_2015北京_第23题四边形的证明与计算(有答案 )(13城区中考一模数学分类汇编
- 格式:docx
- 大小:598.34 KB
- 文档页数:10
海 淀 区 九 年 级 第 二 学 期 期 中 练 习数学2015.5下面各题均有四个选项,其中只有一个..是符合题意的. 1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A .50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A.三棱柱B. 三棱锥C. 长方体D.正方体3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为A .-1B .1C .-2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12 B .45 C .49 D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于 A .40° B .50° C .60° D .140°2A0Bba 216.如图,已知∠AOB .小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC .根据上述作图步骤,下列结论正确的是 A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称 D .OE =CE7.某次比赛中,15名选手的成绩如图所示,则 这15名选手成绩的众数和中位数分别是 A .98,95 B .98,98 C .95,98 D .95,958.甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于 A .1.2 B .2 C .2.4 D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6 B. CD .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是A B CD二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为.(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,BD BC 的长为__________. 15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意的观点, 理由是.16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分) 17.计算:2022cos60(3.14π)--+-o .18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证:BE=CD .21.已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根; (2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD中,∠BAD的平分线交CD于点E,交BC Array的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m 的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为亿;(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有万人.25.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D ,过点C 作⊙O 与边AB 相切于点E ,交BC 于点F ,CE 为⊙O 的直径. (1) 求证:OD ⊥CE ;(2) 若DF =1, DC =3,求AE 的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).图1 图2图3请回答:BC +DE 的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称. (1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.EDC B AEDCBA29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.b n '<海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)17.(本小题满分5分) 解:原式=112142-⨯+ ………………………………………………………4分 14=+ ………………………………………………………………5分 18. (本小题满分5分) 解:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得3x <. ……………………………………………………2分由不等式②得2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分 19. (本小题满分5分)解:22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分 243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分 20. (本小题满分5分)证明: ∠EBC =∠FCB ,ABE FCD ∴∠=∠.…………………………………………………………1分在△ABE 与△FCD 中,,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD .………………………………………………………………………5分21. (本小题满分5分) (1)证明: 0k ≠,∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得x = ∴1221,x x k k==-. …………………………………………………………4分 方程的两个实数根都是整数,且k 是整数,∴1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解:设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得40016020.8x x =⨯-. ………………………………………………2分 解得4x =. ………………………………………………………3分经检验,4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分四、解答题(本题共20分,每小题5分) 23. (本小题满分5分)(1)证明: 四边形ABCD 是平行四边形,∴AD //BC . ∴∠DAF=∠F . ∠F =45°,∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠= . 90DAB ∴∠= .又 四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图. 四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°. AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE ==. ……………………………………………3分在Rt △AHB 中,∠HAB=45°,∴sin 45BH AB =⋅= . …………………………………………4分 在Rt △BHE 中,∠BHE=90°, ∴sin ∠AEB=BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分 (2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分)(1)证明: ⊙O 与边AB 相切于点E ,且 CE 为⊙O 的直径.∴CE ⊥AB .AB=AC ,AD ⊥BC ,BD DC ∴=. ………………………………1分又 OE=OC ,∴OD ∥EB .∴ OD ⊥CE .………………………………2分(2)解:连接EF .CE 为⊙O 的直径,且点F 在⊙O 上, ∴∠EFC =90°. CE ⊥AB , ∴∠BEC =90°.∴+BEF FEC FEC ECF ∠=∠+∠∠=90°. ∴BEF ECF ∠=∠.∴tan tan BEF ECF ∠=∠. ∴BF EF EFFC=.又 DF =1, BD=DC =3, ∴ BF =2, FC =4.∴EF =. ………………………………………………… 3分∵∠EFC =90°, ∴∠BFE =90°.由勾股定理,得BE . ……………………4分EF ∥AD , ∴21BE BF EA FD ==.∴AE = ……………………………………………………5分26. (本小题满分5分)解:BC +DE. ……………………………………………………2分解决问题: 连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形,∴AB // FE ,BF =AE . ∴DC //FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分) 解:(1)∵抛物线2212y x x =-+与y 轴交于点A , ∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-, ∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上.设直线BC 的解析式为y kx b =+. ∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为 112y x =+.…………………………3分(2)∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =, 当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时,点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分图1 图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC . , .是菱形ABCD 的对角线,∴. ……………………………………………………………2分GFEDCBA120ADC ∠=︒ 60DCB ∴∠=︒AC 1302DCA DCB ∠=∠=︒GFEDCBA.由菱形的对称性可知, ,.……………………………………………………………………3分 . GEB CBE ∴∠=∠. ,.…………………………………………………………4分 EBG BEC ∴∠=∠. 在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=. ………………………………………………………………………………5分 方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3. ∵四边形ABCD 是菱形, ∴AD ∥BC .,.是菱形ABCD 的对角线,∴. ………………………2分.由菱形的对称性可知,,.……………………………………………3分50FBC ∠=︒ ,图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠. ………………………………………………4分 BH EH ∴=.在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分 (3). …………………………………………………………………7分 29.(本小题满分8分)解:(1)①; ……………………………………………………………………1分②点B . ………………………………………………………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒50BEC DEC ∠=∠=︒100EBC EDC ∠=∠=︒100GEB DEC BEC ∴∠=∠+∠=︒50FBC ∠=︒ 50EBG EBC FBC ∴∠=∠-∠=︒120ADC ∠=︒ 60DCB ∴∠=︒AC 1302DCA DCB ∠=∠=︒180100EDC DEC DCA ∴∠=︒-∠-∠=︒50BEC DEC ∠=∠=︒100EBC EDC ∠=∠=︒AE BG +=HG F ED CBA(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的图象上.2≤b '∴,即当时,取最大值2.当时,.5x ∴=. ………………………………………3分 当时,或.2x ∴=-或8x =. ………………………………4分 52≤≤b '- ,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分(3),∴顶点坐标为.………………………………………………………………6分若,的取值范围是≥b m '或≤b n ',与题意不符.若1≥t ,当1≥x 时,的最小值为,即;当时,的值小于,即..∴s 关于t 的函数解析式为211)s t t =+≥ ( . ……………………………7分 当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分1x =b '2b '=-23x -=-+5b '=-53x -=-53x -=-+2222()y x tx t t x t t =-++=-+ (,)t t 1t <b 'y t m t =1x <y 2[(1)]t t --+2[(1)]n t t =--+22(1)1s m n t t t t ∴=-=+-+=+。
2015年北京中考数学一模第23题(2015顺义一模)23.如图,平行四边形ABCD 中,点E 是AD 边上一点,且 CE ⊥BD 于点F ,将△DEC 沿从D 到A 的方向平移,使点D 与点A 重合,点E 平移后的点记为G . (1)画出△DEC 平移后的三角形;(2)若BC=BD =6,CE =3,求AG 的长.(2015怀柔一模)23. 如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF .(1)求证:四边形ADEF 是平行四边形;(2)若∠ABC =60°,BD =4,求平行四边形ADEF 的面积.(2015石景山一模)23.如图,菱形ABCD 中,E ,F 分别为AD ,AB 上的点,且AF AE =,连接EF 并延长,交CB 的延长线于点G ,连接BD . (1)求证:四边形EGBD 是平行四边形;(2)连接AG ,若︒=∠30FGB ,1==AE GB ,求AG 的长.DCE BAF C DBA GFE(2015朝阳一模)23. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D作DE ∥AC 且DE=12AC ,连接 CE 、OE ,连接AE 交OD 于点F .(1)求证:OE =CD ;(2)若菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.(2015海淀一模)23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°. (1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.(2015东城一模)23. 如图,ABC △中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC的平行线交于点E ,且DE 交AC 于点O ,连接AE . (1)求证:四边形ADCE 是菱形; (2)若2AC DE =,求sin CDB ∠的值.(2015平谷一模)23.如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,EF ∥AC . (1)求证:BE =AF ; (2)若∠ABC =60°,BD =12,求DE 的长及四边形ADEF 的面积.EDB OCA(2015门头沟一模)23. 如图,菱形ABCD 的对角线AC 和BD 交于点O ,分别过点C 、D 作CE ∥BD ,DE ∥AC ,CE 和DE 交于点E . (1)求证:四边形ODEC 是矩形;(2)当∠ADB =60°,AD=时,求tan ∠EAD 的值.(2015通州一模)23.已知菱形ABCD 的对角线AC 与BD 相交于点E ,点F 在BC 的延长线上,且CF=BC ,连接DF ,点G 是DF 中点,连接CG .求证:四边形 ECGD 是矩形.(2015房山 一模)23.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作一条直线分别交DA 、BC 的延长线于点E 、F ,连接BE 、(1)求证:四边形BFDE 是平行四边形;(2)若AB =4,CF =1,∠ABC =60°,求sin DEO 的值.(2015延庆一模)23. 如图,点O 是△ABC 内一点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,得到四边形DEFG . (1)求证:四边形DEFG 是平行四边形;(2)如果∠OBC =45°,∠OCB =30°,OC =4,求EF 的长.BG FOBCDE A(2015燕山一模)23.如图,菱形ABCD 中,对角线AC ,BD 交于O 点,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 为矩形;(2)在BC 上截取CF =CO ,连接OF ,若AC =8,BD =6,求四边形OFCD 的面积.(2015西城一模)23.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F , E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC . (1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.(2015丰台一模)23.如图,菱形ABCD 中, 分别延长DC ,BC 至点E ,F ,使CE =CD ,CF =CB ,联结DB ,BE ,EF ,FD . (1)求证:四边形DBEF 是矩形;(2)如果∠A =60 ,菱形ABCD 的面积为38,求DF 的长.D O FECAB FDCA(2015顺义一模)23. 解:(1)……………………………………… 2分(2)∵四边形ABCD 是平行四边形,∴AD =BC ,由平移可知点C 平移到点B ,且△DEC ≌△AGB ,………………………….….… 3分 ∴BG =CE ,BG ∥CE . ∵CE ⊥BD ,CE =3, ∴BG =3,∠GBD =90°. 在Rt △GBD 中,BD =6,∴DG=,………………………………….…………………….……….…..…… 4分 又∵BC= ∴AD=∴AG………………………………………………………….…………….…. 5分(2015怀柔一模)23. (1)证明:∵BD 是△ABC 的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形. ………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线, ∴∠ABD =∠EBD =30°,GFA BECD∴DG =BD =×4=2,………………………………………3分 ∵BE =DE ,∴BH =DH =2,∴BE =DE,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG5分 23.(1)证明:连接AC (图略)∵ 四边形ABCD 是菱形,∴AC 平分DAB ∠,且BD AC ⊥. ……………1分 AE AF = ,EF AC ⊥∴,BD EG //∴. 又∵ 菱形ABCD 中,BG ED //,∴ 四边形EGBD 是平行四边形.……2分(2)解: 过点A 作AH BC ⊥于H .∵30FGB ∠=︒, ∴30DBC ∠=︒,∴ 260ABH DBC ∠=∠=︒∵1GB AE ==可求2AB AD == …… 3分 在Rt △ABH 中,90AHB ∠=︒∴1AH BH ==.∴ 2GH =………………………………… 4分 在Rt △AGH 中,勾股定理得,AH ……………5分(2015石景山一模)23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE ==………………4分 在Rt △ACE 中,………………………………………………………5分(2015朝阳一模)23. (本小题满分5分)(1)证明: 四边形ABCD 是平行四边形,A BDCHGFE∴AD //BC .∴∠DAF=∠F .∠F =45°, ∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠= .90DAB ∴∠= .又 四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.…………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图.四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°. AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE =.……………………………………………3分在Rt △AHB 中,∠HAB=45°,∴sin 45BH AB =⋅= …………………………………………4分 在Rt △BHE 中,∠BHE=90°, ∴sin ∠AEB=10BH BE =.……………………………………………5分(2015海淀一模)23.(1)证明:∵DE BC ∥,CE AB ∥,∴四边形DBCE 是平行四边形. ∴CE BD =.又∵CD 是边AB 上的中线, ∴BD AD =. ∴CE DA =. 又∵CE DA ∥,∴四边形ADCE 是平行四边形.∵90BCA ∠=︒,CD 是斜边AB 上的中线, ∴AD CD =.∴四边形ADCE 是菱形. …………3分(2)解:作CF AB ⊥于点F .由(1) 可知, .BC DE =设BC x =,则2AC x =. 在Rt ABC △中,根据勾股定理可求得AB =.∵1122AB CF AC BC ⋅=⋅,∴AC BC CF x AB ⋅==.∵12CD AB x ==, ∴4sin 5CF CDB CD ∠==.…………5分(2015东城一模)23.(1)证明:∵DE ∥AB ,EF ∥AC ,∴四边形ADEF 是平行四边形,…………………………………………………………1 ∠ABD =∠BDE . ∴AF =DE .∵BD 是△ABC 的角平分线, ∴∠ABD =∠DBE . ∴∠DBE =∠BDE . ∴BE =DE . ∴BE =AF . (2)(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H ,∵∠ABC =60°,BD 是∠ABC 的平分线,∴∠ABD =∠EBD =30°,∴DG =12BD =12×12=6.∵BE =DE ,∴BH =DH =12BD =6.∴BE =cos30BH︒=∴DE =BE = (4)∴四边形ADEF 的面积为:DE •DG = (5)(2015平谷一模)23.(本小题满分5分) (1)证明:∵ CE ∥BD ,DE ∥AC ,∴ 四边形ODEC 是平行四边形. ……………………………………1分 又 ∵菱形ABCD ,∴ AC ⊥BD ,∴ ∠DOC =90°.∴ 四边形ODEC 是矩形.………………………………………………2分(2)如图,过点E 作EF ⊥AD ,交AD 的延长线于F .∵ AC ⊥BD ,∠ADB =60°,AD =,B OCA∴ ODAO =OC =3.……………3分 ∵ 四边形ODEC 是矩形, ∴ DE =OC =3,∠ODE =90°.又∵ ∠ADO +∠ODE +∠EDF =180°, ∴ ∠EDF =30°.在Rt △DEF 中,∠F =90°,∠EDF =30°. ∴ EF =1322DE =.∴ DF=………………………………………………………………………4分 在Rt △AFE 中,∠DFE =90°,∴tan ∠EAD=32EF EF AF AD DF ===+.………………………………5分(2015门头沟一模)23.(本小题满分5分) (1)证明:∵ CE ∥BD ,DE ∥AC ,∴ 四边形ODEC 是平行四边形. ……………………………………1分 又 ∵菱形ABCD ,∴ AC ⊥BD ,∴ ∠DOC =90°.∴ 四边形ODEC 是矩形.………………………………………………2分(2)如图,过点E 作EF ⊥AD ,交AD 的延长线于F .∵ AC ⊥BD ,∠ADB =60°,AD=, ∴ ODAO =OC =3.……………3分 ∵ 四边形ODEC 是矩形, ∴ DE =OC =3,∠ODE =90°.又∵ ∠ADO +∠ODE +∠EDF =180°, ∴ ∠EDF =30°.在Rt △DEF 中,∠F =90°,∠EDF =30°. ∴ EF =1322DE =.∴ DF=………………………………………………………………………4分 在Rt △AFE 中,∠DFE =90°,∴tan ∠EAD=32EF EF AF AD DF ===+.………………………………5分(2015通州一模)23. 证明:(1) CF=BC ,∴C 点是BF 中点 ……………………..(1分)BFEDB OCA点G 是DF 中点∴CG 是△DBF 中位线 ∴CG//BD, CG=BD 12……..(2分) 四边形A BCD 是菱形∴AC ⊥BD,DE=BD 12, …………………………………..(3分) ∴∠DEC=90°,CG= DE ………………………………..(4分) CG//BD, ∴四边形 ECGD 是矩形. ………………..(5分)(2015房山一模)23.(1)证明:在菱形ABCD 中,AD ∥BC ,OA=OC ,OB=OD , ∴∠AEO =∠CFO ,∴△AEO ≌△CFO (AAS )∴OE=OF , ………………………………………1分 又∵OB=OD ,∴四边形BFDE 是平行四边形; ………………………………………2分 (2) 菱形ABCD ,60ABC ∠=∴BD AC ⊥4AB BC AD DC ====30ADO CDO ∠=∠=ADC 为等边三角形∴122AO AD ==, ………………………………………3分∴OD =作OM AD ⊥于M ∴122AO AD ==OM =………………………………………4分∴1AM == ∴2EM =∴OE =AEO CFOAOE COF OA OCAEO CFO ∠=∠⎧⎪∠=∠⎨⎪=⎩在和中M----------3分 -----------5分-----------4分分 分M A FG E D 在Rt EOM ∆中,7sin DEO ∠=………………………………………5分(2015燕山一模)23.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形. ………………………1分 又∵四边形ABCD 是菱形, ∴AC ⊥BD .∴∠DOC =90°.∴四边形OCED 为矩形. ………………………2分(2)解法一:∵菱形ABCD ,∴AC 与BD 互相垂直平分于点O ,∴OD =OB =21BD =3,OA =OC =21AC =4,∴S △DOC =OC OD ⋅21=4321⨯⨯=6. ………………………3分在Rt △OBC 中,BC =22OC OB +=5,sin ∠OCB =BC OB =53. 作FH ⊥OC 于点H ,在Rt △CFH 中,CF =CO =4,sin ∠HCF =FCFH =53, HB ACD EF O∴FH =53CF =512. ………………………4分 ∴S △OCF =FH OC ⋅21=512421⨯⨯=524.∴S 四边形OFCD =S △DOC +S △OCF =6+524=554. ………………………5分解法二:∵菱形ABCD ,∴AC 与BD 互相垂直平分于点O ,∴OD =OB =21BD =3,OA =OC =21AC =4,∴S △DCB =OC DB ⋅21=4621⨯⨯=12. ………………………3分在Rt △OBC 中,BC =22OC OB +=5,sin ∠OCB =BC OB =53. 作OG ⊥BC 于点G ,∵CF =CO =4,∴BF =BC − CF =5− 4=1. 在Rt △OCG 中,sin ∠OCG =OC OG =53, ∴OG =53OC =512. ………………………4分 ∴S △OBF =OG BF ⋅21=512121⨯⨯=56.∴S 四边形OFCD =S △DCB −S △OBF=12−56=554.(2015西城一模) 23.(1)证明:∵ ADE BAD ∠=∠,∴ AB ∥ED .……………………………………………………… 1分 ∵ BD 垂直平分AC ,垂足为F , ∴ BD AC ⊥,AF=FC .又∵ AE AC ⊥,∴ 90EAC DFC ∠=∠=︒.∴AE ∥BD .∴ 四边形ABDE 是平行四边形.…………………………………………2分(2)解:如图2,连接BE 交AD 于点O . ∵ DA 平分∠BDE ,G B A C D EF O∴∠ADE=∠1.又∵ADE BAD∠=∠,∴∠1=∠BAD.∴AB= BD.………………………………3分∴ABDE是菱形.∵AB=5,AD=6,∴BD=AB=5,AD BE⊥,132OA AD==.在Rt△OAB中,4OB.∵1122ABDS AD OB BD AF=⋅=⋅V,∴645AF⨯=.解得 4.8AF=.…………………………4分∵BD垂直平分AC,∴29.6AC AF==.……………………5分(2015丰台一模)23.(1)证明:∵CE=CD,CF=CB,∴四边形DBEF是平行四边形..…….1分∵四边形ABCD是菱形,∴CD=CB..…….2分∴CE=CF,∴BF=DE,∴四边形DBEF是矩形..…….3分(2)过点D作DG⊥BC于点G,∴∠DGC=90°.∵四边形ABCD是菱形,∠A=60︒,∴∠BCD=60°.在Rt△CDG中,cos∠BCD=12CGCD=,∴设CG=x,则CD=BC=2x,DG.∵菱形ABCD的面积为38,∴BC DG⋅=∴2x=2x=±(舍负),∴DG=.……. 4分∵CF=CD,∠BCD=60°,∴∠DFC=30°.∴DF=2DG=.…….5分ABCDEFG。
北京市西城区2015年初三一模试卷数学试卷参考答案及评分标准 2015. 4一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17()011π2008()6tan302--+-︒=3362132⨯-++………………………………………………………… 4分 =32332-+=3.…………………………………………………………………………………… 5分 18.证明:如图1.∵ ∠EAC =∠DAB ,∴ 11EAC DAB ∠+∠=∠+∠.即 ∠BAC =∠DAE . …………………… 1分 在△ABC 和△ADE 中,,,,C E BAC DAE AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩………………………3分∴ △ABC ≌△ADE .…………………………………………………………… 4分 ∴ BC = DE .…………………………………………………………………… 5分 19.解:()2035148.x x x -≤⎧⎪⎨+>-⎪⎩,由①,得2x ≥. (2)分由②,得 15348x x +>-.移项,合并,得 1111x >-.系数化1,得 1x >-. ………………………………………………………… 4分 所以原不等式组的解集为2x ≥.…………………………………………………5分20.解: 223312111a a a a a a a ++÷-++++=()()2331111a a a a a a ++÷-+++……………………………………………………………2分 ()()2311311a a a a a a ++=⋅-+++ =111+-+a a a …………………………………………………………………………3分 =11a a -+.………………………………………………………………………………4分 当2=a 时,原式=311212=+-.………………………………………………………5分 21.解:设普通列车的平均速度为x 千米/时.…………………………………………… 1分 则高铁的平均速度是2.5x 千米/时.依题意,得40052032.5x x+=.…………………………………………………… 2分 解得 120=x .……………………………………………………………………3分 经检验,120=x 是原方程的解,且符合题意.……………………………… 4分 所以 30052=x ..答:高铁的平均速度是300千米/时.………………………………………………… 5分 22.(1)证明: []22(1)4(2)m m m ∆=--++ 2248448m m m m =-+++284m =+.……………………………………………………………………1分∵ 28m ≥0,∴ 284m +>0.………………………………………………………………2分∴ 方程总有两个不相等的实数根. ……………………………………… 3分(2)解:∵ 2x =-是此方程的一个根,∴ 2(2)2(2)(1)(2)0m m m --⨯---+=.整理得 220m m -=.解得 10m =,22m =.……………………………………………………… 5分四、解答题(本题共20分,每小题5分)23.(1)证明:∵ ADE BAD ∠=∠,∴ AB ∥ED .…………………………………………………………… 1分 ∵ BD 垂直平分AC ,垂足为F , ∴ BD AC ⊥,AF=FC .又∵ AE AC ⊥,∴ 90EAC DFC ∠=∠=︒.∴AE ∥BD .∴ 四边形ABDE 是平行四边形.…………………………………………2分(2)解:如图2,连接BE 交AD 于点O . ∵ DA 平分∠BDE ,∴ ∠ADE=∠1.又∵ ADE BAD ∠=∠, ∴ ∠1=∠BAD .∴ AB= BD .………………………………3分 ∴ABDE 是菱形. ∵ AB=5,AD=6,∴ BD=AB=5,AD BE ⊥,132OA AD ==.在Rt △OAB 中,4OB =.∵ 1122ABD S AD OB BD AF =⋅=⋅V , ∴ 645AF ⨯=.解得 4.8AF =. …………………………4分 ∵ BD 垂直平分AC ,∴ 29.6AC AF ==.……………………5分 注:其他解法相应给分. 24.解:(1)补全扇形图如图3所示.…………………1分 (2)2号线,52<x ≤72 ,22.2.(各1分)………………………………………… 4分 (3)30.……………………………………… 5分 25.解:(1)依题意,补全图形如图4.……………… 1分 (2)BAD ∠.…………………………………… 2分 证明:如图5,连接BC ,CD .∵ 直线l 与直线MA 关于直线MD 对称, ∴ 12∠=∠.………………………3分 ∵ AB 为⊙O 的直径,∴ 90ACB ∠=︒,即BC MA ⊥. 又∵ BE l ⊥,∵ cos 1MC MB =⋅∠,cos 2ME MB =⋅∠∴ MC=ME . 又∵ C ,E 两点分别在直线MA 与直线l 可得C ,E 两点关于直线MD 对称.∴ 3BED ∠=∠. ………………… 4分 又∵ 3BAD ∠=∠,∴ BAD BED ∠=∠. ……………… 5分26.解:45. …………………………………………………1分画图见图6. ………………………………………3分 45.………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第2527.解:(1)∵ 二次函数21y x bx c =++的图象1C 经过(1,0)-,∴10,3.b c c -+=⎧⎨=-⎩ ………………………………1分解得2,3.b c =-⎧⎨=-⎩ (2)分∴ 抛物线1C 的函数表达式为3221--=x x y . …………………………………… 3分 (2)∵ 22123=(1)4y x x x =----,∴ 抛物线1C 的顶点为(1,4)- ∴ 平移后抛物线2C 的顶点为(0,0),它对应的函数表达式为22y x =.… 5分 (3)a ≥1-(见图7).………………………………………………………………7分28.解:(1)90,12.……………………………………………………………………… 2分 (2)结论:90AHB ∠=︒,AF BE =. 证明:如图8,连接AD .∵ AB =AC ,∠BAC =60°, ∴ △ABC 是等边三角形. ∵ D 为BC 的中点, ∴ AD ⊥BC . ∴ ∠1+∠2=90°.又∵ DE ⊥AC ,∴ ∠DEC =90°. ∴ ∠2+∠C =90°. ∴ ∠1=∠C =60°. 设AB =BC=k (0k >),则124kCE CD ==,DE =. ∵ F 为DE 的中点,∴ 12DF DE ==,AD AB ==. ∴AD BC =,DF CE ∴ =BC AD CE DF .…………………………………………………………3分 又∵ ∠1=∠C ,∴ △ADF ∽△BCE .………………………………………………… 4分∴AF AD BE BC ==,………………………………………………… 5分 ∠3=∠4. 又∵ ∠4+∠5=90°,∠5=∠6, ∴ ∠3+∠6=90°.∴ 90AHB ∠=︒.………………………………………………………6分(3)1tan 9022α︒-().………………………………………………………………7分注:写1cos 2sin αα+或其他答案相应给分.29.解:(1)3.(每空各1分)…………………………………………………… 2分(2)-1.…………………………………………………………………………… 4分(3)①如图9,过点O 分别作射线OE 、OF 的垂线OG 、OH ,则图形M 为:y 轴正半轴,∠GOH 的边及其内部的所有点(图中的阴影部分). (7)分说明:(画图2分,描述1分)(图形M 也可描述为:y 轴正半轴,直线x y 33=下方与直线x y 33-=下方重叠的部分(含边界)) ②34.…………………………………………………………………………8分。
北京市西城区2015年初三一模试卷数 学 2015. 4一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.13的相反数是A.13 B.13- C.3 D.3-2.据市烟花办相关负责人介绍,2015年除夕零时至正月十五24时,全市共销售烟花爆竹 约196 000箱,同比下降了32%.将196 000用科学记数法表示应为A.51.9610⨯B.41.9610⨯C.419.610⨯D. 60.19610⨯ 3.下列运算正确的是A. 336a b ab+=B.32a a a -=C.()326a a = D.632a a a ÷=4.如图是一个几何体的直观图,则其主视图是5.甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道,选手以随机 抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是A. 1B.12C. 13D.146.下列图形中,既是轴对称图形又是中心对称图形的是7.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,如果∠BOC =70°, 那么∠BAD 等于A. 20°B. 30°C. 35°D.70°8.在平面直角坐标系xOy 中,第一象限内的点P 在反比例函数的图象上,如果点P 的纵坐 标是3,OP=5,那么该函数的表达式为A. 12y x=B. 12y x =-C. 15y x= D. 15y x =-9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是 A. 6,4 B. 6,6 C. 4,4D. 4,610.如图,过半径为6的⊙O 上一点A 作⊙O 的切线l ,P 为⊙O 上的一个动点,作PH ⊥l 于点H ,连接P A .如果P A =x ,AH=y , 那么下列图象中,能大致表示y 与x 的函数关系的是二、填空题(本题共18分,每小题3分) 11.如果分式15x -有意义,那么x的取值范围是 .12.半径为4cm ,圆心角为60°的扇形的面积为 cm 2.13.分解因式:2123m -= .14.如图,△ABC 中,AB =AC ,点D ,E 在BC 边上,当 时, △ABD ≌△ACE .(添加一个适当的条件即可)15.如图是跷跷板的示意图,立柱OC 与地面垂直,以O为横板AB 的中点..,AB 绕点O 上下转动,横板AB 的B 端最大高度h 是否会随横板长度的变化而变化 呢?一位同学做了如下研究:他先设AB=2 m ,OC=0.5 m ,通过计算得到此时的h 1,再将横板AB换成横板A ′B ′,O 为横板A ′B ′的中点,且A ′B ′=3m ,此时B ′点的最大高度为h 2,由此得 到h 1与h 2的大小关系是:h 1 h 2(填“>”、“=”或“<”).可进一步得出,h 随横板的长度的变化而 (填“不变”或“改变”).16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,…,按照这种移动方式进行下去,点4A 表示的数是 ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .三、解答题(本题共30分,每小题5分)17()011π2008()6tan302--+-︒. 18.如图,∠C =∠E ,∠EAC =∠DAB ,AB=AD .求证:BC=DE .19.解不等式组 ()2035148.x x x -≤⎧⎪⎨+>-⎪⎩,20.先化简,再求值:223312111a a a a a a a ++÷-++++,其中2a =.21.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比 乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时. 22.已知关于x 的一元二次方程0)2()1(22=+---m m x m x . (1)求证:此方程总有两个不相等的实数根; (2)若2x =-是此方程的一个根,求实数m 的值.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F , E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC . (1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.24.在北京,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给北京市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘坐地铁的相关调查数据,制作了以下统计表以及统计图.根据以上信息解答下列问题:(1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是,调价后里程x(千米)在范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到万人次;(精确到0.1)(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)25.如图,AB为⊙O的直径,M为⊙O外一点,连接MA与⊙O交于点C,连接MB并延长交⊙O于点D,经过点M的直线l与MA所在直线关于直线MD对称.作BE⊥l于点E,连接AD,DE.(1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED相等的角,并加以证明.26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=,CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC = °.请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位, 得到抛物线2C ,将2C 对应的函数表达式记为 22y x mx n =++,求2C 对应的函数表达式; (3)设323y x =+,在(2)的条件下,如果在 2-≤x ≤a 内存在..某一个x 的值,使得2y ≤3y 成立,利用函数图象直接写出a 的取值范围.28. △ABC 中,AB=AC .取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图1,如果90BAC ∠=︒,那么AHB ∠= ︒,AFBE= ; (2)如图2,如果60BAC ∠=︒,猜想AHB ∠的度数和AFBE的值,并证明你的结论; (3)如果BAC α∠=,那么AF= .(用含α的表达式表示)29.给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离. 在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为(1,0)A ,则点(2,3)B 和射线OA 之间的距离为________,点(2,3)C - 和射线OA 之间的距离为________;(2)如果直线y =x 和双曲线ky x=k = ;(可在图1中进 行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60︒,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M . ① 请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示) ② 将射线OE ,OF 组成的图形记为图形W ,抛物线22-=x y 与图形M 的 公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.。
北京市朝阳区九年级综合练习(一)数学试卷 2015.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界 平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A .0.8×1013B .8×1012C .8×1013D .80×10112. 如图,下列关于数m 、n 的说法正确的是A .m >nB .m =nC .m >-nD .m =-n3.如图,直线a ,b 被直线c 所截,a ∥b ,∠2=∠3,若∠1=80°,则∠4等于 A .20°B .40°C .60°D .80°4.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 75.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是 A .平均数 B .中位数 C .众数 D .方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 A.16 B. 51C. 310D. 12 8. 若正方形的周长为40,则其对角线长为A .100B .C .D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分)11.若分式21-x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .14.请写出一个图象从左向右上升且经过点(-,2)的函数,所写的函数表达式是 .15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a ,417a -,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=12AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据;(3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份公共自行车投放数量(万辆)利用公共自行车出行人数(万人)2012 1.4 约9.92013 2.5 约17.62014 4 约27.62015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果,精确到0.1)25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O 切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD =∠DAE ;(2)若AB =6,AD =5,求DF 的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2). 请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).图1图2图328.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).29.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ;②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a ,n n an 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分 21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分① ②12436--=k 244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数.∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分 解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,=………………………………………………………5分24.(1)2300. ………………1分 (2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD ,∵ED 为⊙O 的切线,∴OD ⊥ED .……………………………………………………………………………1分 ∵AB 为⊙O 的直径,∴∠ACB =90°. ………………………………………………………………………… 2分 ∵BC ∥ED ,∴∠ACB =∠E =∠EDO . ∴AE ∥OD . ∴∠DAE =∠ADO . ∵OA =OD , ∴∠BAD =∠ADO .∴∠BAD =∠DAE . ………………………………3分 (2)连接BD , ∴∠ADB =90°. ∵AB =6,AD =5,∴BD =……………………………………………………………4分 ∵∠BAD =∠DAE =∠CBD ,∴tan ∠CBD = tan ∠BAD . 在Rt △BDF 中, ∴DF =BD ·tan ∠CBD =115. ……………………………………………………………5分 26. 解:PD AP 的值为23. …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2, ∴BC =2k .∴DB =DC +BC =3k . ∵E 是AC 中点, ∴AE =CE . ∵AF ∥DB , ∴∠F =∠1. 又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分 ∴AF =BC =2k . ∵AF ∥DB , ∴△AFP ∽△DBP . ∴DBAFPD AP =. ∴32=PD AP . …………………………………………………………………4分(2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分 把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分 ∴M 1 : x x y 42+=,顶点为(-2,-4) . ∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分 ∵直线n x y +=经过点F , ∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分AF =AB -BF=即BE=. …………………………………………………………………………5分(2=BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分图1∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k .∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。
北京市朝阳区九年级综合练习(一)数学试卷 2015.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界 平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A .0.8×1013B .8×1012C .8×1013D .80×10112. 如图,下列关于数m 、n 的说法正确的是A .m >nB .m =nC .m >-nD .m =-n3.如图,直线a ,b 被直线c 所截,a ∥b ,∠2=∠3,若∠1=80°,则∠4等于 A .20° B .40° C .60° D .80°4.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 7 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是 A .平均数 B .中位数 C .众数 D .方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 A.16 B. 51C. 310D. 12 8. 若正方形的周长为40,则其对角线长为A .100B .C .D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分) 11.若分式21x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .14.请写出一个图象从左向右上升且经过点(-1,2)的函数,所写的函数表达式是 .15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a ,417a-,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D作DE ∥AC 且DE=12AC ,连接 CE 、OE ,连接AE 交OD 于点F .(1)求证:OE =CD ;(2)若菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为 万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据; (3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与 公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份 公共自行车投放数量(万辆) 利用公共自行车出行人数(万人) 2012 1.4 约9.9 2013 2.5 约17.6 2014 4 约27.6 2015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果, 精确到0.1)25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD =∠DAE ;(2)若AB =6,AD =5,求DF 的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2).请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).28.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).图1图2图329.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ; ②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a,nn a n 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分 21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分① ②12436--=k 244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分 ① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分 ② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数. ∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分 解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,.………………………………………………………5分24.(1)2300. ………………1分 (2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED.……………………………………………………………………………1分∵AB为⊙O的直径,∴∠ACB=90°. ……………………………………………………………… 2分∵BC∥ED,∴∠ACB=∠E=∠EDO.∴AE∥OD.∴∠DAE=∠ADO.∵OA=OD,∴∠BAD=∠ADO.∴∠BAD=∠DAE. ………………………………3分(2)连接BD,∴∠ADB=90°.∵AB=6,AD=5,∴BD=……………………………………………………………4分∵∠BAD=∠DAE=∠CBD ,∴tan∠CBD = tan∠BAD.在Rt△BDF中,∴DF=BD·tan∠CBD =115. ……………………………………………………………5分26. 解:PDAP 的值为23 . …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2,∴BC =2k .∴DB =DC +BC =3k .∵E 是AC 中点,∴AE =CE .∵AF ∥DB ,∴∠F =∠1.又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分∴AF =BC =2k .∵AF ∥DB ,∴△AFP ∽△DBP . ∴DB AF PDAP =. ∴32=PD AP . …………………………………………………………………4分 (2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分∴M 1 : x x y 42+=,顶点为(-2,-4) .∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分∵直线n x y +=经过点F ,∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分AF =AB -BF=即BE= …………………………………………………………………………5分(2BD =BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有 ⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k . 图1∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。
精心整理2015年北京市中考数学试卷一、选择题(本题共30 分,每题 3 分)下边各题均有四个选项,此中只有一.个.是切合题意的1 .(3 分)(2015? 北京)截止到 2015 年 6 月 1 日,北京市已建成34 个地下调蓄设备,蓄水能力达到 140000立方米,将140000用科学记数法表示应为()4 5 6 6A . 14×10 B. 1.4×10 C. 1.4×10 D. 14×10考科学记数法—表示较大的数.点:专计算题.题:分将 140000 用科学记数法表示即可.析:解解: 140000=1.4×105,答:应选 B.点本题考察了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记评:数法的表示形式为 a×10n的形式,此中1≤|a|<10,n 为整数,表示时重点要正确确立a的值以及n 的值.2 .(3 分)(2015? 北京)实数 a,b ,c,d 在数轴上的对应点的位置以下图,这四个数中,绝对值最大的是()A . a B. b C. c D. d考实数大小比较.点:分第一依据数轴的特点,以及绝对值的含义和性质,判断出实数a,b, c,d 的绝对值的析:取值范围,而后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.解解:依据图示,可得答:3< |a|< 4, 1< |b|< 2, 0< |c|< 1, 2< |d|< 3,因此这四个数中,绝对值最大的是a.应选: A.点本题主要考察了实数大小的比较方法,以及绝对值的非负性质的应用,要娴熟掌握,评:解答本题的重点是判断出实数a, b, c, d 的绝对值的取值范围.3 .( 3 分)(2015? 北京)一个不透明的盒子中装有 3 个红球, 2 个黄球和 1 个绿球,这些球除了颜色外无其余差异,从中随机摸出一个小球,恰巧是黄球的概率为()A .B.C.D.考概率公式.点:专计算题.题:分直接依据概率公式求解.析:解解:从中随机摸出一个小球,恰巧是黄球的概率== .答:应选 B.点本题考察了概率公式:随机事件 A 的概率 P(A )=事件 A 可能出现的结果数除以全部评:可能出现的结果数.4 .( 3 分)(2015? 北京)剪纸是我国传统的民间艺术,以下剪纸作品中,是轴对称图形的为()A.B.C.D.考轴对称图形.点:分依据轴对称图形的观点求解.析:解解: A 、不是轴对称图形,答: B .不是轴对称图形,C.不是轴对称图形,D.是轴对称图形,应选: D.点本题考察了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,假如评:图形的两部分能够重合,那么这个是轴对称图形.5.(3 分)(2015? 北京)如图,直线l 1,l 2,l3交于一点,直线l4∥l1,若∠1=124 °,∠2=88 °,则∠3的度数为()A.26°B. 36°C. 46°D. 56°考平行线的性质.点:AOB 的大小,而后借助平角的定义求出∠ 3 即可分如图,第一运用平行线的性质求出∠析:解决问题.解解:如图,∵直线l4∥ l 1,答:∴∠ 1+∠ AOB=180°,而∠ 1=124°,∴∠ AOB=56 °,∴∠ 3=180°﹣∠ 2﹣∠ AOB=180 °﹣ 88°﹣56°=36 °,应选 B.点该题主要考察了平行线的性质及其应用问题;应坚固掌握平行线的性质,这是灵巧运评:用、解题的基础和重点.6 .( 3 分)(2015? 北京)如图,公路AC ,BC 相互垂直,公路AB的中点M 与点 C 被湖分开.若测得AM 的长为1.2km ,则M ,C 两点间的距离为()A . 0.5km B. 0.6km C. 0.9km D. 1.2km考直角三角形斜边上的中线.点:专应用题.题:分依据直角三角形斜边上的中线等于斜边的一半,可得析:解解:∵在Rt△ ABC 中,∠ ACB=90 °,M 为 AB 答:∴ MC= AB=AM=1.2km .MC=AM=1.2km的中点,.应选 D.点本题考察了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜评:边的一半.理解题意,将实质问题转变为数学识题是解题的重点.7 .( 3 分)(2015? 北京)某市 6 月份日均匀气温统计以下图,则在日均匀气温这组数据中,众数和中位数分别是()A . 21,21B. 21, 21.5C. 21, 22D. 22,22考众数;条形统计图;中位数.点:专数形联合.题:分依据条形统计图获取各数据的权,而后依据众数和中位数的定义求解.析:解解:这组数据中,21 出现了 10 次,出现次数最多,因此众数为21,答:第 15 个数和第 16 个数都是 22,因此中位数是 22.应选 C.点本题考察了众数的定义:一组数据中出现次数最多的数据叫做众数.也考察了条形统评:计图和中位数.8 .( 3 分)(2015? 北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑散布图,若这个坐标系分别以正东、正北方向为 x 轴、y 轴的正方向,表示太和门的点的坐标为(0 ,﹣1 ),表示九龙壁的点的坐标为(4 ,1 ),则表示以下宫殿的点的坐标正确的选项是()A .景仁宫( 4,2)? B.养心殿(﹣ 2, 3)C.保和殿( 1, 0)D.武英殿(﹣ 3.5,﹣ 4)考点:坐标确立地点.剖析:依据平面直角坐标系,找出相应的地点,而后写出坐标即可.解答:解:依据表示太和门的点的坐标为(0,﹣ 1),表示九龙壁的点的坐标为(4, 1),可得:原点是中和殿,因此可得景仁宫( 2,4),养心殿(﹣ 2,3),保和殿( 0,1),武英殿(﹣ 3.5,﹣ 3),应选 B评论:本题考察坐标确立地点,本题解题的重点就是确立坐标原点和x,y 轴的地点及方向.9 .( 3 分)(2015? 北京)一家游泳馆的游泳收费标准为30 元/ 次,若购置会员年卡,可享受以下优惠:会员年卡种类办卡花费(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15比如,购置 A 类会员年卡,一年内游泳 20 次,花费 50+25 × 20=550 元,若一年内在该游泳馆游泳的次数介于45 ~55 次之间,则最省钱的方式为()A .购买 A 类会员年卡C.购置 C 类会员年卡考点:一次函数的应用.B.购置B 类会员年卡D.不购置会员年卡剖析:设一年内在该游泳馆游泳的次数为x 次,花费的钱数为y 元,依据题意得: y A =50+25x ,y B=200+20x , y C=400+15x ,当 45≤x≤50 时,确立y 的范围,进行比较即可解答.解答:解:设一年内在该游泳馆游泳的次数为x 次,花费的钱数为 y 元,依据题意得:y A =50+25x ,y B=200+20x ,y C=400+15x ,当 45≤x≤50 时,1175≤y A≤1300;1100≤y B≤1200;1075 ≤y C≤1150;因而可知, C 类会员年卡花费最低,因此最省钱的方式为购置 C 类会员年卡.应选: C.评论:本题考察了一次函数的应用,解决本题的重点是依据题意,列出函数关系式,并确立函数值的范围.10 .(3 分)(2015? 北京)一个寻宝游戏的寻宝通道如图 1 所示,通道由在同一平面内的AB ,BC ,CA,OA ,OB ,OC 构成.为记录寻宝者的前进路线,在BC 的中点M 处搁置了一台定位仪器.设寻宝者前进的时间为x ,寻宝者与定位仪器之间的距离为y,若寻宝者匀速前进,且表示y 与x 的函数关系的图象大概如图 2 所示,则寻宝者的前进路线可能为()A.A→O→B B.B→A→C C. B→O→C D. C→B→O考动点问题的函数图象.点:分依据函数的增减性:不一样的察看点获取的函数图象的增减性不一样,可得答案.析:解答:解: A 、从 A 点到 O 点 y 随 x 增大向来减小到0,故 A 不切合题意;B.从 B 到 A 点 y 随 x 的增大先减小再增大,从A到C点y随x的增大先减小再增大,但在 A 点距离最大,故 B 不切合题意;C.从 B 到 O 点 y 随 x 的增大先减小再增大,从O 到C 点y 随 x 的增大先减小再增大,在 B、 C 点距离最大,故 C 切合题意;D.从 C 到 M 点 y 随 x 的增大而减小,向来到而增大,显然与图象不符,故 D 不切合题意;应选: C.点本题考察了动点问题的函数图象,利用察看点与动点评:的增减性是解题重点.y 为0,从 M 点到 B 点 y 随 x 的增大P 之间距离的变化关系得出函数二、填填空题(本题共18 分,每题 3 分)11 .(3 分)(2015? 北京)分解因式: 5x 3﹣10x 2+5x=5x (x﹣1 )2.考点:提公因式法与公式法的综合运用.剖析:先提取公因式5x,再依据完好平方公式进行二次分解.3 22=5x ( x ﹣ 2x+1 )故答案为: 5x( x﹣1)2.评论:本题考察了提公因式法,公式法分解因式,提取公因式后利用完好平方公式进行二次分解,注意分解要完全.12 .(3 分)(2015? 北京)如图是由射线AB ,BC ,CD ,DE ,EA构成的平面图形,则∠1+∠ 2+∠ 3+∠ 4+∠ 3605= °.考点:多边形内角与外角.剖析:第一依据图示,可得∠1=180°﹣∠ BAE ,∠ 2=180 °﹣∠ ABC ,∠ 3=180 °﹣∠BCD ,∠ 4=180 °﹣∠ CDE ,∠ 5=180°﹣∠ DEA ,而后依据三角形的内角和定理,求出五边形 ABCDE 的内角和是多少,再用 180°×5 减去五边形 ABCDE 的内角和,求出∠1+∠ 2+∠ 3+ ∠ 4+∠ 5 等于多少即可.解答:解:∠ 1+∠ 2+ ∠ 3+∠ 4+∠ 5=(180°﹣∠ BAE ) +( 180°﹣∠ ABC )+( 180°﹣∠ BCD )+( 180°﹣∠ CDE )+( 180°﹣∠ DEA )=180 °×5﹣(∠ BAE+ ∠ABC+ ∠ BCD+ ∠CDE+ ∠ DEA )=900 °﹣( 5﹣2)×180°=900 °﹣ 540°=360 °.故答案为: 360°.评论:本题主要考察了多边形内角和定理,要娴熟掌握,解答本题的重点是要明确:(1)n 边形的内角和=( n﹣ 2)?180 (n≥3)且 n 为整数).(2)多边形的外角和指每个极点处取一个外角,则n 边形取 n 个外角,不论边数是几,其外角和永久为360°.13 .(3 分)(2015? 北京)《九章算术》是中国传统数学最重要的着作,确立了中国传统数学的基本框架.它的代数成就主要包含开方术、正负术和方程术.此中,方程术是《九章算术》最高的数学成就.《九章算术》中记录:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假定有 5 头牛、 2 只羊,值金 10 两; 2 头牛、 5 只羊,值金 8 两.问:每头牛、每只羊各值金多少两?”设每头牛值金 x 两,每只羊值金 y 两,可列方程组为.考点 :由实质问题抽象出二元一次方程组.剖析:依据 “假定有 5 头牛、 2 只羊,值金 10 两; 2 头牛、 5 只羊,值金 8 两 ”,获取等量关系,即可列出方程组.解答:解:依据题意得:,故答案为:.评论:本题考察了由实质问题抽象出二元一次方程组, 解决本题的重点是找到题目中所存在的等量关系.14 .(3 分)(2015? 北京)对于 x 的一元二次方程 ax 2 +bx+ =0 有 两个相等的实数根,写出一组知足条件的实数 a ,b 的值:a= 4 , b= 2.考点 :根的鉴别式.专题 :开放型. 剖析: 因为对于 x 的一元二次方程 2 2ax +bx+ =0 有两个相等的实数根,获取 a=b ,找一组满 足条件的数据即可.解答:对于 x 的一元二次方程ax 2+bx+ =0 有两个相等的实数根,∴△ =b 2﹣ 4× a=b 2﹣ a=0,∴ a=b 2,当 b=2 时, a=4,故 b=2 , a=4 时知足条件.故答案为: 4, 2.评论:本题主要考察了一元二次方程根的鉴别式,娴熟掌握鉴别式的意义是解题的重点.15 .(3 分)(2015? 北京)北京市 2009 ﹣2014 年轨道交通日均客运量统计以下图.依据统计图中供给的信息,预估2015 年北京市轨道交通日均客运量约980万人次,你的预估原因是依据 2009 ﹣2011 年呈直线上涨,故2013 ﹣2015 年也呈直线上涨.考点:用样本估计整体;折线统计图.剖析:依据统计图进行用样本估计整体来预估即可.解答:解:预估 2015 年北京市轨道交通日均客运量约980 万人次,依据 2009﹣ 2011 年呈直线上涨,故 2013﹣2015 年也呈直线上涨,故答案为: 980;依据 2009﹣ 2011 年呈直线上涨,故2013﹣ 2015 年也呈直线上涨.评论:本题考察用样本估计整体,重点是依据统计图剖析其上涨规律.16 .(3 分)(2015? 北京)阅读下边资料:在数学课上,老师提出以下问题:小芸的作法以下:老师说:“小芸的作法正确.”请回答:小芸的作图依照是到线段两个端点距离相等的点在线段的垂直均分线上.考点:作图—基本作图.专题:作图题.剖析:经过作图获取CA=CB , DA=DB ,则可依据线段垂直均分线定理的逆定理判断CD 为线段 AB 的垂直均分线.解答:解:∵ CA=CB , DA=DB ,∴CD 垂直均分 AB (到线段两个端点距离相等的点在线段的垂直均分线上)故答案为:到线段两个端点距离相等的点在线段的垂直均分线上.评论:本题考察了基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直均分线;作已知角的角均分线;过一点作已知直线的垂线.三、解答题(本题共 72 分,第 17 -26 题,每题 5 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8 分)解答应写出文字说明,演算步骤或证明过程.17 .(5 分)(2015? 北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.考点:实数的运算;零指数幂;负整数指数幂;特别角的三角函数值.剖析:原式第一项利用负整数指数幂法例计算,第二项利用零指数幂法例计算,第三项利用绝对值的代数意义化简,最后一项利用特别角的三角函数值计算即可获取结果.解答:解:原式 =4﹣ 1+2 ﹣+4×=5+.评论:本题考察了实数的运算,娴熟掌握运算法例是解本题的重点.18 .(5 分)(2015? 北京)已知 2a 2+3a ﹣6=0 .求代数式 3a(2a+1 )﹣( 2a+1 )(2a ﹣1 )的值.考点:整式的混淆运算—化简求值.专题:计算题.剖析:原式第一项利用单项式乘以多项式法例计算,第二项利用平方差公式化简,去括号归并获取最简结果,把已知等式变形后辈入计算即可求出值.2 2解答:解:∵ 2a +3a﹣ 6=0 ,即 2a +3a=6,2 2 2∴原式 =6a +3a﹣ 4a +1=2a +3a+1=6+1=7.评论:本题考察了整式的混淆运算﹣化简求值,娴熟掌握运算法例是解本题的重点.19 .(5 分)(2015? 北京)解不等式组,并写出它的全部非负整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.专题:计算题.剖析:分别求出不等式组中两不等式的解集,找出解集的公共部分确立出不等式组的解集,即可确立出全部非负整数解.解答:解:,由①得: x≥﹣ 2;由②得: x<,∴不等式组的解集为﹣2≤x<,则不等式组的全部非负整数解为:0,1, 2, 3.评论:本题考察认识一元一次不等式组,以及一元一次不等式组的整数解,娴熟掌握运算法则是解本题的重点.20 .(5 分)(2015? 北京)如图,在△ABC中,AB=AC,AD 是BC 边上的中线,BE⊥ AC于点E.求证:∠CBE=∠ BAD.考点:等腰三角形的性质.专题:证明题.剖析:依据三角形三线合一的性质可得∠CAD= ∠ BAD ,依据同角的余角相等可得:∠ CBE= ∠CAD ,再依据等量关系获取∠CBE= ∠BAD .解答:证明:∵ AB=AC , AD 是 BC 边上的中线,BE ⊥ AC,∴∠ CBE+ ∠ C=∠CAD+ ∠ C=90°,∠ CAD= ∠ BAD ,∴∠ CBE= ∠ BAD .评论:考察了余角的性质,等腰三角形的性质:等腰三角形的顶角均分线、底边上的中线、底边上的高相互重合.21 .(5 分)(2015? 北京)为解决“最后一公里”的交通接驳问题,北京市投放了大批公租自行车供市民使用.到2013 年末,全市已有公租自行车25 000辆,租借点600个.估计到2015年末,全市将有公租自行车50 000辆,而且均匀每个租借点的公租自行车数目是2013 年末均匀每个租借点的公租自行车数目的 1.2 倍.估计到2015 年末,全市将有租借点多少个?考点:分式方程的应用.剖析:依据租借点的公租自行车数目变化表示出行车数目,从而得出等式求出即可.解答:解:设到 2015 年末,全市将有租借点2013 年和 2015 年均匀每个租借点的公租自x 个,依据题意可得:×1.2= ,解得: x=1000,经查验得: x=1000 是原方程的根,答:到 2015 年末,全市将有租借点1000 个.评论:本题主要考察了分式的方程的应用,依据题意得出正确等量关系是解题重点.22 .(5 分)(2015? 北京)在 ?ABCD 中,过点 D 作 DE⊥ AB 于点E,点 F 在边 CD 上, DF=BE ,连结 AF ,BF .(1 )求证:四边形BFDE 是矩形;(2 )若 CF=3 ,BF=4 ,DF=5 ,求证: AF 均分∠DAB.考点:平行四边形的性质;角均分线的性质;勾股定理的逆定理;矩形的判断.专题:证明题.剖析:( 1)依据平行四边形的性质,可得AB与CD的关系,依据平行四边形的判断,可得BFDE 是平行四边形,再依据矩形的判断,可得答案;(2)依据平行线的性质,可得∠DFA= ∠FAB ,依据等腰三角形的判断与性质,可得∠DAF= ∠ DFA ,依据角均分线的判断,可得答案.解答:( 1)证明:∵四边形 ABCD 是平行四边形,∴AB∥CD.∵BE∥ DF , BE=DF ,∴四边形 BFDE 是平行四边形.∵DE⊥ AB ,∴∠ DEB=90 °,∴四边形BFDE 是矩形;(2)解:∵四边形ABCD 是平行四边形,∴AB ∥DC,∴∠ DFA= ∠ FAB .在 Rt△ BCF 中,由勾股定理,得BC===5,∴AD=BC=DF=5 ,∴∠ DAF= ∠ DFA ,∴∠ DAF= ∠ FAB ,即 AF 均分∠ DAB .评论:本题考察了平行四边形的性质,利用了平行四边形的性质,矩形的判断,等腰三角形的判断与性质,利用等腰三角形的判断与性质得出∠DAF= ∠ DFA 是解题重点.23 .(5 分)(2015? 北京)在平面直角坐标系 xOy 中,直线 y=kx+b( k ≠ 0)与双曲线 y= 的一个交点为 P(2 ,m ),与 x 轴、y 轴分别交于点 A,B .(1 )求 m 的值;(2 )若 PA=2AB ,求 k 的值.考点:反比率函数与一次函数的交点问题.剖析:( 1)将点 P 的坐标代入反比率函数的分析式即可求得m 的值;(2)作 PC⊥ x 轴于点 C,设点 A 的坐标为( a,0),则 AO= ﹣ a,AC=2 ﹣ a,依据 PA=2AB 获取 AB :AP=AO : AC=1 :2,求得 a 值后辈入求得k 值即可.解答:解:∵ y= 经过 P( 2,m),∴2m=8,解得: m=4;(2)点 P( 2, 4)在 y=kx+b 上,∴4=2k+b ,∴b=4﹣ 2k,∵直线 y=kx+b ( k≠0)与 x 轴、 y 轴分别交于点 A ,B ,∴ A( 2﹣,0),B(0,4﹣2k),如图,∵PA=2AB ,∴AB=PB ,则 OA=OC ,∴﹣ 2=2,解得 k=1;评论:本题考察了反比率函数与一次函数的交点问题,解题的重点是表示出 A 的坐标,而后利用线段之间的倍数关系确立k 的值,难度不大.24 .(5 分)(2015? 北京)如图, AB 是⊙O 的直径,过点 B 作⊙O的切线 BM ,弦 CD∥ BM,交AB 于点 F,且=,连结AC,AD ,延伸 AD 交 BM 于点 E.(1 )求证:△ACD是等边三角形;(2 )连结 OE ,若 DE=2 ,求 OE 的长.考点:切线的性质;等边三角形的判断与性质.剖析:( 1)由 AB 是⊙ O 的直径, BM 是⊙ O 的切线,获取AB ⊥ BE,因为 CD ∥ BE,获取CD ⊥ AB ,依据垂径定理获取,于是获取,问题即可得证;(2)连结 OE,过 O 作 ON⊥ AD 于 N ,由( 1)知,△ ACD 是等边三角形,获取∠ DAC=60 °又直角三角形的性质获取BE= AE , ON= AO ,设⊙ O 的半径为: r 则 ON= r,AN=DN=r,因为获取EN=2+,BE=AE=,在R t△DEF与R t△ BEO中,由勾股定理列方程即可获取结论.解答:( 1)证明:∵ AB 是⊙ O 的直径, BM 是⊙ O 的切线,∴AB ⊥BE,∵ CD∥BE,∴CD⊥ AB ,∴,∵=,∴,∴AD=AC=CD ,∴△ ACD 是等边三角形;(2)解:连结OE,过 O 作 ON⊥ AD 于 N ,由( 1)知,△ ACD 是等边三角形,∴∠ DAC=60 °∵AD=AC ,CD⊥ AB ,∴∠ DAB=30 °,∴BE= AE , ON= AO ,设⊙ O 的半径为: r,∴ON= r, AN=DN=r,∴ EN=2+,BE=AE=,在 R t△ DEF 与 R t△ BEO 中,2 2 2 2 2OE =ON +NE =OB +BE ,即=r 2,+∴ r=2 ,∴ OE 2= +25=28,∴ OE=2 .评论:本题考察了切线的性质,垂径定理,等边三角形的判断,直角三角形的性质,勾股定理,过 O 作 ON⊥ AD 于 N ,结构直角三角形是解题的重点.25 .(5 分)(2015? 北京)阅读以下资料:2015 年清明小长假,北京市属公园展开以“清明踏青,春光满园”为主题的游园活动,固然气温小幅走低,但旅客踏青赏花的热忱很高,市属公园旅客招待量约为190 万人次.此中,玉渊潭公园的樱花、北京植物园的桃花遇到了旅客的热捧,两公园的旅客招待量分别为38 万人次、 21.75 万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春光成为旅客的重要目的地,旅客招待量分别为 26 万人次、 20 万人次、 17.6 万人次;北京动物园旅客招待量为 18 万人次,熊猫馆的旅客密集度较高.2014 年清明小长假,天气晴好,北京市属公园旅客招待量约为200 万人次,此中,玉渊潭公园旅客招待量比2013年清明小长假增添了 25% ;颐和园旅客招待量为 26.2 万人次,2013 年清明小长假增添了 4.6 万人次;北京动物园旅客招待量为 22 万人次.2013 年清明小长假,玉渊潭公园、陶然亭公园、北京动物园旅客接待量分别为 32 万人次、 13 万人次、 14.9万人次.依据以上资料解答以下问题:(1 )2014 年清明小长假,玉渊潭公园旅客招待量为40万人次;(2 )选择统计表或统计图,将2013 ﹣2015 年清明小长假玉渊潭公园、颐和园和北京动物园的旅客招待量表示出来.考点:条形统计图;统计表.剖析:( 1) 2013 年的人数乘以( 1+25%)即可求解;(2)求出 2014 年颐和园的旅客招待量,而后利用统计表即可表示.解答:解:( 1)2014 年,玉渊潭公园的旅客招待量是:32×(1+25% ) =40(万人).故答案是:40;(2) 2013 年颐和园的旅客招待量是:26.4﹣ 4.6=21.8(万元).玉渊潭公园颐和园北京动物园2013 年32 21.8 14.92014 年40 26.2 222015 年38 26 18评论:本题考察了数据的剖析与整理,正确读懂题意,从所列的数据中整理出2013﹣ 2015年三年中,三个公园的旅客数是重点.26 .(5 分)(2015? 北京)有这样一个问题:研究函数y= x2 + 的图象与性质.小东依据学习函数的经验,对函数y= x 2+ 的图象与性质进行了探究.下边是小东的研究过程,请增补完好:(1 )函数 y= x 2 + 的自变量 x 的取值范围是x ≠0;(2 )下表是 y 与 x 的几组对应值.x ﹣3 ﹣2 ﹣1 ﹣﹣123y ﹣﹣﹣m求 m 的值;(3 )如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.依据描出的点,画出该函数的图象;(4 )进一步研究发现,该函数图象在第一象限内的最低点的坐标是(1,),联合函数的图象,写出该函数的其余性质(一条即可)该函数没有最大值.考点:二次函数的图象;反比率函数的图象;反比率函数的性质;二次函数的性质.剖析:( 1)由图表可知x≠0;(2)依据图表可知当 x=3 时的函数值为 m,把 x=3 代入分析式即可求得;(3)依据坐标系中的点,用光滑的直线连结即可;(4)察看图象即可得出该函数的其余性质.解答:解:( 1)x≠0,(2)令 x=3 ,2∴ y=×3 += + =;∴ m=;(3)如图(4)该函数的其余性质:① 该函数没有最大值;②该函数在x=0 处断开;③ 该函数没有最小值;④ 该函数图象没有经过第四象限.故答案为该函数没有最大值.评论:本题考察了二次函数的图象和性质,反比率函数的图象和性质,依据图表画出函数的图象是解题的重点.27 .(7分)(2015?北京)在平面直角坐标系xOy中,过点( 0 ,2 )且平行于 x 轴的直线,与直线 y=x ﹣1 交于点 A ,点 A 对于直线x=1 的对称点为 B ,抛物线 C 1 :y=x 2 +bx+c 经过点 A ,B .(2 )求抛物线 C 1 的表达式及极点坐标;(3 )若抛物线 C 2:y=ax 2( a ≠ 0)与线段 AB 恰有一个公共点,联合函数的图象,求 a 的取值范围.考点 :二次函数的性质;待定系数法求二次函数分析式.剖析:( 1)当 y=2 时,则 2=x ﹣ 1,解得 x=3,确立 A (3,2),依据 AB 对于 x=1 对称,所以 B (﹣ 1,2).(2)把( 3, 2),(﹣ 2, 2)代入抛物线 C 1: y=x 2+bx+c 得,求出 b , c 的值,即可解答;2,求出 a 的值,即可解答.(3)画出函数图象,把 A ,B 代入 y=ax解答:解:( 1)当 y=2 时,则 2=x ﹣1,解得: x=3, ∴ A ( 3, 2),∵点 A 对于直线 x=1 的对称点为 B ,∴ B (﹣ 1, 2).C 1: y=x 2(2)把( 3, 2),(﹣ 2, 2)代入抛物线 +bx+c 得:解得:∴ y=x 2﹣ 2x ﹣ 1.极点坐标为( 1,﹣ 2).(3)如图,当 C 2 过 A 点, B 点时为临界,代入 A ( 3, 2)则 9a=2, 解得: a= ,代入 B (﹣ 1,2),则 a (﹣ 1) 2=2, 解得: a=2,∴评论:本题考察了二次函数的性质,解集本题的重点是求出二次函数的分析式,并联合图形解决问题.28 .(7 分)(2015? 北京)在正方形ABCD 中,BD 是一条对角线,点P 在射线 CD 上(与点 C、D 不重合),连结 AP,平移△ ADP,使点D 挪动到点 C,获取△ BCQ,过点Q 作 QH⊥ BD 于 H ,连接 AH ,PH.(1 )若点 P 在线段 CD 上,如图 1 .①依题意补全图 1 ;②判断 AH 与 PH 的数目关系与地点关系并加以证明;(2 )若点 P 在线段 CD 的延伸线上,且∠ AHQ=152°,正方形 ABCD 的边长为 1 ,请写出求 DP 长的思路.(能够不写出计算结果)考点:四边形综合题.剖析:( 1)①依据题意画出图形即可;②连结 CH,先依据正方形的性质得出△DHQ 是等腰直角三角形,再由 SSS 定理得出△HDP≌△ HQC ,故 PH=CH ,∠ HPC= ∠HCP ,由正方形的性质即可得出结论;(2)依据四边形 ABCD 是正方形, QH⊥ BD 可知△ DHQ 是等腰直角三角形,再由平移的性质得出 PD=CQ .作 HR⊥PC 于点 R,由∠ AHQ=152 °,可得出∠ AHB 及∠ DAH 的度数,设 DP=x ,则 DR=HR=RQ ,由锐角三角函数的定义即可得出结论.解答:解:( 1)① 如图 1;②如图 1,连结 CH ,∵四边形ABCD 是正方形, QH⊥ BD ,∴∠ HDQ=45 °,∴△ DHQ 是等腰直角三角形.∵DP=CQ ,在△HDP 与△HQC 中.∵,∴△ HDP≌△ HQC ( SSS),∴PH=CH ,∠ HPC= ∠ HCP.∵BD 是正方形 ABCD 的对称轴,∴ AH=CH ,∠ DAH= ∠ HCP,∴∠ AHP=180 °﹣∠ ADP=90 °,∴ AH=PH , AH ⊥PH.(2)如图 2,∵四边形ABCD 是正方形, QH⊥ BD ,∴∠ HDQ=45 °,∴△ DHQ 是等腰直角三角形.∵△ BCQ 由△ ADP 平移而成,∴PD=CQ .作 HR⊥PC 于点 R,∵∠ AHQ=152 °,∴∠ AHB=62 °,∴∠ DAH=17 °.设 DP=x ,则 DR=HR=RQ=.∵ tan17°=,即tan17°=,∴ x=.评论:本题考察的是四边形综合题,波及到正方形的性质、图形平移的性质、全等三角形的判断与性质等知识,难度适中.29 .(8 分)(2015? 北京)在平面直角坐标系xOy 中,⊙C 的半径为 r ,P 是与圆心 C 不重合的点,点 P 对于⊙C 的反称点的定义以下:若在射线 CP 上存在一点 P′,知足 CP+CP′ =2r ,则称 P′为点 P 对于⊙C 的反称点,如图为点 P 及其对于⊙C 的反称点 P′的表示图.特别地,当点 P′与圆心 C 重合时,规定 CP′ =0.(1 )当⊙O 的半径为 1 时.①分别判断点 M(2,1),N(, 0),T(1,)对于⊙O 的反称点能否存在?若存在,求其坐标;②点 P 在直线 y= ﹣x+2 上,若点 P 对于⊙O 的反称点 P′存在,且点 P′不在 x 轴上,求点 P 的横坐标的取值范围;(2 )⊙C 的圆心在 x 轴上,半径为 1 ,直线 y= ﹣ x+2 与 x 轴、y轴分别交于点 A,B ,若线段 AB 上存在点 P,使得点 P 对于⊙C 的反称点P′在⊙C的内部,求圆心 C 的横坐标的取值范围.精心整理考点 :圆的综合题.剖析:( 1)① 依据反称点的定义,可适当⊙ O 的半径为 1 时,点 M (2, 1)对于⊙ O 的反称点不存在; N ( , 0)对于⊙ O 的反称点存在,反称点 N ′( , 0); T (1,)对于⊙ O 的反称点存在,反称点T ′(0, 0);② 由 OP ≤2r=2 ,得出 22 2OP ≤4,设 P ( x ,﹣ x+2),由勾股定理得出 OP =x +(﹣ x+2 )2 =2x 2﹣ 4x+4 ≤4,解不等式得出 0≤x ≤2.再分别将 x=2 与 0 代入查验即可;(2)先由 y=﹣x+2,求出 A (6,0),B (0,2),则 =,∠ OBA=60 °,∠ OAB=30 °.再设 C ( x ,0),分两种状况进行议论: ① C 在OA 上;② C 在A 点右侧.解答:解:( 1)当⊙ O 的半径为 1 时.① 点 M ( 2,1)对于⊙ O 的反称点不存在;N ( , 0)对于⊙ O 的反称点存在,反称点 N ′( ,0); T (1,)对于⊙ O 的反称点存在,反称点T ′( 0, 0);2② ∵ OP ≤2r=2 , OP ≤4,设 P ( x ,﹣ x+2 ),2 2 2 2 ﹣ 4x+4 ≤4,∴ OP =x +(﹣ x+2 ) =2x2∴ 2x ﹣ 4x ≤0,∴ 0≤x ≤2.当 x=2 时, P ( 2,0), P ′( 0, 0)不切合题意;当 x=0 时, P ( 0,2), P ′( 0, 0)不切合题意; ∴ 0< x <2;(2)∵直线 y= ﹣x+2 与 x 轴、 y 轴分别交于点A ,B ,∴ A ( 6, 0),B ( 0,2),∴=,∴∠ OBA=60 °,∠ OAB=30 °. 设 C (x , 0).① 当 C 在 OA 上时,作 CH ⊥AB 于 H ,则 CH ≤CP ≤2r=2 ,因此 AC ≤4,C 点横坐标 x ≥2(当 x=2 时, C 点坐标( 2, 0), H 点的反称点 H ′( 2, 0)在圆的内部);② 当 C 在 A 点右边时, C 到线段 AB 的距离为 AC 长, AC 最大值为 2,因此 C 点横坐标 x ≤8. 综上所述,圆心C 的横坐标的取值范围是2≤x ≤8.评论:本题是圆的综合题, 此中波及到一次函数图象上点的坐标特点, 特别角的三角函数值,勾股定理,一元二次不等式的解法,利用数形联合、正确理解反称点的意义是解决本题的重点.。
北京市西城区2015年初三一模试卷数学2015. 41.13的相反数是A .13B .13- C .3 D .3- 2.据市烟花办相关负责人介绍,2015年除夕零时至正月十五24时,全市共销售烟花爆竹约196000箱,同比下降了32%.将196 000用科学记数法表示应为A .51.9610⨯B .41.9610⨯C .419.610⨯D .60.19610⨯ 3.下列运算正确的是A .336a b ab +=B .32a a a -= C .236()a a = D .632a a a ÷=4.如图是一个几何体的直观图,则其主视图是5.甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是A .1B .12C .13D .146.下列图形中,既是轴对称图形又是中心对称图形的是7.如图,线段AB是⊙O的直径,弦CD丄AB,如果∠BOC=70°,那么∠BAD等于A.20°B.30°C.35°D.70°8.在平面直角坐标系xOy中,第一象限内的点P在反比例函数的图象上,如果点P的纵坐标是3,OP=5,那么该函数的表达式为A.12yx=B.12yx=-C.15yx=D.15yx=-9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是A.6,4 B.6,6C.4,4 D.4,610.如图,过半径为6的⊙O上一点A作⊙O的切线l,P为⊙O上的一个动点,作PH⊥l于点H,连接P A.如果P A=x,AH=y,那么下列图象中,能大致表示y与x的函数关系的是二、填空题(本题共18分,每小题3分)11.如果分式15x-有意义,那么x的取值范围是.12.半径为4cm,圆心角为60°的扇形的面积为cm2.13.分解因式:2123m -= .14.如图,△ABC 中,AB =AC ,点D ,E 在BC 边上,当 时, △ABD ≌△ACE .(添加一个适当的条件即可)15.如图是跷跷板的示意图,立柱OC 与地面垂直,以O为横板AB 的中点..,AB 绕点O 上下转动,横板AB 的B 端最大高度h 是否会随横板长度的变化而变化 呢?一位同学做了如下研究:他先设AB=2 m ,OC=0.5 m ,通过计算得到此时的h 1,再将横板AB换成横板A ′B ′,O 为横板A ′B ′的中点,且A ′B ′=3m ,此时B ′点的最大高度为h 2,由此得 到h 1与h 2的大小关系是:h 1 h 2(填“>”、“=”或“<”).可进一步得出,h 随横板的长度的变化而 (填“不变”或“改变”).16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,…,按照这种移动方式进行下去,点4A 表示的数是 ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .三、解答题(本题共30分,每小题5分)17()011π2008()6tan302--+-︒.18.如图,∠C =∠E ,∠EAC =∠DAB ,AB=AD .求证:BC=DE .19.解不等式组 203(51)48x x x -≤⎧⎨+>-⎩20.先化简,再求值:223312111a a a a a a a ++÷-++++,其中2a =.21.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比 乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时.22.已知关于x 的一元二次方程0)2()1(22=+---m m x m x . (1)求证:此方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求实数m 的值.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC .(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.24.在北京,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给北京市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘 坐地铁的相关调查数据,制作了以下统计表以及统计图.根据以上信息解答下列问题: (1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是 ,调价后里程x (千米)在 范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到 万人次;(精确到0.1)(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出 元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)25.如图,AB 为⊙O 的直径,M 为⊙O 外一点,连接MA 与⊙O 交于点C ,连接MB 并延长交⊙O 于点D ,经过点M 的直线l 与MA 所在直线关于直线MD 对称.作BE ⊥l 于点E ,连接AD ,DE .(1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED 相等的角,并加以证明.26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=, CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC = °.请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位,得到抛物线2C ,将2C 对应的函数表达式记为22y x mx n =++,求2C 对应的函数表达式;(3)设323y x =+,在(2)的条件下,如果在2x a -≤≤内存在..某一个x 的值,使得23y y ≤成立,利用函数图象直接写出a 的取值范围.28.△ABC 中,AB=AC .取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图1,如果90BAC ∠=︒,那么AH B ∠= ︒,AFBE= ; (2)如图2,如果60BAC ∠=︒,猜想AHB ∠的度数和AFBE的值,并证明你的结论; (3)如果BAC α∠=,那么AFBE= .(用含α的表达式表示)29.给出如下规定:两个图形1G 和2G ,点P 为1G 上任一点,点Q 为2G 上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形1G 和2G 之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为(1,0)A ,则点(2,3)B 和射线OA 之间的距离为________,点(2,3)C -和射线OA 之间的距离为________;(2)如果直线y x =和双曲线ky x=k = ; (可在图1中进行研究)(3)点E 的坐标为,将射线OE 绕原点O 逆时针旋转60︒,得到射线OF ,在坐标平面内所有和射线,OE OF 之间的距离相等的点所组成的图形记为图形M .① 请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示) ② 将射线,OE OF 组成的图形记为图形W ,抛物线22y x =-与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.北京市西城区2015年初三一模试卷数学试卷参考答案及评分标准2015.4一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17()011π2008()6tan302--+-︒=3362132⨯-++………………………………………………………… 4分 =32332-+=3.…………………………………………………………………………………… 5分 18.证明:如图1.∵ ∠EAC =∠DAB ,∴ 11EAC DAB ∠+∠=∠+∠.即 ∠BAC =∠DAE . …………………… 1分 在△ABC 和△ADE 中,,,,C E BAC DAE AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩………………………3分∴ △ABC ≌△ADE .…………………………………………………………… 4分 ∴ BC= DE .…………………………………………………………………… 5分 19.解:()2035148.x xx -≤⎧⎪⎨+>-⎪⎩, 由①,得2x ≥. ………………………………………………………………… 2分由②,得 15348x x +>-移项,合并,得 1111x >-系数化1,得 1x >-. ………………………………………………………… 4分 所以原不等式组的解集为2x ≥.…………………………………………………5分20.解: 223312111a a a a a a a ++÷-++++=()()2331111a a a a a a ++÷-+++……………………………………………………………2分 ()()2311311a a a a a a ++=⋅-+++ =111+-+a a a …………………………………………………………………………3分 =11a a -+.………………………………………………………………………………4分 当2=a 时,原式=311212=+-.………………………………………………………5分 21.解:设普通列车的平均速度为x 千米/时.…………………………………………… 1分 则高铁的平均速度是2.5x 千米/时.依题意,得40052032.5x x+=.…………………………………………………… 2分 解得 120=x .……………………………………………………………………3分 经检验,120=x 是原方程的解,且符合题意.……………………………… 4分 所以 30052=x ..答:高铁的平均速度是300千米/时.………………………………………………… 5分 22.(1)证明: []22(1)4(2)m m m ∆=--++ 2248448m m m m =-+++284m =+.……………………………………………………………………1分∵ 28m ≥0,∴ 284m +>0.………………………………………………………………2分∴ 方程总有两个不相等的实数根. ……………………………………… 3分(2)解:∵ 2x =-是此方程的一个根,∴ 2(2)2(2)(1)(2)0m m m --⨯---+=.整理得 220m m -=.解得 10m =,22m =.……………………………………………………… 5分四、解答题(本题共20分,每小题5分)23.(1)证明:∵ ADE BAD ∠=∠,∴ AB ∥ED .…………………………………………………………… 1分 ∵ BD 垂直平分AC ,垂足为F , ∴ BD AC ⊥,AF=FC .又∵ AE AC ⊥,∴ 90EAC DFC ∠=∠=︒.∴AE ∥BD .∴ 四边形ABDE 是平行四边形.…………………………………………2分(2)解:如图2,连接BE 交AD 于点O . ∵ DA 平分∠BDE ,∴ ∠ADE=∠1.又∵ ADE BAD ∠=∠, ∴ ∠1=∠BAD .∴ AB= BD .………………………………3分 ∴ABDE 是菱形. ∵ AB=5,AD=6,∴ BD=AB=5,AD BE ⊥,132OA AD ==.在Rt △OAB 中,4OB =.∵ 1122ABD S AD OB BD AF =⋅=⋅V , ∴ 645AF ⨯=.解得 4.8AF =. …………………………4分 ∵ BD 垂直平分AC ,∴ 29.6AC AF ==.……………………5分 注:其他解法相应给分. 24.解:(1)补全扇形图如图3所示.…………………1分 (2)2号线,52<x ≤72 ,22.2.(各1分)………………………………………… 4分 (3)30.……………………………………… 5分 25.解:(1)依题意,补全图形如图4.……………… 1分 (2)BAD ∠.…………………………………… 2分 证明:如图5,连接BC ,CD .∵ 直线l 与直线MA 关于直线MD 对称, ∴ 12∠=∠.………………………3分 ∵ AB 为⊙O 的直径,∴ 90ACB ∠=︒,即BC MA ⊥. 又∵ BE l ⊥,∵ cos 1MC MB =⋅∠,cos 2ME MB =⋅∠∴ MC=ME . 又∵ C ,E 两点分别在直线MA 与直线l 可得C ,E 两点关于直线MD 对称.∴ 3BED ∠=∠. ………………… 4分 又∵ 3BAD ∠=∠,∴ BAD BED ∠=∠. ……………… 5分26.解:45. …………………………………………………1分画图见图6. ………………………………………3分 45.………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.解:(1)∵ 二次函数21y x bx c =++的图象1C 经过(1,0)-,∴10,3.b c c -+=⎧⎨=-⎩………………………………1分 解得2,3.b c =-⎧⎨=-⎩…………………………………2分 ∴ 抛物线1C 的函数表达式为3221--=x x y . …………………………………… 3分(2)∵ 22123=(1)4y x x x =----,∴ 抛物线1C 的顶点为(1,4)- ∴ 平移后抛物线2C 的顶点为(0,0),它对应的函数表达式为22y x =.… 5分(3)a ≥1-(见图7).………………………………………………………………7分28.解:(1)90,12.……………………………………………………………………… 2分 (2)结论:90AHB ∠=︒,AF BE =. 证明:如图8,连接AD .∵ AB =AC ,∠BAC =60°,∴ △ABC 是等边三角形.∵ D 为BC 的中点,∴ AD ⊥BC .∴ ∠1+∠2=90°.又∵ DE ⊥AC ,∴ ∠DEC =90°.∴ ∠2+∠C =90°.∴ ∠1=∠C =60°.设AB =BC=k (0k >), 则124k CE CD ==,DE =. ∵ F 为DE 的中点,∴ 12DF DE ==,AD AB ==. ∴AD BC =,DF CE ∴ =BC AD CE DF .…………………………………………………………3分又∵ ∠1=∠C ,∴ △ADF ∽△BCE .………………………………………………… 4分∴AF AD BE BC ==,………………………………………………… 5分 ∠3=∠4.又∵ ∠4+∠5=90°,∠5=∠6,∴ ∠3+∠6=90°.∴ 90AHB ∠=︒.………………………………………………………6分 (3)1tan 9022α︒-().………………………………………………………………7分 注:写1cos 2sin αα+或其他答案相应给分.29.解:(1)3.(每空各1分)…………………………………………………… 2分(2)-1.…………………………………………………………………………… 4分(3)①如图9,过点O 分别作射线OE 、OF 的垂线OG 、OH ,则图形M 为:y 轴正半轴,∠GOH 的边及其内部的所有点(图中的阴影部分)………… 7分说明:(画图2分,描述1分)(图形M 也可描述为:y 轴正半轴,直线x y 33=下方与直线x y 33-=下方重叠的部分(含边界)) ②34 …………………………………………………………………………8分。
ABCEDFGH CHFG EPBDA2015年北京各城区中考一模数学几何综合题汇总1、(门头沟一模)24.已知:在△ABC 中,∠ABC =∠ACB =α,点D 是AB 边上任意一点,将射线DC 绕点D 逆时针旋转α与过点A 且平行于BC 边的直线交于点E .(1)如图12-1,当α=60°时,请直接写出线段BD 与AE 之间的数量关系;____ _ (2)如图12-2,当α=45°时,判断线段BD 与AE 之间的数量关系,并进行证明;(3)如图12-3,当α为任意锐角时,依题意补全图形,请直接写出线段BD 与AE 之间的数量关系:_______________________.(用含α的式子表示,其中090a << )2、(丰台一模)24.在等腰直角△ABC 中,∠BAC=90°,AB=AC ,(1)如图1,点D 、E 分别是AB 、AC 边的中点,AF ⊥BE 交BC 于点F ,连结EF 、CD 交于点H.求证,EF ⊥CD ;(2)如图2,AD=AE ,AF ⊥BE 于点G 交BC 于点F ,过F 作FP ⊥CD 交BE 的延长线于点P ,试探究线段BP,FP,AF 之间的数量关系,并说明理由。
3、(平谷一模)24.(1)如图1,点E 、F 分别是正方形ABCD 的边BC 、CD 上的点,∠EAF =45°,连接EF ,则EF 、BE 、FD 之间的数量关系是:EF =BE +FD .连结BD ,交AE 、AF 于点M 、N ,且MN 、BM 、DN 满足222DN BM MN +=,请证明这个等量关系;(2)在△ABC 中, AB =AC ,点D 、E 分别为BC 边上的两点.B图12-1B图12-2图12-3①如图2,当∠BAC =60°,∠DAE =30°时,BD 、DE 、EC 应满足的等量关系是_________________; ②如图3,当∠BAC =α,(0°<α<90°),∠DAE =α21时,BD 、DE 、EC 应满足的等量关系是_____________.【参考:1cos sin 22=+αα】A B CD EF 图1B CDE 图2ADE 图3AMN4、(顺义一模)24.已知:如图,MNQ △中,MQ NQ ≠.(1)请你以MN 为一边,在MN 的同侧构造一个 与MNQ △全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下 面问题: 如图,在四边形ABCD 中,180ACB CAD ∠+∠=︒,B D ∠=∠. 求证:CD=AB .5、(石景山一模)24.在矩形ABCD 中,AD =12,AB =8,点F 是AD 边上一点,过点F 作∠AFE =∠DFC ,交射线A B 于点E ,交射线C B 于点G . (1)若FG =_____CFG ∠=︒;(2) 当以F ,G ,C 为顶点的三角形是等边三角形时,画出图形并求GB 的长;(3)过点E 作EH//CF 交射线CB 于点H ,请探究:当GB 为何值时,以F ,H ,E ,C 为顶点的四边形是平行四边形.QNMDCBA备用图6、(海淀一模)24.在△ABC 中,AB=AC ,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α<< ,连接AD 、BD .(1)如图1,当∠BAC =100°,60α= 时,∠CBD 的大小为_________; (2)如图2,当∠BAC =100°,20α= 时,求∠CBD 的大小;(3)已知∠BAC 的大小为m (60120m << ),若∠CBD 的大小与(2)中的结果相同,请直接写出α的大小.7、(西城一模)24. 四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90BEF ∠=︒,BE EF =,连接DF ,G 为DF 的中点,连接EG ,CG ,EC 。
解四边形专题东城区21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC . (1)求证:四边形ACDE 为平行四边形; (2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.21.(1) 证明:∵平行四边形ABCD , ∴=AB DC ,AB DC ∥. ∵AB =AE ,∴=AE DC ,AE DC ∥. ∴四边形ACDE 2分 (2) ∵=AB AC , ∴=AE AC .∴平行四边形ACDE 为菱形. ∴AD ⊥CE . ∵AD BC ∥, ∴BC ⊥CE.在Rt △EBC 中,BE =6,1cos 3BC B BE ==, ∴=2BC .根据勾股定理,求得=42BC 分 西城区21.如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O . (1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.BDA【解析】(1)补全的图形如图所示.90AOB ∠=︒. 证明:由题意可知BC AB =,DC AB =, ∵在ABD △中,ABD ADB ∠=∠, ∴AB AD =,∴BC DC AD AB ===, ∴四边形ABCD 为菱形, ∴AC BD ⊥, ∴90AOB ∠=︒.(2)∵四边形ABCD 为菱形, ∴OB OD =.在Rt ABO △中,90AOB ∠=︒,5AB =,3cos 5ABD ∠=,∴cos 3OB AB ABD =⋅∠=, ∴26BD OB ==.ABCDO海淀区21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE∥BD ,BE∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的面积取得最大值是_______.C B EOAD21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分 (2) 正方形; ………………4分2. ………………5分 丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形; (2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分 ∵四边形ABCD 为菱形,∴BA =BC . ∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形 ∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE =EB ,AB =2AG ,ED =2EG . ………………………4分 ∵矩形ABCD 中,EB =AB ,AB=4, ∴AG =2,AE =4. ∴Rt△AEG 中,EG=∴ED=分 (其他证法相应给分)石景山区21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =;EF(2)若tan 3D =,求AB 的长.21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x==, ∴CD == ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分 某某区21. 如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形; (2)若∠FDB =30°,∠ABC =45°,BC =,求DF 的长.21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE . ∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24,∴2221==BC BE ,DE DF 2=.在Rt △EMB 中,2sin =∠⋅=ABC BE EM . ……………………3分在Rt △EMD 中,42==EM DE . …………………4分∴DF =8. ………………………………………………………5分燕山区EBA23. 如图,在△ABC 中,D,E 分别是AB,AC 的中点,BE=2DE ,延长DE 到点F ,使得EF=BE,连接CF .(1)求证:四边形BCFE 是菱形;(2)若∠BCF =120°,CE=4,求菱形BCFE 的面积.23.(1)证明:∵点 D,E, 是 AB,AC 中点 ∴DE ∥BC, DE=12BC ……………………….1′ 又BE=2DE,即DE=12BE∴BC=BE 又EF=BE ∴EF ∥BC, EF=BC∴四边形BCFE 是平行四边形……………………….2′ 又EF=BE∴四边形BCFE 是菱形……………………….3′ (2)∵四边形BCFE 是菱形 ∴BC=BE 又∠BCF =120° ∴∠BCE=60° ∴△BCE 是等边三角形∴连结BF 交EC 于点O .∴BF ⊥EC在Rt △BOC 中,BO=32242222=-=-OC BC ……………………….4′322322121=⨯⨯=⋅⋅=∆OC BO S BOC∴∴……………………….5′门头沟区21.在矩形ABCD 中,连接AC ,AC 的垂直平分线交AC 于点O ,分别交AD 、BC 于点E 、F ,连接CE 和AF .38324=⨯=BCFE S 菱形A(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.21.(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,……………………1分∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,∵∠EAO=∠FCO,AO=CO,∠AOE=∠COF,∴△AEO≌△CFO(ASA),∴OE=OF.……………2分又∵OA=OC,∴四边形AECF是平行四边形,又∵EF⊥AC,∴平行四边形AECF是菱形;……………3分(2)设AF=x,∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x,………………………………………4分在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,42+(8﹣x)2=x2,解得x=5,∴AF=5,∴菱形AECF的周长为20.…………………5分大兴区21. 如图,矩形ABCD的对角线AC、BD交于点O,且DE=O C,CE=O D.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.21.(1)证明:∵DE=OC,CE=OD,∴四边形OCED是平行四边形………………………………1分∵矩形ABCD,FEOAB CD∴AC =BD ,OC =12AC ,OD =12BD . ∴OC =OD .∴平行四边形OCED 是菱形………………………………2分(2)解:在矩形ABCD 中,∠ABC =90°,∠BAC =30°,AC =4,∴BC =2.∴AB =DC =23.…………………………………………………3分 连接OE ,交CD 于点F . ∵四边形OCED 为菱形, ∴F 为CD 中点. ∵O 为BD 中点,∴OF =12BC =1.∴OE =2OF =2 …………………………………………………4分∴S 菱形OCED =12OE ·CD =12×2×23=23…………………………………………………5分平谷区21.如图,在平面直角坐标系xOy 中,函数()0ky k x=≠的图象与直线y =x +1交于点A (1,a ).(1)求a ,k 的值; (2)连结OA ,点P 是函数()0ky k x=≠上一点,且满足OP=OA ,直接写出点P 的坐标(点A 除外).21.解:(1)∵直线y =x +1经过点A (1,a ),∴a =2. ···························· 1 ∴A (1,2). ∵函数()0ky k x=≠的图象经过点A (1,2), ∴k =2. (2)(2)点P 的坐标(2,1),(-1,-2),(-2,-1). (5)怀柔区21.直角三角形ABC 中,∠BAC=90°,D 是斜边BC 上一点,且AB=AD ,过点C 作CE⊥AD,交AD 的延长线于点E ,交AB 延长线于点F. (1)求证:∠ACB=∠DCE;(2)若∠BAD=45°,2+2AF =,过点B 作BG⊥FC 于点G ,连接DG .依题意补全图形,并求四边形ABGD 的面积.21. (1)∵AB=AD,∴∠ABD=∠ADB,………………………………1分 ∵∠ADB=∠CDE,∴∠ABD=∠CDE. ∵∠BAC=90°,∴∠ABD+∠ACB=90°. ∵CE⊥AE,∴∠DCE+∠CDE=90°.∴∠ACB=∠DCE. …………………………………2分(2)补全图形,如图所示: …………………………3分 ∵∠BAD=45°, ∠BAC=90°,∴∠BAE=∠CAE=45°, ∠F=∠ACF=45°,DGBEDH BA∵AE⊥CF, BG⊥CF,∴AD∥BG.∵BG⊥CF,∠BAC=90°,且∠ACB=∠DCE, ∴AB=BG.∵AB=AD,∴BG=AD.∴四边形ABGD 是平行四边形. ∵AB=AD∴平行四边形ABGD 是菱形.………………4分设AB=BG=GD=AD=x ,∴BF=2BG=2x.∴AB+BF=x+2x=2+2. ∴x=2, 过点B 作BH⊥AD 于H.∴BH=22AB=1. ∴S 四边形ABDG =AD×BH=2. ……………………………………………………………………5分 延庆区21.如图,Rt△ABC 中,∠ABC =90°,点D ,F 分别是AC ,AB 的中点,CE ∥DB ,BE ∥DC . (1)求证:四边形DBEC 是菱形;(2)若AD =3, DF =1,求四边形DBEC 面积.FEDCBA21.(1)在Rt△ABC 中,∵CE //DC ,BE //DC∴四边形DBEC 是平行四边形∵D 是AC 的中点,∠ABC =90°∴BD =DC ……1分 ∴四边形DBEC 是菱形 ……2分 (2)∵F 是AB 的中点∴BC =2DF =2,∠AFD =∠ABC =90° 在Rt△AFD 中,……3分∴ ……4分……5分 顺义区21.如图,四边形ABCD 中,AD ∥BC ,∠A =90°,BD =BC ,点E为CD 的中点,射线BE 交AD 的延长线于点F ,连接CF . (1)求证:四边形BCFD 是菱形; (2)若AD =1,BC =2,求BF 的长. 21.(1)证明:∵BD=BC ,点E 是CD 的中点,∴∠1=∠2. …………………………………………………… 1分 ∵AD ∥BC , ∴∠2=∠3.∴∠1=∠3.…………………………… 2分 ∴BD=DF . ∵BD=BC , ∴DF=BC .又∵DF ∥BC , ∴四边形BCFD 是平行四边形. ∵BD=BC ,∴□BCFD 是菱形. …………………………………………………… 3分 (2)解:∵∠A =90︒,AD =1,BD =BC =2, ∴223AB BD AD =-= ∵四边形BCFD 是菱形,FEAB CD321FEABCD∴DF=BC=2.………………………………………………………… 4分∴AF=AD+DF=3.∴BF== 5分。
2015年北京中考一模数学试题分类汇编------------第23题 四边形的证明与计算1.(海淀) 23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.(1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.2.(西城)23.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F , E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC . (1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.3.(东城) 23. 如图,ABC △中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC 的平行线交于点E ,且DE 交AC 于点O ,连接AE .(1)求证:四边形ADCE 是菱形; (2)若2AC DE =,求sin CDB ∠的值.4.(丰台) 23.如图,菱形ABCD 中, 分别延长DC ,BC 至点E ,F ,使CE =CD ,CF =CB ,联结DB ,BE ,EF ,FD . (1)求证:四边形DBEF 是矩形;(2)如果∠A =60︒,菱形ABCD 的面积为38,求DF 的长.5.(朝阳) 23. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D作DE ∥AC 且DE=12AC ,连接 CE 、OE ,连接AE 交OD 于点F .(1)求证:OE =CD ;(2)若菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.FBEDFEDCB A6.(延庆) 23. 如图,点O 是△ABC 内一点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,得到四边形DEFG .(1)求证:四边形DEFG 是平行四边形;(2)如果∠OBC =45°,∠OCB =30°,OC =4,求EF 的长.7.(通州) 23.已知菱形ABCD 的对角线AC 与BD 相交于点E ,点F 在BC 的延长线上,且CF=BC ,连接DF ,点G 是DF 中点,连接CG .求证:四边形 ECGD 是矩形.8.(燕山)23.如图,菱形ABCD 中,对角线AC ,BD 交于O 点,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 为矩形;(2)在BC 上截取CF =CO ,连接OF ,若AC =8,BD =6,求四边形OFCD 的面积.9.(房山) 23.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作一条直线分别交DA 、BC 的延长线于点E 、F ,连接BE 、DF . (1)求证:四边形BFDE 是平行四边形;(2)若AB =4,CF =1,∠ABC =60°,求sin DEO 的值.10.(怀柔) 23. 如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF .(1)求证:四边形ADEF 是平行四边形;(2)若∠ABC =60°,BD =4,求平行四边形ADEF 的面积.G FOBCDE AECD ABFG EODC ABFD O FECABED BOCA11.(石景山) 23.如图,菱形ABCD 中,E ,F 分别为AD ,AB 上的点,且AF AE =,连接EF 并延长,交CB 的延长线于点G ,连接BD . (1)求证:四边形EGBD 是平行四边形;(2)连接AG ,若︒=∠30FGB ,1==AE GB ,求AG 的长.12.(门头沟23. 如图,菱形ABCD 的对角线AC 和BD 交于点O ,分别过点C 、D 作CE ∥BD ,DE ∥AC ,CE 和DE 交于点E . (1)求证:四边形ODEC 是矩形;(2)当∠ADB =60°,AD =时,求tan ∠EAD 的值.13.(平谷) 23.如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,EF ∥AC . (1)求证:BE =AF ; (2)若∠ABC =60°,BD =12,求DE 的长及四边形ADEF 的面积.CDBA GFE1海淀2西城23.(1)证明:∵ ADE BAD ∠=∠,∴ AB ∥ED .…………………………………………………………… 1分 ∵ BD 垂直平分AC ,垂足为F , ∴ BD AC ⊥,AF=FC .又∵ AE AC ⊥,∴ 90EAC DFC ∠=∠=︒. ∴AE ∥BD .∴ 四边形ABDE 是平行四边形.…………………………………………2分(2)解:如图2,连接BE 交AD 于点O .∵ DA 平分∠BDE ,∴ ∠ADE=∠1.又∵ ADE BAD ∠=∠, ∴ ∠1=∠BAD .∴AB= BD.………………………………3分∴ABDE是菱形.∵AB=5,AD=6,∴BD=AB=5,AD BE⊥,132OA AD==.在Rt△OAB中,4OB=.∵1122ABDS AD OB BD AF=⋅=⋅,∴645AF⨯=.解得 4.8AF=.…………………………4分∵BD垂直平分AC,∴29.6AC AF==.……………………5分3东城4丰台-----------5分MA F G EB CD5朝阳6延庆23.证明: (1)∵ D 、G 1F 分别是OB 、OC 的中点∴四边形DEFG 是平行四边形(2)过点O 作OM ⊥BC 于M ,Rt △OCM 中,∠OCM =30°,OC =47通州23. 证明:(1)CF=BC ,∴C 点是BF 中点 ……………………..(1分) 点G 是DF 中点 ∴CG 是△DBF 中位线∴CG//BD, CG=BD 12……..(2分)四边形A BCD 是菱形∴AC ⊥BD,DE=BD 12, …………………………………..(3分)∴∠DEC=90°,CG= DE ………………………………..(4分)CG//BD,∴四边形 ECGD 是矩形. ………………………………..(5分)8燕山B F9房山23.(1)证明:在菱形ABCD 中,AD ∥BC ,OA=OC ,OB=OD ,∴∠AEO =∠CFO ,∴△AEO ≌△CFO (AAS )∴OE=OF , ………………………………………1分 又∵OB=OD ,∴四边形BFDE 是平行四边形; ………………………………………2分(2)菱形ABCD ,60ABC ∠=∴BD AC ⊥4AB BC AD DC ====30ADO CDO ∠=∠=ADC 为等边三角形∴122AO AD ==, ………………………………………3分 ∴23OD =作OM AD ⊥于M ∴122AO AD ==3OM = ∴221AM OA OM =-=∴2EM =∴7OE =在Rt EOM ∆中,217sin DEO ∠=10怀柔23. (1)证明:∵BD 是△ABC 的角平分线,∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形. ………………………………………2分 (2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线, ∴∠ABD =∠EBD =30°,∴DG =BD =×4=2,………………………………………3分 ∵BE =DE ,∴BH =DH =2,AEO CFO AOE COF OA OC AEO CFO ∠=∠⎧⎪∠=∠⎨⎪=⎩在和中MEODC ABF∴BE ==433,∴DE=433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG .………………………………………5分11 石景山23.(1)证明:连接AC (图略)∵ 四边形ABCD 是菱形,∴AC 平分DAB ∠,且BD AC ⊥. ……………1分 AE AF = ,EF AC ⊥∴,BD EG //∴. 又∵ 菱形ABCD 中,BG ED //,∴ 四边形EGBD 是平行四边形.……2分(2)解: 过点A 作AH BC ⊥于H .∵30FGB ∠=︒, ∴30DBC ∠=︒,∴ 260ABH DBC ∠=∠=︒∵1GB AE ==可求2AB AD == …… 3分在Rt △ABH 中,90AHB ∠=︒∴1AH BH ==.∴ 2GH =………………………………… 4分 在Rt △AGH 中,勾股定理得,AH =……………5分12门头沟23.(本小题满分5分) (1)证明:∵ CE ∥BD ,DE ∥AC ,∴ 四边形ODEC 是平行四边形. ……………………………………1分 又 ∵菱形ABCD ,∴ AC ⊥BD ,∴ ∠DOC =90°.∴ 四边形ODEC 是矩形.………………………………………………2分(2)如图,过点E 作EF ⊥AD ,交AD 的延长线于F .∵ AC ⊥BD ,∠ADB =60°,AD = ∴ OD AO =OC =3.……………3分 ∵ 四边形ODEC 是矩形, ∴ DE =OC =3,∠ODE =90°.又∵ ∠ADO +∠ODE +∠EDF =180°, ∴ ∠EDF =30°.在Rt △DEF 中,∠F =90°,∠EDF =30°.∴ EF =1322DE =.∴ DF =.………………………………………………………………………4分在Rt △AFE 中,∠DFE =90°,A B C H GFE F EDB OCA∴tan∠EAD=323EF EFAF AD DF===+.………………………………5分13平谷23.(1)证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形, (1)∠ABD=∠BDE.∴AF=DE.∵BD是△ABC的角平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE.∴BE=DE.∴BE=AF.………(2)解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=12BD=12×12=6.∵BE=DE,∴BH=DH=12BD=6.∴BE=BH=∴DE=BE= (4)∴四边形ADEF的面积为:DE•DG= (5)。