. 选取定几个未知数;2. 依据已知条件列出与未知数的个数相等的独立方程,组成方程组; 3. 解方程组,得到方程组的解;4. 检验求得的未知数的值是否符合题意,符合题意即为应用题的解.\例题分析: 例:某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元根据题意,得48452x x -+= 解这个方程,得 x =92484928360x -=⨯-=答:该同学看中的随身听单价为360元,书包单价为92元。
解法二:设书包的单价为x 元,随身听的单价为y 元 根据题意,得x y y x +==-⎧⎨⎩45248解这个方程组,得x y ==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元。
(2)在超市A 购买随身听与书包各一件需花费现金: 45280%3616⨯=.(元) 因为3616400.<,所以可以选择超市A 购买。
在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金: 3602362+=(元)因为362400<,所以也可以选择在超市B 购买。
实际问题与二元一次方程组经典例题列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③船的顺水速度-船的逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。
④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。
⑥利息税:利息的税款叫做利息税。
(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。
二元一次方程组实际问题专练【典型题型一】购物问题某城区中学五月份开展了与农村偏远学校手拉手的活动,九年级3班苗苗同学积极响应学校的号召,用自己的零花钱买了圆珠笔和钢笔共8支,准备送给偏远山区的同学,共用去了20元钱,其中圆珠笔每支1元,钢笔每支5元,你知道苗苗同学买了圆珠笔和钢笔各多少支吗?【典型题型二】解决生活用水问题某市为更有效地利用水资源,如果一户三口之家每月用水量不超过M立方米,按每立方米1.3元收费,如果超过M立方米,超过部分按每立方米2.90元收费,其余仍按每立方米1.3元计算,小红一家三口人,7月份共用水12立方米,支付水费22元,问该市制定的用水标准M为多少立方米?小红一家超标使用了多少立方米的水?【典型例题三】配套问题一张方桌由1个桌面,4条桌腿组成,如果一立方米木料可以做方桌的桌面50个或做桌腿300条,现有5立方米木料,那么要用多少立方米木料做桌面。
多少立方米木料做桌腿,做出的桌面和桌腿恰好能配成方桌?能配成多少张方桌?【典型例题四】分类讨论题某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次)共付出264元,请问张强第一次第二次分别购买香蕉多少千克?【典型例题五】图表信息题下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,球迷小李用8000元作为预订下表中比赛项目门票的资金。
(1)若全部资金用来预订篮球门票和乒乓球门票10张,问男篮球门票和乒乓球门票各订多少张?(2)小李想用全部资金预订男篮,足球和乒乓球三种门票共10张,他的想法能实现吗?请说明理由。
【典型例题六】方案决策问题1、某同学在AB两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍还少8元(1)求该同学看中的随身听和书包的单价各是多少?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打8折销售,超市B 全厂购物满100元返还30元购物券,但他只带了400元钱,如果他只在一家超市购买他看中的两种物品,你能说明他可以选择哪一家购买吗?若两家都可以选购,在哪一家购买更省钱?2、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能赔不是进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成.你认为哪种方案获利最多?为什么?【典型例题七】创新问题1、元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:九百九十九文钱,及时梨果买一千,一十一文梨九个,七枚果子四文钱。
一、路程问题1、公式:路程=时间×速度(s=v×t,s:路程、v:速度、t:时间)公式变形:时间=路程÷速度(t=s/v)速度=路程÷时间(v=s/t)2、模型:相遇模型:两者所走的路程之和=两者原相距路程追击问题:快者所行路程-慢者所行路程=两者原相距路程3、例题:例1、某站有甲、乙两辆汽车,若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车;若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走路程多10km.求两车速度?答案:解:设甲乙两车的速度分别为 x km/h、y km/h根据题意,得5y=6x x=50(km/h)4y=4x+30+10 y=60(km/h)解析:若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车 6x=5y若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走路程多10km. 4y=4x+30+10例2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?答案:解:设汽车、拖拉机两车的速度分别为 x km/h 、y km/h根据题意,得(x+y )*34=160 x=90 (km/h ) 21x=23y y=30 (km/h )汽车行驶的路程:(2134+)*90=165 km 拖拉机行驶的路程:(2334+)*30=85 km 解析:汽车、拖拉机同时由甲、乙两地相向而行,1小时20分相遇,即汽车、拖拉机同时出发行驶1小时20分钟两车行驶的路程相加为160km 。
(x+y )*34=160相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机。
即拖拉机行驶23小时的路程,同汽车行驶21小时的路程相同。
已知某m n+1y与2某n1y3m2n5是同类项,求m和n的值.分析根据同类项的概念,可列出含字母m和n的方程组,从而求出m和n.解:因为某m n+1y与2某n1y3m2n5是同类项,所以解这个方程组.整理,得(4)(3),得2m=8,所以m=4.把m=4代入(3),得2n=6,所以n=3.所分析因为某+y=2,所以某=2y,把它代入方程组,便得出含y,m的新方程组,从而求出m.也可用减法将方程组中的m消去,从而得出含某,y的一个二元一次方程,根据某+y=2这一条件,求出某和y,再去求m.解:将方程组中的两个方程相减,得某+2y=2,即(某+y)+y=2.因为某+y=2,所以2+y=2,所以y=0,于是得某=2.把某=2,y=0代入2某+3y=m,得m=4.把m=4代入m22m+1,得m22m+1=422某4+1=9.例8已知某+2y=2某+y+1=7某y,求2某y的值.分析已知条件是三个都含有某,y的连等代数式,这种连等式可看作是二元一次方程组,这样的方程组可列出三个,我们只要解出其中的一个便可求出某和y,从而使问题得到解决.解:已知条件可转化为整理这个方程组,得解这个方程组.由(3),得某=y1(5)把(5)代入(4),得5(y1)-2y-1=0,5y-2y=5+1,所以y=2.把y=2代入(3),得某-2+1=0,所以某=1.2某-y=0.例题:1、下列方程是二元一次方程的是()110(A)某2+某+1=0(B)2某+3y-1=0(C)某+y-z=0(D)某+y2、下列各组数值是某-2y=4方程的解的是()某2某1某0某4(A)y1(B)y1(C)y 2(D)y1某 23、以y 1为解的二元一次方程的个数是()(A)有且只有一个(B)只有两个(C)有无数个(D)不会超过100个4、二元一次方程3某+2y=7的正整数解的组数是()(A)1组(B)2组(C)3组(D)4组某45、已知y 2是二元一次方程m某+y=10的一个解,则m的值为6、已知3某m-1-4y2m-n+4=1是二元一次方程,则m=,n=.7、下列方程组中,属于二元一次方程组的是() 。
8.3实际问题与二元一次方程组一、选择题1周末,小明的妈妈让他到药店购买口罩和酒精湿巾,已知口罩每包 3 元,酒精湿巾每包 2 元,共用了 30 元钱(两种物品都买),小明的购买方案共有 ( ) A . 3 种B . 4 种C . 5 种D . 6 种2如图,宽为 50 cm 的长方形图案由 10 个全等的小长方形拼成,其中一个小长方形的面积为 ( )A .400 cm 2B .500 cm 2C .600 cm 2D .300 cm 23.“校长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了7场,以不败的战绩获得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( )A .7317x y x y -=⎧⎨+=⎩B .7317x y x y -=⎧⎨+=⎩C .7317x y x y +=⎧⎨+=⎩D .7317x y x y +=⎧⎨+=⎩4.在学习完“垃圾分类”的相关知识后,小明和小丽一起收集了一些废电池,小明说:“我比你多收集了7节废电池啊!”小丽说:“如果你给我8节废电池,我的废电池数量就是你的2倍”.如果他们说的都是真的,设小明收集了x 节废电池,小丽收集了y 节废电池,则可列方程组为( )A .()7828x y x y -=⎧⎨-=+⎩B .()7288x y x y -=⎧⎨-=+⎩C .()728x y x y -=⎧⎨-=⎩D .()7828y x x y -=⎧⎨+=-⎩5.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x 岁和y 岁,根据题意可列方程组为()A.106(10)102(10)y xy x+=+⎧⎨-=-⎩B.106(10)102(10)y xy x-=-⎧⎨+=+⎩C.106(10)102(10)y xy x-=+⎧⎨+=-⎩D.102(10)106(10)y xy x-=-⎧⎨+=+⎩6.某班有学生x人,准备分成y个组开展活动,若每个小组7人,则余3人;若每个小组8人,则差5人,根据题意,列方程组为()A.7385y xy x=-⎧⎨=+⎩B.7385y xy x=+⎧⎨=-⎩C.7385y xy x=+⎧⎨=+⎩D.7385y xy x=-⎧⎨=-⎩7.对于题目:“小丽同学带11元钱去买钢笔和笔记本(两种文具都买),钢笔每支3元,笔记本每本1元,那么钢笔能买多少支?”,甲同学的答案是1支,乙同学的答案是2支,丙同学的答案是3支,则正确的是()A.只有甲的答案对B.甲、乙答案合在一起才完整C.甲、乙、丙答案合在一起才完整D.甲、乙、丙答案合在一起也不完整8.如图,三个天平的托盘中形状相同的物体质量相等.图①、图②所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置()A.3个球B.4个球C.5个球D.6个球二、填空题1如图,商店里把塑料凳整齐地叠放在一起,根据图中的信息,当12张塑料凳整齐地叠放在一起时,高度是.2.某班学生分组搞活动,若每组7人,则余下4人,则有一组少3人.设全班有x人,分成y个小组,可得方程组为.3.甲、乙两块试验田去年春季共产小麦若干千克.改用良种后,去年秋季甲、乙的产量分别比去年春季增产了25%,20%;今年春季甲、乙的产量分别比去年春季增产了24%,22%.4.在学完书中例题后,小聪想用现有的硬纸板裁成如图①的长方形和正方形作为侧面与底面,做成如图②的竖式和横式两种无盖纸盒.已知一张硬纸板的裁剪方式有两种(均有余料)),n张硬纸板用方式二裁剪,则:(1)两种方式共裁出长方形张,正方形张(用m、n的代数式表示);(2)当10<m<15时,所裁得的长方形与正方形纸板恰好用完,做成的两种无盖纸盒一共可能是个.5.如图,把三个大小相同的正方形甲,乙,丙放在边长为9的大正方形中1,乙与丙的重叠部分面积记为S2,且均为正方形,正方形甲、乙一组邻边的延长线构成的正方形面积记为S3,若S1﹣S2=2S3,且S3=1,则图中阴影部分的面积为.6甲、乙两人共有图书80本,若甲赠给乙6本书,两人的图书就一样多,如果设甲、乙两人原来分别有x本、y本,依题意列方程组,得.三、解答题1港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共 55 km .其中桥梁长度比隧道长度的 9 倍少 4 km .求港珠澳大桥的桥梁长度和隧道长度. 2.有大小两种货车,2辆大车与3辆小车一次共可运货16吨,5辆大车与6辆小车一次共可运货37吨,求1辆大车与1辆小车一次共可运货多少吨?3.2022年冬奥会上智慧化全覆盖,机器人得到广泛应用,冬奥会组委会针对不同的物品运送场景选取了几个不同类型的智能物流机器人.这样不仅能高效运输,同时也能减少人员接触.具体运输情况如下表所示:问:每个A 型机器人和B 型机器人分别可以运输物品多少件?4.某旅游景点今年“五一”小长假共接待游客39200人,和去年同时期相比,游客总数增加了12%,其中省外游客增加了17%,省内游客增加了10%,求该景点去年“五一”小长假接待的省外游客和省内游客各是多少人?5.某电脑公司有A 型、B 型、C 型三种型号电脑,其中A 型每台6000元,B 型每台4000元,C 型每台2500元,某中学现有资金100500元,计划全部用于从这家电脑公司购进36台两种型号的电脑.请你设计几种不同的购买方案供这个学校选择,并说明理由.6.东坡区某学校举办“传承三苏家国情怀 弘扬中华传统文化”的校园演讲比赛,设立了一、二、三等奖,根据设奖情况买了36件奖品,且一等奖奖品数比二等奖奖品数的12倍少1件,各奖品单价如表所示.若二等奖奖品买了a 件,全部奖品的总价是b 元.(1)先填表,即用含a 的代数式表示出二等奖和三等奖奖品的件数,再用含a 的代数式表示b ,并化简;(2)当a =8时,买一等奖奖品和三等奖奖品分别花费了多少元?(3)若买二等奖奖品花费504元,则买全部奖品花费了多少元?。
新人教版初一下册数学实际问题与二元一次方程组经典例题经典例题透析类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。
【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
分析:船顺流速度=静水中的速度+水速船逆流速度=静水中的速度-水速类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。
设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.举一反三:【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。