分形分维
- 格式:ppt
- 大小:6.52 MB
- 文档页数:78
mip的分形维数
分形维数是用于描述分形结构复杂程度的一个参数,常用符号为D。
对于二维平面上的分形结构,可以通过计算覆盖它的最小正方形数来得到它的分维数。
但对于三维或更高维的分形结构,需要使用更复杂的方法来计算。
MIP(Multiscale Image Processing)算法是一种常用的计算分形维数的方法,它通过不断缩小分形结构的尺度来得到分维数。
具体来说,MIP算法首先将分形结构进行二值化,并对每个像素进行标记,然后按照不同的尺度进行缩放,并统计每个尺度下的像素数量。
最后将这些数据进行处理,得到分维数的近似值。
MIP 算法可以应用于各种分形结构,如分形曲线、分形图形、分形细胞等,广泛应用于自然科学、工程技术等领域。
- 1 -。
分形维数算法分形包括规则分形和无规则分形两种。
规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。
这些分形图形具有严格的自相似性。
无规则分形是指不光滑的,随机生成的分形, 如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。
这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存于标度不变区域。
对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。
不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。
因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。
分形维数D=lnN(X)/ln(l/X) (2-20)如Cantor 集,分数维D=ln2/ln3=; Koch 曲线分数维D=ln4/ln3=; Sierpinski 海绵分数维D=ln20/ln3=o对于不规则分形,它只具有统计意义下的自相似性。
不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的点集和多枝权的三维图形,下面介绍一些常用的测定方法血。
(1)尺码法用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。
不断改变尺码入,得到一系列长度N (入),入越小、N越大。
如果作InN〜5入图后得到斜率为负的直线,这表明存在如下的幕函数关系N〜X (2-21)上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson 公式。
Richards。
n是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。
海岸线绝对长度L被表示为:L=N X ~ X e (2-22)他得到挪威东南部海岸线的分维D~,而不列颠西部海岸线的分维这说明挪威的海岸线更曲折一些s 。
分形和分形维数及其在多孔介质研究中的应用华北科技学院常浩宇1分形、分形几何学和分形维数1.1 分形分形是指自然界中的一些形体,它们具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次,也就是说适当的放大或缩小事物的几何尺寸,整个结构并不改变。
一些经典的分形如:一、三分康托集1883年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集,或称康托尔集。
三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。
它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程三分康托集的构造过程构造出来的(如右图)。
其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的1/3部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。
第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。
第三步,重复删除每个小区间中间的1/3段。
如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。
二、Koch曲线1904年,瑞典数学家柯赫构造了一维,具有无限的长度,但是又小于分形。
根据分形的次数不同,生成的线,四次Koch曲线等。
下面以三次法,其它的可依此类推。
“Koch曲线”几何图形它和三分康托集一样,是一个典型的曲线也有很多种,比如三次Koch曲曲线为例,介绍Koch曲线的构造方。
Koch曲线大于日二维。
KochKoch曲线的生成过程三次Koch曲线的构造过程主要分为三大步骤:第一步,给定一个初始图形――一条线段;第二步,将这条线段中间的1/3处向外折起;第三步,按照第二步的方法不断的把各段线段中间的1/3处向外折起。
这样无限的进行下去,最终即可构造出Koch曲线。
其图例构造过程如右图所示(迭代了5次的图形)。
自然界中如生长得枝枝岔岔的树木,高低不平的山脉,弯弯曲曲的河流与海岸线。
1. 欧氏几何的长度、面积、体积等测度对分形刻划无效——如何研究分形?维数是几何学和空间理论的基本概念。
欧氏几何研究的规则图形,长度、面积、体积是它们最合适的特征量,但对海岸线这类不规则的分形,维数才能很好地刻划它们的复杂程度,因而维数才是最好的量化表征。
Mandelbrot提出了一个分形维数的概念。
2. 维数观念的历史回顾(1)传统的欧氏维数欧氏几何学、欧氏空间(即日常接触的普通空间)的维数概念点---0维;线---1维;面---2维;体---3维。
在欧氏几何学中,要确定空间一个点的位置,需要3个坐标,即要用三个实数(X、Y、Z)来表示立体图形中的一个点,坐标数目与空间维数相一致,立体图形的维数为3。
要确定平面一个点的位置,需要2个坐标,坐标数目与平面维数相一致,平面图形的维数为2。
相应地,直线的维数为1,点的维数为0。
这种维数概念和人们的经验相一致,被称为经验维数或欧氏维数,或经典维数,用字母d表示。
它的值为整数。
(2)传统维数观念的危机(1890年)(3)维数研究的重要成果——拓扑维数这是数学的一个重要分支——拓扑学中的维数概念。
拓扑学也称为橡皮几何学,它研究几何图形在一对一的双方连续变换下不变的性质。
比如画在橡皮膜上的两条相交曲线,对橡皮膜施以拉伸或挤压等形变,但不破裂或折叠时,它们“相交”始终是不变的,几何图形的这种性质称为拓扑性质。
画在橡皮膜上的三角形,经过拉伸或挤压可以变为一个圆,从拓扑学的观点看,三角形和圆有相同的拓扑维数。
对于任何一个海岛的海岸线,经过某些形变总可以变为一个圆,因而海岸线与圆具有相同的拓扑维数Dt=1。
在欧氏几何中,圆作为一种曲线,它的经典维数d=1。
可以论证对一个几何图形,恒有Dt=d。
拓扑维数Dt的值也为整数。
(4)豪斯多夫连续空间理论和分数维数(1914年)分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。
为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。
分类号O469 学校代码10495UDC530 学号0145023006武汉科技学院硕士学位论文无序系统中的分形生长研究作者姓名:田志华指导教师:田巨平教授学科门类:工学专业:机械设计及理论研究方向:分形与多孔介质完成日期:二零零七年四月Wuhan University of Science and EngineeringM. S. DissertationThe study of fractal growthin disorder systemByTIAN Zhi-huaDirected byProfessor TIAN Ju-pingApril 2007独创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解武汉科技学院有关保留、使用学位论文的规定。
特授权武汉科技学院可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。
同意学校向国家有关部门或机构送交论文的复印件和磁盘。
(保密的学位论文在解密后适用本授权说明)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日论文题目:无序系统中的分形生长研究专业:机械设计及理论硕士生:指导老师:摘要本文首先概述了分形理论的发展,分形和分形维数的定义,以及产生分形的物理机制与生长机制。
简要介绍了模拟分形生长的扩散置限凝聚(DLA)、电介质击穿 (DBM)、粘性指延(Viscous Fingering)、渗流等模型。
本文采用映射膨胀法构造了两种不同的Sierpinski地毯,运用Monte Carlo 方法研究了两种Sierpinski地毯中的有限扩散凝聚(DLA)生长。
广义分形维数广义分形维数是用来描述分形对象的维度的一个概念。
分形是一类具有自相似性质的几何图形,即它的一部分尺度与整体尺度相似。
广义分形维数是为了更准确地描述分形对象的复杂性而提出的概念。
在传统的几何学中,维数是用来描述一个几何图形的大小的概念。
例如,一条直线的维数是1,一个平面的维数是2,一个立体的维数是3。
但是对于分形对象来说,传统的维数概念并不适用,因为分形对象具有自相似性质,其维数不是整数。
为了解决这个问题,数学家引入了广义分形维数的概念。
广义分形维数可以分为Hausdorff维数和Minkowski维数两种。
Hausdorff 维数是用来描述一个分形对象的尺寸大小的概念,而Minkowski维数则是用来描述一个分形对象的形状复杂性的概念。
Hausdorff维数是由德国数学家Hausdorff在20世纪初提出的。
它是通过在分形对象上放置尺度不同的网格来计算的。
具体来说,我们可以通过在分形对象上放置一系列的正方形网格来计算Hausdorff维数。
然后,我们可以通过改变网格的尺度来计算不同尺度下的网格数目,并绘制出网格数目与网格尺度的关系图。
通过对这个关系图进行分析,我们可以得到分形对象的Hausdorff维数。
Minkowski维数是由波兰数学家Minkowski在19世纪末提出的。
它是通过计算分形对象的体积和周长之比来计算的。
具体来说,我们可以通过在分形对象上放置一系列的圆形网格来计算Minkowski维数。
然后,我们可以通过改变网格的半径来计算不同半径下的网格数目,并绘制出网格数目与网格半径的关系图。
通过对这个关系图进行分析,我们可以得到分形对象的Minkowski维数。
通过计算分形对象的Hausdorff维数和Minkowski维数,我们可以更准确地描述分形对象的复杂性。
这不仅对于理论研究具有重要意义,也对于实际应用有着广泛的应用价值。
例如,在图像处理和模式识别中,我们可以利用广义分形维数来描述和分析图像的复杂性,从而实现图像的自动识别和分类。
分维、分形分维的概念(一)我们首先画一个线段、正方形和立方体,它们的边长都是1。
将它们的边长二等分,此时,原图的线度缩小为原来的1/2,而将原图等分为若干个相似的图形。
其线段、正方形、立方体分别被等分为2、4、8个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。
(线段一分为二;正方形一分为四;立方体一分为八)一般说来,如果某图形是由把原图缩小为1/a的相似的b个图形所组成,有:a^D=b, D=logb/loga的关系成立,则指数D称为相似性维数,D可以是整数,也可以是分数。
(二)当我们画一根直线,如果我们用0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;用一块平面来量它,其结果是0,因为直线中不包含平面。
那么,用怎样的尺度来量它才会得到有限值哪?只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为1Koch曲线整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是0(此曲线中不包含平面),那么只有找一个与Koch曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于1、小于2,那么只能是小数(即分数)了,所以存在分维。
Koch曲线的每一部分都由4个跟它自身比例为1:3的形状相同的小曲线组成,那么它的豪斯多夫维数(分维数)为d=log(4)/log(3)=1.26185950714…Koch雪花线的维数是1.26分形的定义曼德勃罗曾经为分形下过两个定义:(1)满足条件Dim(A)>dim(A) 的集合A,称为分形集。
其中,Dim(A)为集合A的Hausdoff维数(或分维数),dim(A)为其拓扑维数。
一般说来,Dim(A)不是整数,而是分数。
(2)部分与整体以某种形式相似的形,称为分形。
然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。
实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,人们通常是列出分形的一系列特性来加以说明分形的特性(i)分形集具有精细的结构,“精细结构”指放大任意小的部分,里面总有更细小的结构。
三维分形维数
三维分形维数是指在三维空间中,分形集合所具有的维数。
分形集合是一种具有自相似性的几何图形,其结构复杂、形态多样,无法用传统的欧几里得几何学进行描述和测量。
为了更好地理解和描述分形集合,数学家引入了分形维数的概念。
三维分形维数可以通过多种方法计算,其中最常用的方法是通过盒计数法。
盒计数法可以通过在三维空间中放置各种大小的立方体来测量分形集合的维数。
具体来讲,我们可以在分形集合上放置一些大小相同的立方体,并计算出这些立方体所占据的空间的比例。
随着立方体大小的逐渐缩小,这个比例会趋近于一个稳定的值,这个值就是分形集合的分形维数。
三维分形维数的计算对于许多领域都有重要的应用,例如图像处理、自然科学、经济学等。
在图像处理中,分形维数可以用于图像压缩和纹理分析。
在自然科学领域中,分形维数可以用于描述天体运动、地表地貌等具有分形结构的现象。
在经济学领域中,分形维数可以用于分析股票价格的波动和金融市场的稳定性。
总之,三维分形维数是一种重要的数学概念,它可以用于描述复杂的分形集合,并在各个领域中发挥着重要的作用。
- 1 -。
分形维数自相似
分形维数是用来描述分形化现象的维数。
分形就是具有自相似性的物体,它们的维数不仅仅只有整数维,而是介于整数维之间的一个小数维。
自相似性是指物体的一部分和整体在某种程度上具有相似性。
例如,树的分支和整株树在形状上有很大相似性,这就是一种自相似性。
对于一个分形,我们可以使用分形维数来度量它的自相似特性。
常见的分形维数包括Hausdorff维数、Box维数等。
总之,分形维数是用来描述分形自相似性特征的一个重要概念。