氧传感器故障诊断与分析论文
- 格式:doc
- 大小:1.06 MB
- 文档页数:24
汽车维修技师论文:标题:汽车氧传感器波形信号分析———氧传感器原理分析与故障判断关键词:氧传感器、原理、波形、发动机故障概述:随着汽车排放法规的逐渐严格和对汽车排气污染控制的重视,“电喷”加三元催化器的发动机正成为普遍配置。
这种发动机采用了混合气成分的闭环控制和三元催化反应装置的联合使用技术,是汽油机有效的排气净化方法。
在这一系统中,氧传感器是进行闭环反馈控制的主要元件之一,必不可少。
正常工作时,氧传感器随时测定发动机排气管中的氧含量(浓度),以检测发动机燃烧状况.因此.当发动机出现燃烧故障时,必然引起氧传感器电压信号的变化,这就为通过观察氧传感器的信号波形判断发动机某些故障提供可能。
1.氧传感器的一般作用要使三元催化转化器全面净化CO、HC和NOx这三种有害气体,必须保证混合气浓度始终保持在理论空燃比(14。
7)附近的狭小范围内。
一旦混合气浓度偏离了这个狭小范围,则三元催化转化器净化能力便急剧下降.保证混合气浓度在理论空燃比附近,“电喷”系统和氧传感器的配合是很好的解决方案。
氧传感器检测排气中的氧浓度,并随时向微机控制装置反馈信号。
微机则根据反馈来的信号及时调整喷油量(喷油脉宽),如信号反映混合气较浓,则减少喷油时间;反之.如信号反映混合气较稀,则延长喷油时间.这样使混合气的空燃比始终保持在理论空燃比附近.这就是燃料闭环控制或称燃料反馈控制。
2.氧传感器的正常波形常用的汽车氧传感器有氧化锆式和氧化钛式两种。
以氧化锆式为例,正常情况下当闭环控制时,氧传感器的电压信号大约在0至1V之间波动,平均值约450mv。
当混合气浓度稍浓于理论空燃比时。
氧传感器产生约800mV的高电压信号;当混合气浓度稍稀于理论空燃比时,氧传感器产生接近100mY的低电压信号。
当然,不同类型的氧传感器其实际波形并不完全相同。
朱军老师曾总结说:“一般亚洲和欧洲车氧传感器(博世)信号电压波形上的杂波要少。
尤其是丰田凌志车氧传感器信号电压波形的重复性好.而且对称、清楚,美国车(不是采用亚洲的发动机和电子反馈控制系统)杂波要多。
一、氧传感器的故障分析与诊断1、氧传感器在电控发动机排放控制中的重要性在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。
由于混合气的空燃比一旦偏离理论空燃比,三元催化器对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。
2、氧传感器的种类及氧传感器在汽车上安装的重要性目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种.而常见的氧传感器又有单引线、双引线、三引线及四引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三引线和四引线的为加热型氧化锆式氧传感器,原则上四种引线方式的氧传感器是不能替代使用的。
氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。
因此,必须及时的排除故障或更换. 空燃比对排气中碳氢化合物(HC)和一氧化碳(CO)的含量有很大影响,在空燃比低于14.7:1时,HC及CO含量降低;如果空燃比高于14。
7:1时,HC及CO含量迅速上升。
但是,降低空燃比会导致燃烧温度升高,排气中的氮氧化合物(NOX)升高.所以,理想的空燃比应在接近14。
7:1的很小范围内。
另外三元催化转化器的转化效率只有在空气系数为1的很小范围内最高。
如图1所示三元催化转化器对发动机的排放控制具有极其重要的意义.没有三元催化转化器就不可能满足欧洲排放法规.第二代车载故障诊断系统(OBD—Ⅱ) 具1有对三元催化转化器进行故障诊断的功能.图1 三元催化转换效率图而为了对三元催化转化器进行故障诊断,必须在它的前和后各装一个氧传感器(图2)。
图2 发动机闭环控制系统正常运行的三元催化转化器因其储氧能力而使后氧传感器的动态响应与前氧传感器相比明显差,后氧传感器动态响应曲线的振幅非常小(图3a).反之,如果后氧传感器信号电压的波形非常接近前氧传感器,只不过相位略滞后(图3b),则ECU认为三元催化转化器效率过低。
汽车氧传感器故障检查研究论文汽车氧传感器是发动机控制系统中非常重要的一个元件,它主要用于测量排放氧气含量。
然而,在汽车的使用过程中,氧传感器很容易出现故障,导致汽车性能下降,甚至不能正常工作。
因此,本文将探讨汽车氧传感器故障的检查方法,帮助车主及修理工能够更快速地解决问题,提高汽车的使用效率。
首先,我们需要了解氧传感器工作原理,以便更好地了解其故障的原因。
氧传感器通常由两个电极组成,其中一个电极处于排气管内,另一个电极位于参照空气中。
当发动机运行时,氧传感器开始测量氧气含量,并根据测量结果向发动机控制单元发送信号。
这个信号将告诉汽车控制单元什么时候需要增加或减少燃油的供应,以保持排气器件的最佳运行状态。
然而,氧传感器在使用过程中可能会出现以下问题:1. 沉积物:在长时间使用后,氧传感器可能会在电极上沉积一些物质,特别是在使用柴油车辆时情况会更加严重。
积累的沉积物将阻止氧气的正常流动,导致传感器读数不准确。
2. 氧传感器损坏:由于发动机可能会发生故障或磨损,氧传感器不幸损坏是不可避免的。
损坏的氧传感器将会让发动机控制系统产生错误信号,并可能在行驶中产生之前未曾出现的故障。
3. 电器故障:由于氧传感器发出信号并控制电压变化,在出现电器故障的情况下也容易导致氧传感器失灵。
在检查汽车氧传感器故障前,需要让发动机达到温度稳定状态。
通常途径是启动发动机,让它在空转的情况下运行至仪表盘上的温度指示正常快到达最高位时,然后撒放动力,让车辆在市区道路等实际情况下运行10分钟至15分钟。
一般来说,检查氧传感器不需要使用专业工具,以下是需注意的事项:1. 检查电气连接:检查氧气传感器周围是否有松动的电器连接。
电气连接应该紧固并完全通电,否则可能导致氧气传感器读数不准确。
2. 检查氧气传感器电源:氧气传感器的电源通常由控制单元提供。
检查传感器端口上的电压是否在3.1至3.7伏之间,如果不是,请检查控制单元和电缆的电源是否正常。
氧传感器故障诊断案例分析引论本人在泰成集团泉州辖区凯迪拉克车间做机电实习生,我们岗位的主要任务是汽车的故障诊断,包括机修跟电路。
我在这里现在的主要任务是做汽车保养,其余的正在学习中,比如我也开始更换火花塞,跟师傅一起拆装后桥洗油箱,跟换轮心总成,开始学习基本的故障诊断等等。
我觉得我们要进步应该脚踏实地地做,不能自己会的东西就不想去做了,更不能不求上进,有些东西是靠自己去看去争取的。
氧传感器故障的排除对于我们维修人员来说也是非常重要的,前一阶段我们凯迪拉克轿车CTS就是因为氧传感器的故障导致汽车不能正常运转。
但是,我们本着认真负责的态度,最终把故障解决了.报告主体一、氧传感器介绍1.类型及工作原理现在汽车上常用的氧传感器主要有二氧化锆与二氧化钛氧传感器,不过随着技术的发展,比较好的车型也用到了新型的氧传感器,新型氧传感器有平面型氧传感器和宽频带型氧传感器。
⑴。
氧化锆氧传感器是具有传导性的固体电解质,在氧分子浓度差的作用下产生电动势。
(如图)⑵.氧化钛型氧传感器是高电阻半导体,当表面缺氧时,电阻变小与发动机冷却液温度传感器(ECT)相似,氧化钛氧传感器的电阻值则随其周围氧含量的变化而变化。
(如下图)⑶。
新型氧传感器平面型传感器(线性) ①。
核心为陶瓷材料,两边有涂层.②.涂层的优点是:对尾气中的氧浓度更敏感。
③。
两边涂层的氧浓度不同,产生电压信号。
④。
外形没有改变.(如下图) ⑤.插脚为4个⑷。
新型氧传感器宽频带型 Wide band O2 sensor ①。
Nernst cell 感应室 ②.Reference cell 参考室 ③.Heater 加热组件 ④.Diffusion gap 扩散孔1V/5V 搭大O 2O O 22O 2 O 2 H CC ONO X 尾O2⑤。
Pump cell加压室⑥.Exhaust pipe排气管(如下图)①.插头为6脚。
②。
调整更精确、更精细。
③。
通过单元泵工作,可将尾气中的氧吸入④。
卡罗拉轿车氧传感器故障分析【摘要】随着节能减排的技术要求越来越高,世界各国对汽车尾气排放标准要求越来越严格。
氧传感器是现代汽车控制废气排放、提高燃油经济性,电喷汽车实现闭环控制的重要传感器之一,发动机的氧传感器是发动机用于调节空燃比信号,氧传感器故障会造成燃油消耗增大,发动机工作异常,不但造成经济损失还会造成大气污染。
而氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,发动机进入开环控制。
会使发动机油耗和排放污染增加因此,必须及时的进行故障检测和排除故障或更换。
【关键词】氧传感器;排放;空燃比绪论汽车给人们的生活带来了很大的便利,但是汽车尾气又污染了我们的生活环境。
随着汽车排放法规的出台,能够有效减排的汽车氧传感器就这样产生了。
汽车氧传感器的作用是使发动机得到最佳浓度的混合气,从而达到降低有害气体的排放量和节约燃油之目的。
本文介绍汽车氧传感器的作用并结合实例对汽车氧传感器故障作出分析。
1.汽车氧传感器的作用为最大程度的发挥有三元催化器发动机的排气净化性能,必须将空燃比保持在理论空燃比附近很窄的范围内。
氧传感器能探测出排气内氧气的浓度是否较理论空燃比时较浓或者较稀。
次传感器多数安装在排气歧管中,但是安装位置和安装数量随发动机而不同。
氧传感器内含有一件用陶瓷型材料二氧化锆元件制成的元件。
此元件的内测和外侧都包有一层铂的薄覆盖层。
环境大气被引导至传感器的内测,传感器的外侧则直接暴露在排期中。
出于高温时(400℃),如果锆元件内部表面上氧气浓度与外部表面上的氧气浓度相差太大时,此锆元件将产生电压。
而且,铂是有催化作用,它能促使废弃中氧气和一氧化碳之间产生化学反应。
这样可减少废弃中含氧量。
增加了传感器敏感性。
当空气-燃油混合气较稀时,废气中氧气甚多。
因为传感器内、外氧气浓度就没有多大差别,锆元件产生的电压很小(接近0V)。
相反,当空气-燃油混合气较浓时,废弃中几乎无氧。
汽车氧传感器的常见故障及检查方法研究汽车氧传感器常见故障及检查方法:
1.氧传感器烧毁:烧毁是氧传感器最常见的故障之一,烧毁的氧传感器会出现异常电阻值,一般利用电阻测试仪来检测氧传感器的电阻值可以发现这种故障。
2.氧传感器失效:失效的氧传感器会导致氧浓度问题,发动机会出现低功率或熄火状况,一般通过读取发动机故障码来检验氧传感器的失效情况。
3.氧传感器对接处的接触不良:这种情况可能是由于氧传感器与气缸盖上的接口接触不良,需要用标准工具拆卸清洁后重新安装;也可能是由于汽车线束夹子不够紧,需要将接触端重新拧紧或更换新的接触端。
4.氧传感器旁路:有时会出现氧传感器旁路的情况,一般需要用电阻测试仪将旁路的部位检测,以确定氧传感器是否被正确安装或存在连接问题。
5.氧传感器破损:氧传感器经过一段时间的使用,因为老化、污染或碰撞等原因可能会发生破损,要及时检查更换新的氧传感器。
AUTO AFTERMARKET | 汽车后市场基于某型号商务车的氧传感器OBD系统诊断江舟安徽汽车职业技术学院 安徽省合肥市 230601摘 要: 本论文从氧传感器的原理出发,对具体车型的氧传感器进行了OBD系统验证,预防了氧传感器故障的发生。
关键词:氧传感器;OBD;故障分析进入21世纪以来,汽车技术获得了快速的发展,汽车由最初单纯的机械产品发展到现如今集机、电、液、气于一体的机电产品,汽车的各种性能也越来越完善,汽车在为我们带来便利之时,其所造成的大气污染也在威胁着我们的日常生活,如何降低汽车排放带来的危害,是各大汽车生产厂商近年来关注的重点课题。
目前汽车生产厂商使用最多的是加装三元催化转换器装置来降低废气中的CO、HC、NOX等有害气体,但是三元催化转换器只有在空燃比为14.7附近时有较高的转换效率,增大或减少空燃比都会降低其转换效率,一般通过加装氧传感器来修正喷油时间和喷油量,从而使空燃比保持在最佳范围内。
氧传感器是一种用来测量发动机排气系统的废气中氧气含量的装置,并向ECU发出反馈信号,使ECU控制喷油量的增减。
所以氧传感器需要安装在排气系统中,三元催化转换器之前。
根据内部材料的不同,氧传感器分为氧化钛式氧传感器和氧化锆式氧传感器;根据输出信号不同,氧传感器可以分为窄域式氧传感器和宽域式氧传感器两种;按照是否需要加热,氧传感器分为加热型氧传感器和非加热型氧传感器两种。
但是不管那种类型的氧传感器都依赖于内部的敏感元件—陶瓷体,例如氧化锆式氧传感器中的锆管就是多缝隙的陶瓷体。
由于其材质的特殊性,使得氧离子可以自由地通过陶瓷管。
陶瓷体两侧分别与大气和废气相连,而稀混合气和浓混合气燃烧后的废气中含有的氧气浓度不一致,所以与氧含量为百分之二十一的大气之间存在不一样的氧浓度差,因此可以转化成不同的电压差,信号电压在理论当量空燃比(λ=1)附近发生突变,因此产生高低两种电压,氧传感器正是这样来判断混合气体的稀浓的。
毕业设计(论文)题目:氧传感器故障诊断与分析学院汽车交通学院年级专业汽车运用技术学号学生姓名指导教师2013 年月毕业设计(论文)鉴定表院系汽车交通学院专业汽车运用年级姓名题目氧传感器故障诊断与分析指导教师评语过程得分: (占总成绩20%)是否同意参加毕业答辩指导教师 (签字)答辩教师评语答辩得分: (占总成绩80%)毕业论文总成绩等级:答辩组成员签字年月日毕业设计(论文)任务书班级学生姓名学号发题日期:年月日完成日期:月日题目氧传感器故障诊断与分析1、本论文的目的、意义2、学生应完成的任务3、论文各部分内容及时间分配:(共 20 周)第一部分( 周) 第二部分( 周) 第三部分( 周) 第四部分( 周) 第五部分( 周) 评阅及答辩( 周)备注指导教师:年月日审批人:年月日摘要本文主要介绍汽车氧传感器及引起的各种故障的诊断与分析,氧传感器在电控汽车中为使混合气的空燃比达到最佳,有氧传感器修正的实际喷油时间比预先设定的基本喷油时间延长或缩短的时间的百分比。
范围在—10%——10%之间。
氧传感器在车辆发生故障多是老化、线路故障和燃油质量问题造成,本人根据实际工作的体会,浅谈氧传感器的故障诊断并分析造成故障的原因。
关键词:汽车; 氧传感器; 故障; 诊断目录第一章绪论 (7)1.1、两种材料的氧传感器的发展 (7)1.1.1、氧传感器应用在汽车上的意义 (7)第二章、氧传感器的结构和工作原理 (9)2.1、氧化锆式氧传感器 (9)2.1.1、氧化钛式氧传感器 (11)第三章、氧传感器的检测 (13)3.1、氧传感器的基本电路 (13)第四章、氧传感器的常见故障 (15)4.1主要故障和引起原因 (15)第五章、氧传感器的检测与清洗方法 (17)5.1、电阻电压法检测 (17)5.1.1、氧传感器的清洗方法如下: (19)第六章、案例分析 (20)结论 (22)致谢 (23)参考文献: (24)第一章绪论随着汽车技术的发展,世界各国对汽车尾气排放标准要求越来越严格,电喷汽车越来越受市场的追捧。
氧传感器是现代汽车控制废气排放、提高燃油经济性的重要传感器之一,发动机的氧传感器是发动机用于调节空燃比信号,氧传感器故障会造成燃油消耗增大,发动机工作异常,不但造成经济损失还会造成大气污染。
汽车用传感器主要分为氧化锆和氧化钛型。
本文主要介绍这两种传感器。
1.1、两种材料的氧传感器的发展(1)二氧化锆传感器发展二氧化锆的离子导电性最早研究是在1900 年,而真正将氧传感器应用于汽车上则是在1976 年,由德国博世BOSCH 公司首先在瑞典VOLVO 汽车上装用了氧化锆氧传感器,实现了汽车尾气空燃比的反馈控制。
之后通用、福特、丰田、日产等汽车都先后开发了氧传感器并应用于汽车上来控制汽车尾气。
目前二氧化锆传感器已是应用在汽车上较成熟的氧传感器。
(2)二氧化钛传感器发展二氧化钛(TiO2)属N 型半导体材料,其阻值大小取决于材料温度及周围环境中氧离子的浓度,因此可以检测排气中的氧离子浓度。
氧化物半导体表面可选择性地吸附某种气体,利用其氧化物薄膜的电阻率变化可制成气敏元件是由日本的清山哲郎在1962年。
而二氧化钛传感器在汽车上的应用是日本于1982 年才开始使用,丰田公司于1984 年研制成功了管芯式氧化钛传感器,1985 年研制成功厚膜式氧化钛传感器并批量生产,并且之后在全球得到迅速的发展。
氧化钛式一般都为加热型传感器,由于价格便宜,且不易受到硅离子的腐蚀,因此随着新技术,特别是纳米加工技术发展,二氧化钛传感器将更具有广阔的前景。
1.1.1、氧传感器应用在汽车上的意义在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。
由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOx的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU 发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。
第二章、氧传感器的结构和工作原理在讨论氧传感之前,我们先来研究引擎燃烧后所产生的有害废气。
一般汽车所排放的废气特别是对人体有害的,主要有三种:一氧化碳(CO)、碳氢化合物(HC)、氮氧化合物(NOx)、其中CO、HC只要使汽油完全地燃烧即可将这两者废气减到最低,然而当汽油达到完全燃烧时温度容易升高,连带的也就使得NOx剧增,在这部份可利用EGR来减少其发生量。
但这对于废气的管制显然还不够的,要使引擎所有的运转范围皆达到其控制标准,因此加入了三元触媒转化器的控制,其内部有着极为细微的孔洞并含有大量的金属:铂、铑、钯。
它能将上述三种有害的气体进行氧化及还原的作用,转化成无害的气体或是一般的废气。
然而触媒转化器的使用条件相当严苛,除了需达到较高工作温度外,最重要的是它最大净化率是发生在理论混合比附近14.7: 1,也就是说引擎的燃烧须控制在14.7: 1空燃混合比之下,要达到此细微之标准并不容易,故在排气管中插入氧传感器,借检测废气中的氧浓度测定空燃比。
并将其转换成电压信号或电阻信号,反馈给ECU。
ECU控制空燃比收敛于理论值。
目前使用的氧传感器有氧化锆式和氧化钛式两种,其中应用最多的是氧化锆式氧传感器。
2.1、氧化锆式氧传感器氧化锆式氧传感器的基本元件是氧化锆陶瓷管(固体电解质),亦称锆管。
锆管固定在带有安装螺纹的固定套中,内外表面均覆盖着一层多孔性的铅膜,其内表面与大气接触,外表面与废气接触。
氧传感器的接线端有一个金属护套,其上开有一个用于锆管内腔与大气相通的孔;电线将锆管内表面铂极经绝缘套从此接线端引出。
如图2-1所示。
图2-1 氧化锆式传感器氧化锆在温度超过300℃后,才能进行正常工作。
早期使用的氧传感器靠排气加热,这种传感器必须在发动机起动运转数分钟后才能开始工作,它只有一根接线与ECU相连。
现在,大部分汽车使用带加热器的氧传感器,这种传感器内有一个电加热元件,可在发动机起动后的20-30s内迅速将氧传感器加热至工作温度。
它有三根接线,一根接ECU,另外两根分别接地和电源。
锆管的陶瓷体是多孔的,渗入其中的氧气,在温度较高时发生电离。
由于锆管内、外侧氧含量不一致,存在浓差,因而氧离子从大气侧向排气一侧扩散,从而使锆管成为一个微电池,在两铂极间产生电压。
当混合气的实际空燃比小于理论空燃比,即发动机以较浓的混合气运转时,排气中氧含量少,但CO、HC、H2等较多。
这些气体在锆管外表面的铅催化作用下与氧发生反应,将耗尽排气中残余的氧,使锆管外表面氧气浓度变为零,这就使得锆管内、外侧氧浓差加大,两铅极间电压陡增。
因此,锆管氧传感器产生的电压将在理论空燃比时发生突变:稀混合气时,输出电压几乎为零;浓混合气时,输出电压接近1V。
要准确地保持混合气浓度为理论空燃比是不可能的。
实际上的反馈控制只能使混合气在理论空燃比附近一个狭小的范围内波动,故氧传感器的输出电压在0.1-0.8V 之间不断变化(通常每10s内变化8次以上)。
如果氧传感器输出电压变化过缓(每1Os少于8次)或电压保持不变(不论保持在高电位或低电位),则表明氧传感器有故障,需检修。
2.1.1、氧化钛式氧传感器氧化钛式氧传感器是利用二氧化钛材料的电阻值随排气中氧含量的变化而变化的特性制成的,故又称电阻型氧传感器。
二氧化钛式氧传感器的外形和氧化锆式氧传感器相似,在传感器前端的护罩内是一个二氧化钛厚膜元件。
纯二氧化钛在常温下是一种高电阻的半导体,但表面一旦缺氧,其品格便出现缺陷,电阻随之减小。
由于二氧化钛的电阻也随温度不同而变化,因此,在二氧化钛式氧传感器内部也有一个电加热器,以保持氧化钛式氧传感器在发动机工作过程中的温度恒定不变。
如下图2-2所示。
图2-2 氧化钛式氧传感器ECU B+端子将一个恒定的1V电压加在氧化钛式氧传感器的一端上,传感器的另一端与搭铁端子相接。
当排出的废气中氧浓度随发动机混合气浓度变化而变化时,氧传感器的电阻随之改变,信号端子上的电压降也随着变化。
当信号端子上的电压高于参考电压时,ECU判定混合气过浓;当信号端子上的电压低于参考电压时,ECU判定混合气过稀。
通过ECU的反馈控制,可保持混合气的浓度在理论空燃比附近。
在实际的反馈控制过程中,二氧化钛式氧传感器与ECU连接的信号端子上的电压也是在0.1-0.9V 之间不断变化,这一点与氧化锆式氧传感器是相似的。
氧化钛式氧传感器对比氧化锆式氧传感器的工作原理有很大的不同,它是利用多孔状导体TiO2的导电性随排气中氧含量的变化而变化的特性制成的,故又称电阻性氧传感器。
这种传感器的结构简单、体积小、成本低,但是在300℃~900℃工作时,电阻值随温度变化较大,所以必须用温度补偿的方法来提高精度,通常用另一个实心TiO2导体作为温度补偿。
第三章、氧传感器的检测3.1、氧传感器的基本电路(1)氧传感器加热器电阻的检测点火开关置于“OFF”,拔下氧传感器的导线连接器,用万用表Ω档测量氧传感器接线端中加热器端子与自搭铁端子(图3-1端子1和2)间的电阻其电阻值应符合标准值(一般为4-40Ω;具体数值参见具体车型说明书)。
如不符合标准,应更换氧传感器。
测量后,接好氧传感器线束连接器,以便作进一步的检测。
(2)氧传感器反馈电压的检测测量氧传感器反馈电压时,应先拔下氧传感器线束连接器插头,对照被测车型的电路图,从氧传感器反馈电压输出端引出一条细导线,然后插好连接器,在发动机运转时从引出线上测量反馈电压。
有些车型也可以从故障诊断插座内测得氧传感器的反馈电压,如丰田汽车公司生产的小轿车,可从故障诊断插座内的OX1或OX2插孔内直接测得氧传感器反馈电压(丰田V型六缸发动机两侧排气管上各有一个氧传感器,分别和故障检测插座内的OX1和OX2插孔连接)。
在对氧传感器的反馈电压进行检测时,最好使用指针型的电压表,以便直观地反映出反馈电压的变化情况。
此外,电压表应是低量程(通常为2V)和高阻抗(阻抗太低会损坏氧传感器)的。
内层铂金层与大气接触,所以氧气浓度高。
外层铂金与排气接触,氧气浓度低。
当混合比较高时,排放的废气所含的氧相对地减少。
因此二氧化锆两侧的铂金所接触到的氧气高低落差大,所产生的电动势也相对高(将近1V);当混合比较稀时,燃烧后多余的氧气较多,二氧化锆两侧的铂金层的氧气落差小,因此所产生的电动势低(将近0V).即下图3-2所示。
图3-2喷油量少→空燃比大→废气中氧含量大→氧传感器产生电压低→ECU控制喷油量大喷油量大→空燃比小→废气中氧含量少→氧传感器产生电压高→ECU控制喷油量少二氧化锆式氧传感器的工作温度需在350度以上其特性才能充分体现,为使氧传感器尽快达到工作温度,为其附加了一个数4~10Ω的陶瓷加热器,引擎发动机约30秒钟后达到正常工作温度,输出的电压信号送到ECU放大处理,ECU把高电压信号看作浓混合气,而把低电压信号看作稀混合气根据氧传感器的电压信号,电脑按照尽可能接近14.7: 1的理论最佳空燃比来稀释或加浓混合气,此过程将不断地在稀释—加浓—稀释地空燃比进行循环调整,使氧传感器在0.1~0.9V间变换(以50次\min左右)送给电脑,在发动机怠速时实现闭环控制。