带电粒子在电场中的运动练习题(经典)
- 格式:doc
- 大小:711.50 KB
- 文档页数:3
【物理】物理带电粒子在电场中的运动题20套(带答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直面内有水平线MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d ,一质量为m 、电量为q 的带正电粒子,从O 处以大小为v 0、方向与水平线夹角为θ=60º的速度,进入大小为E 1的匀强电场中,电场方向与竖直方向夹角为θ=60º,粒子到达PQ 线上的A 点时,其动能为在O 处时动能的4倍.当粒子到达A 点时,突然将电场改为大小为E 2,方向与竖直方向夹角也为θ=60º的匀强电场,然后粒子能到达PQ 线上的B 点.电场方向均平行于MN 、PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。
已知粒子从O 运动到A 的时间与从A 运动到B 的时间相同,不计粒子重力,已知量为m 、q 、v 0、d .求:(1)粒子从O 到A 运动过程中,电场力所做功W ; (2)匀强电场的场强大小E 1、E 2; (3)粒子到达B 点时的动能E kB .【答案】(1)2032W mv = (2)E 1=2034m qd υ E 2=2033m qdυ (3) E kB =20143m υ【解析】 【分析】(1)对粒子应用动能定理可以求出电场力做的功。
(2)粒子在电场中做类平抛运动,应用类平抛运动规律可以求出电场强度大小。
(3)根据粒子运动过程,应用动能计算公式求出粒子到达B 点时的动能。
【详解】(1) 由题知:粒子在O 点动能为E ko =2012mv 粒子在A 点动能为:E kA =4E ko ,粒子从O 到A 运动过程,由动能定理得:电场力所做功:W=E kA -E ko =2032mv ;(2) 以O 为坐标原点,初速v 0方向为x 轴正向,建立直角坐标系xOy ,如图所示设粒子从O 到A 运动过程,粒子加速度大小为a 1, 历时t 1,A 点坐标为(x ,y ) 粒子做类平抛运动:x=v 0t 1,y=21112a t 由题知:粒子在A 点速度大小v A =2 v 0,v Ay 03v ,v Ay =a 1 t 1 粒子在A 点速度方向与竖直线PQ 夹角为30°。
第十章静电场中的能量微型专题3 带电粒子在电场中的运动(四种题型)一、单选题:1.A、B是一条电场线上的两个点,一带负电的微粒仅在静电力作用下以一定的初速度从A点沿电场线运动到B点,其速度v与时间t的关系图象如图1所示。
则此电场的电场线分布可能是( )【解析】从v-t图象可以看出物体的速度逐渐减小,图线的斜率逐渐增大,v-t图线中图线的斜率表示物体的加速度大小,故物体做加速度逐渐增大的减速运动,所以带负电的粒子顺着电场线运动,电场力做负功,速度逐渐减小,且电场线沿粒子运动方向逐渐密集,故选项A正确,选项B、C、D错误。
【答案】A2.如图所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动【答案】D【解析】两平行金属板水平放置时,带电微粒静止,有mg=qE,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D正确.3.如图所示,两极板与电源相连接,电子从负极板边缘沿垂直电场方向射入匀强电场,电子恰好从正极板边缘飞出,现保持负极板不动,正极板在竖直方向移动,并使电子入射速度变为原来的2倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板间距离变为原来的( )A.2倍B.4倍C.12D.14【答案】C【解析】电子从负极板边缘垂直电场方向射入匀强电场,做类平抛运动.假设电子的带电荷量为e ,质量为m ,初速度为v ,极板的长度为L ,极板的间距为d ,电场强度为E .由于电子做类平抛运动,所以水平方向有:L =vt ,竖直方向有:y =12at 2=12·eE m ·(Lv)2=d .因为E =U d ,可得:d 2=eUL 22mv 2,若电子的速度变为原来的两倍,仍从正极板边缘飞出,则由上式可得两极板的间距d 应变为原来的12,故选C.4.一匀强电场的电场强度E 随时间t 变化的图象如图4所示,在该匀强电场中,有一个带负电粒子于t =0时刻由静止释放,若带电粒子只受电场力作用,则下列说法中正确的是(假设带电粒子不与板相碰)( )A.带电粒子只向一个方向运动B.0~2 s 内,电场力做功等于0C.4 s 末带电粒子回到原出发点D.2.5~4 s 内,电场力做功等于0 【答案】D【解析】画出带电粒子速度v 随时间t 变化的图象如图所示,v-t图线与时间轴所围“面积”表示位移,可见带电粒子不是只向一个方向运动,4 s 末带电粒子不能回到原出发点,A、C错误;2 s末速度不为0,可见0~2 s内电场力做的功不等于0,B错误;2.5 s末和4 s末,速度的大小、方向都相同,则2.5~4 s内,电场力做功等于0,所以D正确.5.如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b.不计空气阻力,则下列说法正确的是( )A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒【答案】B【解析】由于小球在竖直平面内做匀速圆周运动,所以重力与电场力的合力为0,电场力方向竖直向上,小球带正电,A错,B对;从a→b,电场力做负功,电势能增大,C 错;由于有电场力做功,机械能不守恒,D错.6.如图所示,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab 长为s,竖直边ad长为h.质量均为m、带电量分别为+q和-q的两粒子,由a、c两点先后沿ab和cd方向以速率v0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v0等于( )A.s22qEmhB.s2qEmhC.s42qEmhD.s4qEmh【答案】B【解析】根据对称性,两粒子轨迹的切点位于矩形区域abcd的中心,则在水平方向有1 2s=v0t,在竖直方向有12h=12·qEm·t2,解得v0=s2qEmh,故选项B正确,选项A、C、D错误.7.如图甲所示,Q1、Q2为两个被固定的点电荷,a、b、c三点在它们连线的延长线上,其中Q1带负电。
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112m dv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=∙== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+=图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
高中物理带电粒子在电场中的运动题20套(带答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图甲所示,粗糙水平轨道与半径为R 的竖直光滑、绝缘的半圆轨道在B 点平滑连接,过半圆轨道圆心0的水平界面MN 的下方分布有水平向右的匀强电场E ,质量为m 的带正电小滑块从水平轨道上A 点由静止释放,运动中由于摩擦起电滑块电量会增加,过B 点后电量保持不变,小滑块在AB 段加速度随位移变化图像如图乙.已知A 、B 间距离为4R ,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g ,不计空气阻力,求(1)小滑块释放后运动至B 点过程中电荷量的变化量 (2)滑块对半圆轨道的最大压力大小(3)小滑块再次进入电场时,电场大小保持不变、方向变为向左,求小滑块再次到达水平轨道时的速度大小以及距B 的距离 【答案】(1)mgq E∆=(2)(635N F mg =+(3)425v gR =夹角为11arctan 2β=斜向左下方,位置在A 点左侧6R 处. 【解析】 【分析】 【详解】试题分析:根据在A 、B 两点的加速度结合牛顿第二定律即可求解小滑块释放后运动至B 点过程中电荷量的变化量;利用“等效重力”的思想找到新的重力场中的电低点即压力最大点; 解:(1)A 点:01·2q E mg m g μ-= B 点13·2q E mg m g μ-= 联立以上两式解得10mgq q q E∆=-=; (2) 从A 到B 过程:2113122··4022g gm R mv +=- 将电场力与重力等效为“重力G ',与竖直方向的夹角设为α,在“等效最低点”对轨道压力最大,则:'G =cos mgG α='从B 到“等效最低点”过程:222111(cos )22G R R mv mv α--'=22N v F G m R-='由以上各式解得:(6N F mg =+由牛顿第三定律得轨道所受最大压力为:(6N F mg =+;(3) 从B 到C 过程:2213111·2?22mg R q E R mv mv --=- 从C 点到再次进入电场做平抛运动:13x v t =212R gt =y gt =v13tan y v v β=21tan mgq Eβ=由以上各式解得:12ββ=则进入电场后合力与速度共线,做匀加速直线运动 12tan R x β=从C 点到水平轨道:22124311·2?22mg R q E x mv mv +=-由以上各式解得:4v =126x x x R ∆=+=因此滑块再次到达水平轨道的速度为4V =方向与水平方向夹角为11arctan 2β=,斜向左下方,位置在A 点左侧6R 处.2.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(32L,0)进入磁场.在磁场中的运转半径R=52L (不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2)EB;(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期.【答案】(1)53v0,与x成53°角;(2)043v;(3)2L;(4)()4053760Lvπ+.【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E =2089mv qL粒子在磁场中做匀速圆周运动,根据qvB =m 2v R解得:B =mv qR =05352m v q L ⨯⨯=023mv qL解得:43v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-32L 直线与Q ′点,可得: P 2O ′=3253L cos o=52L =r 故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-32L 直线从M 点穿出磁场,由几何关系知M 的坐标x =32L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=032Lv在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯o =037120Lv π 从M 运动到N ,a =qE m =289v L则t 3=v a =0158L v则一个周期的时间T =2(t 1+t 2+t 3)=()04053760Lv π+.3.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯4.如图,以竖直向上为y 轴正方向建立直角坐标系;该真空中存在方向沿x 轴正向、场强为E 的匀强电场和方向垂直xoy 平面向外、磁感应强度为B 的匀强磁场;原点O 处的离子源连续不断地发射速度大小和方向一定、质量为m 、电荷量为-q (q>0)的粒子束,粒子恰能在xoy 平面内做直线运动,重力加速度为g,不计粒子间的相互作用; (1)求粒子运动到距x 轴为h 所用的时间;(2)若在粒子束运动过程中,突然将电场变为竖直向下、场强大小变为'mgE q=,求从O 点射出的所有粒子第一次打在x 轴上的坐标范围(不考虑电场变化产生的影响); (3)若保持EB 初始状态不变,仅将粒子束的初速度变为原来的2倍,求运动过程中,粒子速度大小等于初速度λ倍(0<λ<2)的点所在的直线方程.【答案】(1)Bht E= (2)2222225m g m g x q B q B ≤≤ (3)22211528m g y x q B =-+【解析】(1)粒子恰能在xoy 平面内做直线运动,则粒子在垂直速度方向上所受合外力一定为零,又有电场力和重力为恒力,其在垂直速度方向上的分量不变,而要保证该方向上合外力为零,则洛伦兹力大小不变,因为洛伦兹力F Bqv =洛,所以受到大小不变,即粒子做匀速直线运动,重力、电场力和磁场力三个力的合力为零,设重力与电场力合力与-y 轴夹角为θ,粒子受力如图所示,()()()222Bqv qE mg =+,()()2252qE mg mg v qB+==则v 在y 方向上分量大小sin 2y qE E mgv v vBqv B qBθ==== 因为粒子做匀速直线运动,根据运动的分解可得,粒子运动到距x 轴为h 处所用的时间2y h Bh qhB t v E mg===; (2)若在粒子束运动过程中,突然将电场变为竖直向下,电场强度大小变为'mgE q=,则电场力''F qE mg ==电,电场力方向竖直向上;所以粒子所受合外力就是洛伦兹力,则有,洛伦兹力充当向心力,即2v qvB m r =,()()22mqE mg mv R Bq+==如图所示,由几何关系可知,当粒子在O 点就改变电场时,第一次打在x 轴上的横坐标最小,()()()()22212222222sin2m qE mg mE m g x RB q q BqE mgθ+==⨯⨯==+当改变电场时粒子所在处于粒子第一次打在x轴上的位置之间的距离为2R时,第一次打在x轴上的横坐标最大,()()()()()()22222222222222[]25sinm qE mgm qE mgR m gxqE B q E q BqE mgθ++====+所以从O点射出的所有粒子第一次打在x轴上的坐标范围为12x x x≤≤,即2222225m g m gxq B q B≤≤(3)粒子束的初速度变为原来的2倍,则粒子不能做匀速直线运动,粒子必发生偏转,而洛伦兹力不做功,电场力和重力对粒子所做的总功必不为零;那么设离子运动到位置坐标(x,y)满足速率'v v=,则根据动能定理有()2211222qEx mgy mv m v--=--,3222231528m gqEx mgy mvq B--=-=-,所以22211528m gy xq B=-+点睛:此题考查带电粒子在复合场中的运动问题;关键是分析受力情况及运动情况,画出受力图及轨迹图;注意当求物体运动问题时,改变条件后的问题求解需要对条件改变引起的运动变化进行分析,从变化的地方开始进行求解.5.如图所示,在y>0的区域内有沿y轴正方向的匀强电场,在y<0的区域内有垂直坐标平面向里的匀强磁场,一电子(质量为m、电量为e)从y轴上A点以沿x轴正方向的初速度v0开始运动,当电子第一次穿越x轴时,恰好到达C点,当电子第二次穿越x轴时,恰好到达坐标原点;当电子第三次穿越x轴时,恰好到达D点,C、D两点均未在图中标出.已知A、C点到坐标原点的距离分别为d、2d.不计电子的重力.求(1)电场强度E的大小.(2)磁感应强度B的大小.(3)电子从A运动到D经历的时间t.【答案】(1);(2);(3).【解析】试题分析:(1)电子在电场中做类平抛运动设电子从A到C的时间为t11分1分1分求出 E =1分(2)设电子进入磁场时速度为v,v与x轴的夹角为θ,则θ = 45° 1分电子进入磁场后做匀速圆周运动,洛仑兹力提供向心力1分由图可知1分得1分(3)由抛物线的对称关系,电子在电场中运动的时间为 3t1=1分电子在磁场中运动的时间 t2 =2分电子从A运动到D的时间 t=3t1+ t2=1分考点:带电粒子在电场中做类平抛运动匀速圆周运动牛顿第二定律6.如图所示,AB是一段长为s的光滑绝缘水平轨道,BC是一段竖直墙面。
高考物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
高中物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
高一物理《带电粒子在电场中的运动》练习题一、单选题1.如图所示,两平行金属板相距为d ,电势差U 未知,一个电子从O 点沿垂直于极板的方向以速度v 射出,最远到达A 点,然后返回,已知O 、A 相距为h ,电子的质量为m ,电荷量为e ,则两金属板间的电势差U 为( )A .22mv hB .22mv eC .22mdv ehD .22mhv ed【答案】C【解析】电子由O 到A 的过程,只有电场力做功,根据动能定理得2102eEh mv -=-两板间的电场强度U E d=解得两金属板间的电势差U 为22mdv U eh=故选C 。
2.让一价氢离子和一价氦离子的混合物由静止开始经过同一匀强电场加速,然后在同一匀强电场里偏转,并离开偏转电场( ) A .在加速电场中的加速度相等 B .离开加速电场时的动能相等 C .在偏转电场中的运动时间相等 D .离开偏转电场时分成两股粒子束 【答案】B【解析】AB .设加速电压为1U ,板间距离为1d ,在加速电场中,由牛顿第二定律可知11qU a md =在加速电场中,由动能定理得02112qU mv =则离开加速电场时的动能02112k mv U E q == 加速获得的速度为102qU v m=由于两种粒子的比荷不同,则在加速电场中的加速度不相等,两种粒子所带电荷相等,则离开加速电场时的动能相等,故A 错误,B 正确;CD .设偏转电压为2U ,偏转极板的长度为L ,板间距离为2d ,两种粒子在偏转电场中,水平方向做速度为0v 的匀速直线运动,由于两种粒子的比荷不同,则0v 不同,所以两粒子在偏转电场中运动的时间不同,故C 错误; 粒子离开偏转电场时,沿电场线方向的分速度220y qU Lv at md v ==⋅ 速度的偏转角22202021tan 4y v qU U LL v md v d U θ==⋅= 与电荷的电量和质量无关; 在偏转电场中的偏转位移222222202111224qU U L L y at md v d U ==⋅⋅=与电荷的电量和质量无关;所以两个粒子离开偏转电场时的速度方向和位置都相同,即离开偏转电场时只有一股粒子束,故D 错误; 故选B 。
带电粒子在电场中的运动专题练习知识点:1.带电粒子经电场加速:处理方法,可用动能定理、牛顿运动定律或用功能关系。
qU =mv t 2/2-mv 02/2 ∴ v t = ,若初速v 0=0,则v = 。
2.带电粒子经电场偏转: 处理方法:灵活应用运动的合成和分解。
带电粒子在匀强电场中作类平抛运动, U 、 d 、 l 、 m 、 q 、 v 0已知。
(1)穿越时间: (2)末速度:(3)侧向位移:(4)偏角:1、如图所示,长为L 、倾角为θ的光滑绝缘斜面处于电场中, 一带电量为+q 、质量为m 的小球,以初速度v 0从斜面底端 A 点开始沿斜面上滑,当到达斜面顶端B 点时,速度仍为v 0,则 ( )A .A 、B 两点间的电压一定等于mgLsin θ/qB .小球在B 点的电势能一定大于在A 点的电势能C .若电场是匀强电场,则该电场的电场强度的最大值一定为mg/qD .如果该电场由斜面中点正止方某处的点电荷产生,则该点电荷必为负 电荷2、如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中0点自由释放后,分别抵达B 、C 两点,若AB=BC ,则它们带电荷量之比q 1:q 2等于( ) A .1:2 B .2:1C .1:2D .2:13.如图所示,两块长均为L 的平行金属板M 、N 与水平面成α角放置在同一竖直平面,充电后板间有匀强电场。
一个质量为m 、带电量为q 的液滴沿垂直于电场线方向射人电场,并沿虚线通过电场。
下列判断中正确的是( )。
A 、电场强度的大小E =mgcos α/qB 、电场强度的大小E =mgtg α/qC 、液滴离开电场时的动能增量为-mgLtg αD 、液滴离开电场时的动能增量为-mgLsin α4.如图所示,质量为m 、电量为q 的带电微粒,以初速度V 0从A 点竖直向上射入水平方向、电场强度为E 的匀强电场中。
当微粒经过B 点时速率为V B =2V 0,而方向与E 同向。
物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。
现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。
(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。
【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:200v qv B m r=可得:r =0.20m =R根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012l v t y at ==, 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =⨯N/C(2)粒子飞离电场时,沿电场方向速度:305.010y qE lv at m v ===⨯g m/s=0v 粒子射出电场时速度:02=v v根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '=根据洛伦兹力提供向心力可得: 2v qvB m r'='联立可得所加匀强磁场的磁感应强度大小:4mvB qr'=='T 根据左手定则可知所加磁场方向垂直纸面向外。
带电粒子在电场中的活动 【1 】 1.如图所示,A 处有一个静止不动的带电体Q,若在c 处有初速度为零的质子和α粒子,在电场力感化下由c 点向d 点活动,已知质子到达d 时速度为v1,α粒子到达d 时速度为v2,那么v1.v2等于:()A. :1B.2∶1C.2∶1D.1∶22.如图所示,一电子沿等量异种电荷的中垂线由 A→O→B 匀速活动,电子重力不计,则电子除受电场力外,所受的另一个力的大小和偏向变更情形是:( )A .先变大后变小,偏向程度向左B .先变大后变小,偏向程度向右C .先变小后变大,偏向程度向左D .先变小后变大,偏向程度向右3.让. . 的混杂物沿着与电场垂直的偏向进入统一有界匀强电场偏转, 要使它们的偏转角雷同,则这些粒子必须具有雷同的( )4.如图所示,有三个质量相等,分离带正电,负电和不带电的小球,从上.下带电平行金属板间的P 点.以雷同速度垂直电场偏向射入电场,它们分离落到 A.B.C 三点,则 ( )A.A 带正电.B 不带电.C 带负电B.三小球在电场中活动时光相等C.在电场中加快度的关系是aC>aB>aAD.到达正极板时动能关系EA>EB>EC5.如图所示,实线为不知偏向的三条电场线,从电场中M 点以雷同速度垂直于电场线偏向飞出 a.b 两个带电粒子,活动轨迹如图中虚线所示,不计粒子重力及粒子之间的库仑力,则()A .a 必定带正电,b 必定带负电B .a 的速度将减小,b 的速度将增长C .a 的加快度将减小,b 的加快度将增长D .两个粒子的动能,一个增长一个减小2H 11H 21H 316.空间某区域内消失着电场,电场线在竖直平面上的散布如图所示,一个质量为m.电荷量为q 的小球在该电场中活动,小球经由A 点时的速度大小为v1,偏向程度向右,活动至B 点时的速度大小为v2,活动偏向与程度偏向之间的夹角为α,A.B 两点之间的高度差与程度距离均为H,则以下断定中准确的是( )A .若v2>v1,则电场力必定做正功B .A.B 两点间的电势差2221()2m U v v q =-C .小球活动到B 点时所受重力的瞬时功率2P mgv =D .小球由A 点活动到B 点,电场力做的功22211122W mv mv mgH =-- 7.如图所示的真空管中,质量为m,电量为e 的电子从灯丝F发出,经由电压U1加快后沿中间线射入相距为d 的两平行金属板B.C间的匀强电场中,经由过程电场后打到荧光屏上,设B.C间电压为U2,B.C板长为L1,平行金属板右端到荧光屏的距离为L 2,求:(1)电子分开匀强电场时的速度与进入时速度间的夹角.(2)电子打到荧光屏上的地位偏离屏中间距离.8. 在真空中消失空间规模足够大的.程度向右的匀强电场.若将一个质量为m.带正电电量q 的小球在此电场中由静止释放,小球将沿与竖直偏向夹角为︒37的直线活动.现将该小球从电场中某点以初速度0v 竖直向上抛出,求活动进程中(取8.037cos ,6.037sin =︒=︒)(1)小球受到的电场力的大小及偏向;(2)小球活动的抛出点至最高点之间的电势差U .带电粒子在电场中的活动答案7.解析:电子在真空管中的活动过火为三段,从F发出在电压U1感化下的加快活动;进入平行金属板B.C间的匀强电场中做类平抛活动;飞离匀强电场到荧光屏间的匀速直线活动.⑴设电子经电压U1加快后的速度为v1,依据动能定理有:21121mv eU = 电子进入B.C间的匀强电场中,在程度偏向以v1的速度做匀速直线活动,竖直偏向受电场力的感化做初速度为零的加快活动,其加快度为:dm eU m eE a 2==电子经由过程匀强电场的时光11v l t =电子分开匀强电场时竖直偏向的速度vy 为:112mdv l eUat v y ==电子分开电场时速度v2与进入电场时的速度v1夹角为α(如图5)则dU l U mdv l eU v v tg y112211212===α∴dU l U arctg 1122=α⑵电子经由过程匀强电场时偏离中间线的位移dU l U v l dm eU at y 1212212122142121=•== 电子分开电场后,做匀速直线活动射到荧光屏上,竖直偏向的位移d U l l U tg l y 1212222==α∴电子打到荧光屏上时,偏离中间线的距离为)2(22111221l l d U l U y y y +=+=8.解析:(1)依据题设前提,电场力大小mg mg F e 4337tan =︒=①电场力的偏向向右(2)小球沿竖直偏向做初速为0v 的匀减速活动,到最高点的时光为t ,则:图 500=-=gt v v ygv t 0=② 沿程度偏向做初速度为0的匀加快活动,加快度为x a g m F a e x 43==③ 此进程小球沿电场偏向位移为:gv t a s x x 8321202==④ 小球上升到最高点的进程中,电场力做功为: 20329mv S F qU W x e === q mv U 32920=⑤。
2.带电粒子经电场偏转: 处理方法:灵活应用运动的合成和分解。
带电粒子在匀强电场中作类平抛运动, U 、 d 、 l 、 m 、 q 、 v 0.已知。
(1)穿越时间:
(2)末速度:
(3)侧向位移:
(4)偏角:
1、如图所示,长为L 、倾角为θ的光滑绝缘斜面处于电场中, 一带电量为+q 、质量为
m 的小球,以初速度v 0从斜面底端 A 点开始沿斜面上滑,当到达斜面顶端B 点时,速度
仍为v 0,则 ( )
A .A 、
B 两点间的电压一定等于mgLsin θ/q
B .小球在B 点的电势能一定大于在A 点的电势能
C .若电场是匀强电场,则该电场的电场强度的最大值一定为mg/q
D .如果该电场由斜面中点正止方某处的点电荷产生,则该点电荷必为负 电荷
2、如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中0点自由释放
后,分别抵达B 、C 两点,若AB=BC ,则它们带电荷量之比q 1:q 2等于( )
A .1:2
B .2:1
C .1:2
D .2:1
3.如图所示,两块长均为L 的平行金属板M 、N 与水平面成α角放置在同一竖直平面,充电后板间有匀强电场。
一个质量为m 、带电量为q 的液滴沿垂直于电场线方向射人电场,并沿虚线通过电场。
下列判断
中正确的是( )。
A 、电场强度的大小E =mgcos α/q
B 、电场强度的大小E =mgtg α/q
C 、液滴离开电场时的动能增量为-mgLtg α
D 、液滴离开电场时的动能增量为-mgLsin α
4.如图所示,质量为m 、电量为q 的带电微粒,以初速度V 0从A 点竖直向上射入水平方向、电场
强度为E 的匀强电场中。
当微粒经过B 点时速率为V B =2V 0,而方向与E 同向。
下列判断中正确
的是( )。
A 、A 、
B 两点间电势差为2mV 02/q B 、A 、B 两点间的高度差为V 02/2g
C 、微粒在B 点的电势能大于在A 点的电势能
D 、从A 到B 微粒作匀变速运动
1.一个带正电的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图,AB 与电场线夹角θ=30°,已
知带电微粒的质量m =1.0×10-7kg ,电量q =1.0×10-10C ,A 、B 相距L =20cm .(取g =10m/s 2,结果保留二位有效数字)
求:
(1)说明微粒在电场中运动的性质,要求说明理由.
(2)电场强度的大小和方向?
(3)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少?
2.一个带电荷量为-q的油滴,从O点以速度v射入匀强电场中,v的方向与电场方向成θ角,已知油滴的质量为m,测得油滴达到运动轨迹的最高点时,它的速度大小又为v,求:
(1) 最高点的位置可能在O点的哪一方?(2) 电场强度E为多少?
(3) 最高点处(设为N)与O点的电势差U NO为多少?
3. 如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m,两板间距离d = 0.4 cm,有一束相同微粒组成的带电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下板上,已知微粒质量为m = 2×10-6kg,电量q = 1×10-8 C,电容器电容为C =10-6 F.求
(1) 为使第一粒子能落点范围在下板中点到紧靠边缘的B点之内,则微粒入射速度v0应为多少?
(2) 以上述速度入射的带电粒子,最多能有多少落到下极板上?
5、如图所示,一对竖直放置的平行金属板A、B构成电容器,电容为C。
电容器的A板接地,且中间有一个小孔S,一个被加热的灯丝K与S位于同一水平线,从丝上可以不断地发射出电子,电子经过电压U0加速后通过小孔S沿水平方向射入A、B两极板间。
设电子的质量为m,电荷量为e,电子从灯丝发射时的初速度不计。
如果到达B板的电子都被B 板吸收,且单位时间内射入电容器的电子数为n个,随着电子的射入,两极板间的电势差逐渐增加,最终使电子无法到达B板,求:
(1)当B板吸收了N个电子时,AB两板间的电势差
(2)A、B两板间可以达到的最大电势差(U O)
(3)从电子射入小孔S开始到A、B两板间的电势差达到最大值所经历的时间。
v
B A
6.如图所示是示波器的示意图,竖直偏转电极的极板长L1=4cm,板间距离d=1cm。
板右端距离荧光屏L2=18cm,(水平偏转电极上不加电压,没有画出)电子沿中心线进入竖直偏转电场的速度是v=1.6×107m/s,电子电量e=1.6×10-19C,质量m=0.91×10-30kg。
(1)要使电子束不打在偏转电极上,加在竖直偏转电极上的最大偏转电压U不能超过多大?
(2)若在偏转电极上加u=27.3sin100πt (V)的交变电压,在荧光屏竖直坐标轴上能观察到多长的线段?
7.两块水平平行放置的导体板如图所示,大量电子(质量m、电量e)由静止开始,经电压为U0的电场加速后,连续不断地沿平行板的方向从两板正中间射入两板之间。
当两板均不带电时,这些电子通过两板之间的时间为3t0;当在两板间加如图所示的周期为2t0,幅值恒为U0的周期性电压时,恰好
..能使所有电子均从两板间通过。
问:⑴这些电子通过两板之间后,侧向位移的最大值和最小值分别是多少?
⑵侧向位移分别为最大值和最小值的情况下,电子在刚穿出两板之间时的动能之比为多少?
U。