2020届高考数学大二轮复习刷题首选卷第二部分刷题型压轴题(三)文
- 格式:docx
- 大小:34.85 KB
- 文档页数:3
选填题(八)一、选择题 1.设全集U =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪3x ≥13,集合A ={x |x -1>0},则∁U A =( )A .{-1,1}B .[-1,1)C .[-1,1]D .(-1,1] 答案 C解析 因为U ={x |3x ≥3-1}={x |x ≥-1},A ={x |x >1},所以∁U A =[-1,1]. 2.如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则|z 1+z 2|=( )A .2B .3C .2 2D .33答案 A解析 由题图可知,OA→=(-2,-1),OB →=(0,1), ∴z 1=-2-i ,z 2=i ,z 1+z 2=-2,∴|z 1+z 2|=2.故选A.3.执行右面的程序框图,若输入a =5,b =2,则输出的i =( )A .3B .4C .5D .6 答案 B解析 执行程序框图如下: a =5,b =2,i =1, a =5+0.5×5=7.5, b =2×2=4,a ≤b 否,i =2. a =7.5+0.5×7.5=11.25, b =2×4=8,a ≤b 否,i =3. a =11.25+0.5×11.25=16.875, b =2×8=16,a ≤b 否,i =4. a =16.875+0.5×16.875=25.3125, b =2×16=32,a ≤b 是,输出i =4.4.已知等差数列{a n }的前7项和为21,且a 8=7,则数列⎩⎨⎧⎭⎬⎫12-a n 的前10项和为( )A .1024B .1023C .512D .511 答案 B解析 设等差数列{a n }的公差为d , 由已知得⎩⎨⎧7a 1+7×62d =21,a 1+7d =7,解得a 1=0,d =1,所以a n =0+(n -1)×1=n -1,12-a n=2a n =2n -1.数列⎩⎨⎧⎭⎬⎫12-a n 即{2n-1}是首项为1,公比为2的等比数列,所以S 10=1×(1-210)1-2=1023.5.(2019·浙江嘉兴期中)若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( )A .a +c ≥b -cB .(a -b )c 2≥0C .ac >bc D.b a <b +c a +c答案 B解析 当c <0时,a +c ≥b -c 不一定成立;因为c 2≥0,a -b >0,所以(a -b )c 2≥0;当c <0时,ac >bc 不成立;当c =0时,b a <b +ca +c不成立.故选B.6.若函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )答案 D解析 因为f (x )=a x -a -x =a x -⎝ ⎛⎭⎪⎫1a x 在R 上为减函数,所以0<a <1.函数y =log a (x -1)的图象如图所示.因为y =log a (|x |-1)=⎩⎪⎨⎪⎧log a (x -1),x >1,log a (-x -1),x <-1为偶函数,所以其图象为D 项.7.(2019·全国卷Ⅲ)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A .a =e ,b =-1B .a =e ,b =1C .a =e -1,b =1D .a =e -1,b =-1 答案 D解析 ∵y ′=a e x +ln x +1,∴k =y ′|x =1=a e +1,∴切线方程为y -a e =(a e +1)(x -1),即y =(a e +1)x -1.又已知切线方程为y =2x +b ,∴⎩⎪⎨⎪⎧ a e +1=2,b =-1,解得⎩⎪⎨⎪⎧a =e -1,b =-1.故选D. 8.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2 答案 B解析 根据题意,圆柱的侧面展开图是长为16,宽为2的矩形DEFG ,如图.由其三视图可知,点A 对应矩形DEFG 中的D 点,B 点为EF 上靠近E 点的四等分点,则所求的最短路径长为|AB |=22+42=2 5.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b)的直线的距离为c2,则椭圆的离心率为()A.32 B.22 C.12 D.33答案A解析经过两点(c,0),(0,b)的直线方程为xc+yb=1,即bx+cy-bc=0,由题意得|-bc|b2+c2=c2,又b2+c2=a2,所以ba=12,离心率e=1-⎝⎛⎭⎪⎫ba2=32.10.(2018·全国卷Ⅰ)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6 2 C.8 2 D.83答案C解析如图所示,∠AC1B为AC1与平面BB1C1C所成的角,所以∠AC1B=30°,又因为AB⊥平面BB1C1C,所以AB⊥BC1,在Rt△ABC1中,BC1=ABtan30°=23,在Rt△BC1B1中,BB1=BC21-B1C21=(23)2-22=22,所以该长方体的体积V=2×2×22=8 2.11.设函数f(x)=-x2+62+|x|,则不等式f(2x-3)<f(1)成立的x的取值范围是()A.(1,2) B.(-∞,2) C.(-∞,1)∪(2,+∞) D.(2,+∞)答案 C解析 因为f (x )=-x 2+62+|x |是偶函数. 当x >0时,f (x )=-x 2+62+x,y =-x 2在(0,+∞)上为减函数, y =62+x在(-2,+∞)上为减函数, 所以f (x )=-x 2+62+|x |在(0,+∞)上为减函数, 所以f (2x -3)<f (1)⇔f (|2x -3|)<f (1)⇔|2x -3|>1,解得x <1或x >2.12.函数y =2cos x (0<x <π)和函数y =3tan x 的图象相交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.3π2B.3π3C.2π2D.2π3 答案 A解析 由⎩⎪⎨⎪⎧y =2cos x ,y =3tan x ,得2cos x =3sin xcos x ,所以2cos 2x =3sin x ,即2-2sin 2x =3sin x , 解得sin x =12或sin x =-2(舍去). 又0<x <π,所以x =π6或5π6, 不妨取A ⎝ ⎛⎭⎪⎫π6,3,B ⎝ ⎛⎭⎪⎫5π6,-3.记C ⎝ ⎛⎭⎪⎫π2,0,易知A ,B ,C 三点共线,S △OAB =S △OAC +S △OBC=12×|OC |×|y A |+12×|OC |×|y B | =12×π2×3+12×π2×3 =3π2. 二、填空题13.(2019·全国卷Ⅱ)若变量x ,y满足约束条件⎩⎨⎧2x +3y -6≥0,x +y -3≤0,y -2≤0,则z =3x-y 的最大值是________.答案 9解析 作出已知约束条件对应的可行域(图中阴影部分),由图易知,当直线y =3x -z 过点C 时,-z 最小,即z 最大.由⎩⎪⎨⎪⎧x +y -3=0,2x +3y -6=0, 解得⎩⎪⎨⎪⎧x =3,y =0,即C 点坐标为(3,0),故z max =3×3-0=9.14.(2019·山东四市4月联考)若双曲线x 29-y 216=1上一点P 到右焦点的距离为4,则点P 到左焦点的距离是________.答案 10解析 设双曲线的左、右焦点分别为F 1,F 2,由题意得|PF 2|=4,当点P 在双曲线的左支上时,则有|PF2|-|PF1|=6,不符合题意.当点P在双曲线的右支上时,则有|PF1|-|PF2|=6,所以|PF1|=|PF2|+6=10,符合题意.故答案为10.15.已知AB→与AC→的夹角为90°,|AB→|=2,|AC→|=1,AM→=λAB→+μAC→(λ,μ∈R),且AM→·BC→=0,则λμ的值为________.答案14解析根据题意,建立如图所示的平面直角坐标系,则A(0,0),B(0,2),C(1,0),所以AB→=(0,2),AC→=(1,0),BC→=(1,-2).设M(x,y),则AM→=(x,y),所以AM→·BC→=(x,y)·(1,-2)=x-2y=0,所以x=2y,又AM→=λAB→+μAC→,即(x,y)=λ(0,2)+μ(1,0)=(μ,2λ),所以x=μ,y=2λ,所以λμ=12yx=14.16.设S n为数列{a n}的前n项和,已知a1=2,对任意p,q∈N*,都有a p+q =a p·a q,则f(n)=S n-1·(S n-1+2)+256a n(n∈N*)的最小值为________.答案30解析当q=1时,a p+1=a p·a1=2a p,∴数列{a n}是首项为2,公比为2的等比数列,∴a n=2n,S n=2(2n-1)2-1=2n+1-2,∴S n-1=2n-2,S n-1·(S n-1+2)=(2n-2)·2n,∴f(n)=(2n-2)2n+2562n=2n-2+2562n≥2256-2=30,当且仅当2n=16,即n=4时,等号成立,f(n)min=30.。
解答题(四)17.(2019·全国卷Ⅱ)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0.解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+(2n-1)=n2.18.(2019·北京人大附中信息卷二)某绿色有机水果店中一款有机草莓,味道鲜甜.店家每天以每斤10元的价格从农场购进适量草莓,然后以每斤20元的价格出售,如果当天卖不完,剩下的草莓由果汁厂以每斤2元的价格回收.(1)若水果店一天购进17斤草莓,求当天的利润y(单位:元)关于当天需求量n(单位:斤,n∈N)的函数解析式;(2)水果店记录了100天草莓的日需求量(单位:斤),整理得下表:日需求量n 14151617181920频数1422141615136(单位:元)的平均数;②若水果店一天购进17斤草莓,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于150元的概率.解(1)当日需求量n≥17时,利润y=17×10=170;当日需求量n≤16时,利润y=10n-8(17-n)=18n-136.所以当天的利润y关于当天需求量n的函数解析式为y =⎩⎪⎨⎪⎧18n -136,n ≤16,n ∈N *,170,n ≥17,n ∈N *.(2)①假设水果店在这100天内每天购进17斤草莓,则日需求量为14斤时,利润为116;日需求量为15斤时,利润为134;日需求量为16斤时,利润为152;日需求量不小于17时,利润为170.故这100天的日利润(单位:元)的平均数为y -=1100×(14×116+22×134+14×152+16×170+15×170+13×170+6×170),解得y -=152(元).②利润不低于150元时,当日需求量当且仅当不少于16斤.以频率预估概率,得当天的利润不少于150元的概率为p =0.14+0.16+0.15+0.13+0.06=0.64.19.(2019·江西省名校5月联考)已知空间几何体ABCDE 中,△BCD 与△CDE 均为边长为2的等边三角形,△ABC 为腰长为13的等腰三角形,平面CDE ⊥平面BCD ,平面ABC ⊥平面BCD .(1)试在平面BCD 内作一条直线,使直线上任意一点F 与A 的连线AF 均与平面CDE 平行,并证明;(2)求点B 到平面AEC 的距离.解 (1)如图所示,分别取BC 和BD 的中点H ,G ,作直线HG ,则HG 为所求直线.证明如下:因为点H ,G 分别为BC 和BD 的中点,所以HG ∥CD ,分别取CD ,BC 的中点O ,H ,连接EO ,AH ,则EO ⊥CD ,AH ⊥BC ,因为平面CDE ⊥平面BCD ,且EO ⊥CD ,∴EO ⊥平面BCD ,又平面ABC ⊥平面BCD ,AH ⊥BC ,则AH ⊥平面BCD ,所以EO ∥AH ,又AH ⊄平面CDE ,EO ⊂平面CDE ,所以AH ∥平面CDE .因为GH ∥CD ,GH ⊄平面CDE ,CD ⊂平面CDE ,所以GH ∥平面CDE ,因为AH ,GH ⊂平面AGH ,AH ∩GH =H ,则平面AHG ∥平面CDE ,所以直线HG 上任意一点F 与A 的连线AF 均与平面CDE 平行.(2)由(1)可得EO ∥AH ,即EO ∥平面ABC ,所以点E 到平面ABC 的距离和点O 到平面ABC 的距离相等,连接DH ,则DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,则DH ⊥平面ABC .记点E 到平面ABC 的距离为d ,则d =12DH =32,又△ABC 的面积S =12×2×13-1=23,△ACE 的面积S 1=12×13×32=394,因为V E -ABC =V B -ACE ,设点B 到平面AEC 的距离为h ,所以13×23×32=13×394×h ,解得h =43913.即点B 到平面AEC 的距离为43913.20.已知抛物线C :y 2=2px 的焦点为F ,抛物线C 上的点M (2,y 0)到F 的距离为3.(1)求抛物线C 的方程;(2)斜率存在的直线l 与抛物线相交于相异两点A (x 1,y 1),B (x 2,y 2),x 1+x 2=4,若AB 的垂直平分线交x 轴于点G ,且GA →·GB→=5,求直线l 的方程. 解 (1)由抛物线定义知|MF |=2+p2, 所以2+p2=3,p =2,所以,抛物线C 的方程为y 2=4x .(2)解法一:设AB 中点坐标(2,m ),直线l 的斜率存在,所以m ≠0,k AB =y 2-y 1x 2-x 1=y 2-y 1y 224-y 214=2m , 所以直线AB 的方程为y -m =2m (x -2). 即2x -my +m 2-4=0.由⎩⎪⎨⎪⎧2x =my -m 2+4,y 2=4x ,得y 2-2my +2m 2-8=0,其中Δ>0得到m 2<8,⎩⎪⎨⎪⎧y 1+y 2=2m , ①y 1y 2=2m 2-8, ②AB 的垂直平分线方程为y -m =-m2(x -2), 令y =0,得x =4,所以G (4,0),GA →=(x 1-4,y 1),GB →=(x 2-4,y 2),因为GA →·GB →=5,所以(x 1-4)(x 2-4)+y 1y 2=5,x 1x 2-4(x 1+x 2)+16+y 1y 2=5,y 21y 2216-4×4+16+y 1y 2=5. ③把②代入③得(m 2-4)2+8(m 2-4)-20=0, (m 2+6)·(m 2-6)=0,m 2=6<8,m =±6.所以,直线l 的方程为2x -6y +2=0或2x +6y +2=0. 解法二:设直线AB 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,y 2=4x消y 得k 2x 2+(2km -4)x +m 2=0或消x 得ky 2-4y +4m =0.则⎩⎪⎪⎨⎪⎪⎧x 1+x 2=-2mk +4k 2=4,x 1x 2=m 2k 2,y 1y 2=4m k ,Δ=16-16km >0,即2k 2+mk =2. ①AB 中点坐标为(2,2k +m ),AB 的垂直平分线方程为y -(2k +m )=-1k (x -2). 令y =0,x G =2k 2+mk +2=4,所以GA →·GB →=(x 1-4,y 1)·(x 2-4,y 2)=x 1x 2-4(x 1+x 2)+16+y 1y 2=m 2k 2-16+16+4mk =5,m 2k 2+4mk -5=0.解得m =k 或m =-5k ,分别代入①得3k 2=2(符合Δ>0)或3k 2=-2(舍去). 所以,直线l 的方程为2x -6y +2=0或2x +6y +2=0.21.(2019·安徽皖南八校联考三)已知函数f (x )=a ln x -(a 2+1)x +12ax 2,其中a ∈R .(1)讨论f (x )的单调性;(2)若f (x )+x >0对x >1恒成立,求a 的取值范围.解 (1)由题意,得f ′(x )=a x -a 2-1+ax =(ax -1)(x -a )x(x >0),当a ≤0时,f ′(x )<0,f (x )的单调递减区间为(0,+∞),没有单调递增区间. 当0<a <1时,当a <x <1a 时,f ′(x )<0;当0<x <a 或x >1a 时,f ′(x )>0. ∴f (x )的单调递增区间为(0,a ),⎝ ⎛⎭⎪⎫1a ,+∞,单调递减区间为⎝ ⎛⎭⎪⎫a ,1a .当a =1时,f ′(x )≥0对x >0成立,f (x )的单调递增区间为(0,+∞),没有单调递减区间.当a >1时,当1a <x <a 时,f ′(x )<0; 当0<x <1a 或x >a 时,f ′(x )>0.∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1a ,(a ,+∞), 单调递减区间为⎝ ⎛⎭⎪⎫1a ,a .(2)f (x )+x >0,即a ln x -a 2x +12ax 2>0,当a >0时,ln x -ax +12x 2>0,a <ln xx+12x ,令g (x )=ln x x +12x ,x ≥1,则g ′(x )=1-ln x x 2+12=2-2ln x +x 22x 2,令h (x )=2-2ln x +x 2,则h ′(x )=2x -2x ,当x ≥1时,h ′(x )≥0,h (x )是增函数,h (x )≥h (1)=3>0,∴g ′(x )>0.∴当x ≥1时,g (x )是增函数,g (x )的最小值为g (1)=12,∴0<a ≤12.当a =0时,显然f (x )+x >0不成立,当a <0时,由g (x )的最小值为12,且g (x )没有最大值,得a >g (x )不成立,综上,a 的取值范围是⎝ ⎛⎦⎥⎤0,12.22.在直角坐标系xOy 中,圆锥曲线C 1的参数方程为⎩⎨⎧x =6cos θ,y =3sin θ(θ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系中取相同的长度单位,曲线C 2的极坐标方程为(ρcos φ+k )2+(ρsin φ-2)2=k 2+25(φ为参数,k ∈R ).(1)写出C 1,C 2的直角坐标方程;(2)是否存在曲线C 2包围曲线C 1?请说明理由. 解 (1)C 1:x 236+y 29=1,C 2:x 2+y 2+2kx -4y -21=0.(2)若k ≥0,由62+02+12k -0-21=15+12k >0可知点(6,0)在曲线C 2外; 若k <0,(-6)2+02-12k -0-21=15-12k >0可知点()-6,0在曲线C 2外. 综上,无论k 取何值,曲线C 2都不能包围曲线C 1. 23.已知函数f (x )=|2x +1|,g (x )=|x +1|.(1)在图中画出f (x )和g (x )的图象,并写出不等式f (x )>g (x )的解集; (2)若|f (x )-2g (x )|≤a (a ∈R )恒成立,求a 的取值范围.解 (1)f (x ),g (x )的图象如图,不等式f (x )>g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >0或x <-23.(2)|f (x )-2g (x )|=||2x +1|-2|x +1|| =⎩⎪⎨⎪⎧1,x >-12或x <-1,|4x +3|,-1≤x ≤-12,所以|f (x )-2g (x )|≤1,所以a ≥1.。
压轴题(一)12.设P 为双曲线x 2a 2-y 2b2=1右支上一点,F 1,F 2分别为该双曲线的左、右焦点,c ,e 分别表示该双曲线的半焦距和离心率.若PF 1→·PF 2→=0,直线PF 2交y 轴于点A ,则△AF 1P 的内切圆的半径为( )A .aB .bC .cD .e答案 A解析 因为PF 1→·PF 2→=0,所以△AF 1P 是直角三角形.设△AF 1P 的内切圆的半径是r ,则2r =|PF 1|+|PA |-|AF 1|=|PF 1|+|PA |-|AF 2|=|PF 1|-(|AF 2|-|PA |)=|PF 1|-|PF 2|=2a .所以r =a .16.(2019·湘赣十四校联考二)已知函数f (x )=sin x +2cos x 的图象向右平移φ个单位长度得到g (x )=2sin x +cos x 的图象,若x =φ为h (x )=sin x +a cos x 的一条对称轴,则a =________.答案 43解析 由题意,得f (x )=5sin(x +α),其中sin α=255,cos α=55.g (x )=5sin(x+β),其中sin β=55,cos β=255, ∴α-φ=β+2k π,即φ=α-β-2k π,∴sin φ=sin(α-β)=sin αcos β-cos αsin β=35,cos φ=cos(α-β)=cos αcos β+sin αsin β=45,又x =φ是h (x )=sin x +a cos x 的一条对称轴, ∴h (φ)=sin φ+a cos φ=35+45a =±1+a 2,即a =43.20.已知函数f (x )=12(x 2+2a ln x ).(1)讨论f (x )=12(x 2+2a ln x ),x ∈(1,e)的单调性;(2)若存在x 1,x 2∈(1,e)(x 1≠x 2),使得f (x 1)=f (x 2)<0成立,求a 的取值范围.解 (1)由f (x )=12(x 2+2a ln x ),得f ′(x )=x +a x =x 2+ax(x >0),当a ≥0时,f ′(x )>0恒成立, 所以f (x )在(1,e)上单调递增;当a <0时,f ′(x )=0的解为x =-a (舍负),若-a ≤1,即a ∈[-1,0),则f (x )在(1,e)上单调递增; 若-a ≥e,即a ∈(-∞,-e 2], 则f (x )在(1,e)上单调递减;若a ∈(-e 2,-1),则f (x )在(1,-a )上单调递减,在[-a ,e)上单调递增. (2)由(1)可知,当a ≤-e 2或a ≥-1时,函数f (x )在(1,e)上为单调函数,此时不存在x 1,x 2∈(1,e)(x 1≠x 2),使得f (x 1)=f (x 2)<0.当a ∈(-e 2,-1)时,f (x )在(1,-a ]上单调递减,在[-a ,e)上单调递增,所以f (x )在x =-a 处取得极小值,f (x )极小值=f (-a )=12(-a +2a ln -a )=-12a +12a ln (-a ),其中a ∈(-e 2,-1),令g (a )=-12a +12a ln (-a ),a ∈(-e 2,-1),则g ′(a )=-12+12ln (-a )+12=12ln (-a ),a ∈(-e 2,-1),所以g ′(a )>0,所以g (a )在(-e 2,-1)上单调递增, 且g (-e)=0,g (-e 2)=-e22<0,所以当a ∈(-e 2,-e)时,f (x )极小值<0,此时存在x 1,x 2∈(1,e)(x 1≠x 2),使得f (x 1)=f (x 2)<0.21.某芯片代工厂生产某型号芯片每盒12片,每批生产若干盒,每片成本1元,每盒芯片需检验合格后方可出厂.检验方案是从每盒芯片随机取3片检验,若发现次品,就要把全盒12片产品全部检验,然后用合格品替换掉不合格品,方可出厂;若无次品,则认定该盒芯片合格,不再检验,可出厂.(1)若某盒芯片中有9片合格,3片不合格,求该盒芯片经一次检验即可出厂的概率? (2)若每片芯片售价10元,每片芯片检验费用1元,次品到达组装工厂被发现后,每片须由代工厂退赔10元,并补偿1片经检验合格的芯片给组装厂.设每片芯片不合格的概率为p (0<p <1),且相互独立.①若某盒12片芯片中恰有3片次品的概率为f (p ),求f (p )的最大值点p 0;②若以①中的p 0作为p 的值,由于质检员操作疏忽,有一盒芯片未经检验就被贴上合格标签出厂到组装工厂,试确定这盒芯片最终利润X (单位:元)的期望.解 (1)设“该盒芯片经一次检验即可出厂”的事件为A ,则P (A )=C 39C 312=2155.答:该盒芯片经一次检验即可出厂的概率为2155.(2)①某盒12片芯片中恰有3片次品的概率f (p )=C 312p 3(1-p )9=127C 312⎝ ⎛⎭⎪⎫3412, 当且仅当3p =1-p ,即p =14时取“=”号,故f (p )的最大值点p 0=14.②由题设,知p =p 0=14.设这盒芯片不合格品的个数为n , 则n ~B ⎝ ⎛⎭⎪⎫12,14, 故E (n )=12×14=3,则E (X )=120-12-30-3×2=72. 所以这盒芯片最终利润X 的期望是72元.。
2020年高考必刷卷02数学(文)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{(,)|210},A x y x y =-+={(,)|0}B x y x y =-=,则A B =I ( ) A .{1,1}x y == B .{1,1}C .{(1,1)}D .∅2.已知复数21iz i=-,则z 在复平面对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.若61014log 3,log 5,log 7a b c ===,则( ) A .a b c >>B .b c a >>C .a c b >>D .c b a >>4.河南省新郑市望京楼遗址位于新郑市新村镇杜村和孟家沟村以西及周边区域,北距郑州市35公里,遗址发现于20世纪60年代,当地群众平整土地时曾出土过一批青铜器和玉器等贵重文物.望京楼商代城址保存较为完整,城址平面近方形,东城墙长约590米、北城墙长约602米、南城墙长约630米、西城墙长约560米,城墙宽度为10米~20米,则下列数据中可作为整个城址的面积较为准确的估算值的是( ) A .24万平方米B .25万平方米C .37万平方米D .45万平方米5.函数3cos 1()x f x x+=的部分图象大致是( ) A . B .C .D .6.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .100,20B .200,20C .100,10D .200,107.11sin 6π⎛⎫-= ⎪⎝⎭( )A .12B .12-C D . 8.已知向量,a b r r满足||2,||3a b ==rr,且a r 与b r夹角为3π,则(2)(2)a b a b +⋅-=r r r r ( ) A .-3B .-1C .1D .39.我国古代数学著作《孙子算经》中有如下问题:“今有方物一束,外周一匝有三十二枚,问积几何?”设每层外周枚数为a ,如图是解决该问题的程序框图,则输出的结果为( )A .121B .81C .74D .4910.已知双曲线22221(0,0)x y a b a b -=>>的左、右焦点分别为12,F F ,B 为虚轴的一个端点,且12120F BF ︒∠=,则双曲线的离心率为( )A .2BC .32D 11.在△ABC 中,120BAC ∠=︒,AD 为△BAC 的平分线,3AC =,6AB =,则AD 的长为( ) A .2B .2或4C .1或2D .512.已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于,A B 两点.若223AF BF =,125BF BF =,则C 的方程为( ).A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
解答题(一)17.(2019·安徽皖南八校第三次联考)党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间[80,100]的为优等品;指标在区间[60,80)的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:甲种生产方式:品,①求这5件产品中,优等品和合格品各有多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位应选择哪种生产方式来帮助该扶贫村脱贫?解(1)①由频数分布表知:甲的优等品率为0.6,合格品率为0.4,所以抽出的5件产品中,优等品有3件,合格品有2件.②记3件优等品分别为A,B,C,2件合格品分别为a,b,从中随机抽取2件,抽取方式有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab共10种,设“这2件中恰有1件是优等品”为事件M,则事件M发生的情况有6种,所以P(M)=610=35.(2)根据样本知甲种生产方式生产100件农产品有60件优等品,40件合格品;乙种生产方式生产100件农产品有80件优等品,20件合格品.设甲种生产方式每生产100件所获得的利润为T1元,乙种生产方式每生产100件所获得的利润为T2元,可得T1=60×(55-15)+40×(25-15)=2800(元),T2=80×(55-20)+20×(25-20)=2900(元),由于T1<T2,所以用样本估计总体知乙种生产方式生产的农产品所获得的利润较高,故该扶贫单位应选择乙种生产方式来帮助该扶贫村脱贫.18.已知等差数列{a n}的公差d>0,其前n项和为S n,且S5=20,a3,a5,a8成等比数列.(1)求数列{a n }的通项公式; (2)令b n =1a n ·a n +1+n ,求数列{b n }的前n 项和T n .解 (1)因为S 5=5a 1+a 52=20,所以a 1+a 5=8,所以a 3=4,即a 1+2d =4, ①因为a 3,a 5,a 8成等比数列,所以a 25=a 3a 8, 所以(a 1+4d )2=(a 1+2d )(a 1+7d ),化简,得a 1=2d , ②联立①和②,得a 1=2,d =1, 所以a n =n +1. (2)因为b n =1a n ·a n +1+n =1n +1n +2+n =⎝⎛⎭⎪⎫1n +1-1n +2+n ,所以T n =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-13+1+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-14+2+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫14-15+3+…+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1n +1-1n +2+n=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+⎝ ⎛⎭⎪⎫1n +1-1n +2+(1+2+3+…+n )=⎝ ⎛⎭⎪⎫12-1n +2+n n +12=n 2n +2+n n +12=n 3+3n 2+3n2n +2. 19.(2019·广东梅州总复习质检)如图,在矩形ABCD 中,AD =2AB =2,点E 是AD 的中点,将△DEC 沿CE 折起到△D ′EC 的位置,使二面角D ′-EC -B 是直二面角.(1)证明:BE ⊥CD ′;(2)求点E 到平面BCD ′的距离.解 (1)证明:∵AD =2AB =2,点E 是AD 的中点, ∴△BAE ,△CDE 是等腰直角三角形,∴∠BEC =90°,即BE ⊥EC .又∵平面D ′EC ⊥平面BEC ,平面D ′EC ∩平面BEC =EC ,BE ⊂平面BEC ,∴BE ⊥平面D ′EC ,∵CD ′⊂平面D ′EC ,∴BE ⊥CD ′. (2)由已知及(1)得,BE ⊥平面D ′EC ,BE =2, ∴V B -D ′EC =13BE ·S △D ′EC =13×2×12×1×1=26.ED ′⊂平面D ′EC ,∴BE ⊥ED ′,ED ′=1,∴BD ′= 3.在△BD ′C 中,BD ′=3,CD ′=1,BC =2.∴BC 2=(BD ′)2+(CD ′)2,∠BD ′C =90°. ∴S △BD ′C =12BD ′·CD ′=32.设点E 到平面BCD ′的距离为d . 则V B -D ′EC =V E -BCD ′=13d ·S △BCD ′,∴13×32d =26,得d =63. 所以点E 到平面BCD ′的距离为63. 20.(2019·安徽江淮十校第三次联考)已知函数f (x )=x -11+x ,g (x )=(ln x )2-2a ln x+13a . (1)讨论f (x )的单调性;(2)若存在x 1∈[0,1],使得对任意的x 2∈[1,e 2],f (x 1)≥g (x 2)成立,求实数a 的取值范围.解 (1)f ′(x )=1+11+x2>0,又x ≠-1,故f (x )在(-∞,-1)为增函数,在()-1,+∞也为增函数.(2)由(1)可知,当x ∈[0,1]时,f (x )为增函数,f (x )max =f (1)=12,由题意可知g (x )=(ln x )2-2a ln x +13a ≤12对任意的x ∈[0,2]恒成立.令t =ln x ,则当x ∈[1,e 2]时,t ∈[0,2],令h (t )=t 2-2at +13a -12,问题转化为h (t )≤0对任意的t ∈[0,2]恒成立,由抛物线h (t )的开口向上,知⎩⎪⎨⎪⎧h0≤0,h2≤0,即⎩⎪⎨⎪⎧13a -12≤0,4-4a +13a -12≤0,解得2122≤a ≤32.故实数a 的取值范围是⎣⎢⎡⎦⎥⎤2122,32.21.(2019·安徽蚌埠第三次质检)已知点E (-2,0),F (2,0),P (x ,y )是平面内一动点,P 可以与点E ,F 重合.当P 不与E ,F 重合时,直线PE 与PF 的斜率之积为-14.(1)求动点P 的轨迹方程;(2)一个矩形的四条边与动点P 的轨迹均相切,求该矩形面积的取值范围. 解 (1)当P 与点E ,F 不重合时,k PE ·k PF =-14,得y x +2·yx -2=-14,即x 24+y 2=1(y ≠0), 当P 与点E ,F 重合时,P (-2,0)或P (2,0). 综上,动点P 的轨迹方程为x 24+y 2=1.(2)记矩形面积为S ,当矩形一边与坐标轴平行时,易知S =8.当矩形各边均不与坐标轴平行时,根据对称性,设其中一边所在直线方程为y =kx +m ,则其对边方程为y =kx -m ,另一边所在直线方程为y =-1k x +n ,则其对边方程为y =-1kx -n ,联立⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则Δ=0, 即4k 2+1=m 2. 矩形的一边长为d 1=|2m |k 2+1,同理,4k 2+1=n 2, 矩形的另一边长为d 2=|2n |1k2+1, S =d 1·d 2=|2m |k 2+1·|2n |1k2+1=|4mnk |k 2+1 =44k 2+1k 2+4k 2+12=44k 4+17k 2+4k 2+12=44+9k 2k 2+12=44+9k 2+1k2+2∈(8,10]. 综上,S ∈(8,10].22.在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1+t cos θ,y =3+t sin θ(t 为参数),θ∈[0,π).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,圆C 的极坐标方程为ρ=8sin ⎝⎛⎭⎪⎫θ+π6.(1)在直角坐标系xOy 中,求圆C 的圆心的直角坐标;(2)设点P (1,3),若直线l 与圆C 交于A ,B 两点,求证:|PA |·|PB |为定值,并求出该定值.解 (1)圆C 的极坐标方程为ρ=43sin θ+4cos θ, 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 则圆C :x 2+y 2-4x -43y =0, 圆心坐标为C (2,23).(2)证明:将⎩⎨⎧x =1+t cos θ,y =3+t sin θ代入圆C :x 2+y 2-4x -43y =0,得t 2-(23sin θ+2cos θ)t -12=0,设点A ,B 所对应的参数分别为t 1,t 2,则t 1t 2=-12, ∴|PA |·|PB |=|t 1t 2|=12.23.(2019·四川广安、眉山毕业班第一次诊断性考试)已知不等式|2x +1|+|x -1|<3的解集为M .(1)求M ;(2)若m ,n ∈M ,求证:⎪⎪⎪⎪⎪⎪m -n mn -1<1.解 (1)当x <-12时,不等式即为-2x -1-x +1<3,解得-1<x <-12;当-12≤x ≤1时,不等式即为2x +1-x +1<3,解得-12≤x <1;当x >1时,不等式即为2x +1+x -1<3,此时无解. 综上可知,不等式的解集M ={x |-1<x <1}.(2)证明:m ,n ∈(-1,1),欲证⎪⎪⎪⎪⎪⎪m -n mn -1<1,需证|m -n |<|mn -1|,即证(m -n )2<(mn -1)2, 即m 2+n 2-2mn <m 2n 2-2mn +1, 即证(m 2-1)(n 2-1)>0, 因为m ,n ∈(-1,1),所以(m 2-1)(n 2-1)>0显然成立. 所以⎪⎪⎪⎪⎪⎪m -n mn -1<1成立.解答题(二)17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,已知2a cos 2C2+2c cos 2A2=52b . (1)求证:2(a +c )=3b ; (2)若cos B =14,S =15,求b .解 (1)证明:由已知得,a (1+cos C )+c (1+cos A )=52b .由余弦定理可得a +c =32b ,即2(a +c )=3b .(2)∵cos B =14(B ∈(0,π)),∴sin B =154.∵S =12ac sin B =158ac =15,∴ac =8.又b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ), 2(a +c )=3b ,∴b 2=9b 24-16×⎝ ⎛⎭⎪⎫1+14. ∴b =4.18.(2019·河北唐山一模)如图,在△ABC 中,AB =BC =4,∠ABC =90°,E ,F 分别为AB ,AC 边的中点,以EF 为折痕把△AEF 折起,使点A 到达点P 的位置,且PB =BE .(1)证明:BC ⊥平面PBE ; (2)求点F 到平面PEC 的距离.解 (1)证明:因为E ,F 分别为AB ,AC 边的中点,所以EF ∥BC ,因为∠ABC =90°,所以EF ⊥BE ,EF ⊥PE ,又因为BE ∩PE =E ,所以EF ⊥平面PBE ,所以BC ⊥平面PBE .(2)如图,取BE 的中点O ,连接PO ,由(1)知BC ⊥平面PBE ,BC ⊂平面BCFE ,所以平面PBE ⊥平面BCFE ,因为PB =BE =PE ,所以PO ⊥BE ,又因为PO ⊂平面PBE ,平面PBE ∩平面BCFE =BE ,所以PO ⊥平面BCFE, 在Rt △POC 中,PC =PO 2+OC 2=25,在Rt △EBC 中,EC =EB 2+BC 2=25, 在△PEC 中,PC =EC =25,PE =2,所以S △PEC =19,又S △ECF =2,设点F 到平面PEC 的距离为d ,由V F -PEC =V P -ECF 得S △PEC ·d =S △ECF ·PO ,即19×d =2×3,所以d =25719.即点F 到平面PEC 的距离为25719.19.(2019·黑龙江哈尔滨六中第二次模拟)某大型商场去年国庆期间累计生成2万张购物单,从中随机抽出100张,对每单消费金额进行统计得到下表: 消费金额(单位:元) [0,200] (200,400](400,600](600,800](800,1000]购物单张数252530??的频率分布直方图所估计出的每单消费金额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费金额超过800元的概率; (2)为鼓励顾客消费,该商场打算在今年国庆期间进行促销活动,凡单笔消费超过600元者,可抽奖一次,中一等奖、二等奖、三等奖的顾客可以分别获得价值500元、200元、100元的奖品.已知中奖率为100%,且一等奖、二等奖、三等奖的中奖率依次构成等比数列,其中一等奖的中奖率为121.若今年国庆期间该商场的购物单数量比去年同期增长5%,预测商场今年国庆期间采购奖品的开销.解 (1)因消费金额在区间[0,400]的频率为0.5,故中位数估计值即为400.设所求概率为p ,而消费金额在(0,600]的概率为0.8,故消费金额在区间(600,800]内的概率为0.2-p .因此消费金额的平均数可估计为100×0.25+300×0.25+500×0.3+700×(0.2-p )+900×p .令其与中位数400相等,解得p =0.05.(2)设等比数列公比为q (q >0),根据题意121+q 21+q 221=1,即q 2+q -20=0,解得q =4.故一等奖、二等奖、三等奖的中奖率分别为121,421,1621.今年的购物单总数约为20000×1.05=21000.其中具有抽奖资格的单数为21000×(0.15+0.05)=4200, 故一等奖、二等奖、三等奖中奖单数可估计为200,800,3200.于是,采购奖品的开销可估计为200×500+800×200+3200×100=580000(元). 20.在平面直角坐标系中,已知点F (1,0),直线l :x =-1,动直线l ′垂直l 于点H ,线段HF 的垂直平分线交l ′于点P ,设点P 的轨迹为C .(1)求曲线C 的方程;(2)以曲线C 上的点Q (x 0,y 0)(y 0>0)为切点作曲线C 的切线l 1,设l 1分别与x 轴、y 轴交于A ,B 两点,且l 1恰与以定点M (a,0)(a >2)为圆心的圆相切,当圆M 的面积最小时,求△ABF 与△QAM 面积的比.解 (1)由题意得|PH |=|PF |,∴点P 到直线l :x =-1的距离等于它到定点F (1,0)的距离,∴点P 的轨迹是以l 为准线,F 为焦点的抛物线,∴点P 的轨迹C 的方程为y 2=4x .(2)解法一:由y 2=4x ,当y >0时,y =2x , ∴y ′=1x,∴以Q 为切点的切线l 1的斜率为k =1x 0,∴以Q (x 0,y 0)(y 0>0)为切点的切线方程为y -y 0=1x 0(x -x 0),即y -y 0=2y 0⎝ ⎛⎭⎪⎫x -y 204,整理得4x -2y 0y +y 20=0.令x =0,则y =y 02,∴B ⎝ ⎛⎭⎪⎫0,y 02, 令y =0,则x =-y 204=-x 0,∴A (-x 0,0), 点M (a,0)到切线l 1的距离d =y 20+4a 2y 20+4=y 20+42+2a -2y 20+4≥2a -1(当且仅当y 0=2a -2时,取等号).∴当点Q 的坐标为(a -2,2a -2)时,满足题意的圆M 的面积最小. 此时A (2-a,0),B (0,a -2).S △ABF =12|1-(2-a )||a -2|=12(a -1)a -2, S △AQM =12|a -(2-a )||2a -2|=2(a -1)·a -2.∴S △ABF S △AQM =14,∴△ABF 与△QAM 面积之比为1∶4. 解法二:由题意知切线l 1的斜率必然存在, 设为k ,则l 1:y -y 0=k (x -x 0).由⎩⎪⎨⎪⎧y -y 0=k x -x 0,y 2=4x ,得y -y 0=k ⎝ ⎛⎭⎪⎫14y 2-x 0,即y 2-4k y +4ky 0-y 20=0,由Δ=0,得k =2y 0,∴l 1:4x -2y 0y +y 20=0. 以下解答同解法一.21.(2019·河北中原名校联盟联考)已知函数f (x )=e x-x -a (a ∈R ). (1)当a =0时,求证:f (x )>x ; (2)讨论函数f (x )零点的个数.解 (1)证明:当a =0时,f (x )=e x-x ,令g (x )=f (x )-x =e x-x -x =e x-2x ,则g ′(x )=e x-2,当g ′(x )=0时,x =ln 2;当x <ln 2时,g ′(x )<0,x >ln 2时,g ′(x )>0,所以g (x )在(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增,所以x =ln 2是g (x )的极小值点,也是最小值点,即g (x )min =g (ln 2)=eln 2-2ln 2=2ln e2>0,故当a =0时,f (x )>x 成立.(2)f ′(x )=e x-1,由f ′(x )=0得x =0,当x <0时,f ′(x )<0;当x >0时,f ′(x )>0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以x =0是函数f (x )的极小值点,也是最小值点,即f (x )min =f (0)=1-a .当1-a >0,即a <1时,f (x )没有零点,当1-a =0,即a =1时,f (x )只有一个零点,当1-a <0,即a >1时,因为f (-a )=e -a-(-a )-a =e -a>0,所以f (x )在(-a,0)上只有一个零点.由(1),得e x>2x ,令x =a ,则得e a>2a ,所以f (a )=ea-a -a =e a-2a >0,于是f (x )在(0,a )上有一个零点.因此,当a >1时,f (x )有两个零点.综上,当a <1时,f (x )没有零点;当a =1时,f (x )只有一个零点; 当a >1时,f (x )有两个零点.22.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t (t 为参数).直线l 与x 轴交于点A .以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,射线l ′:θ=π6(ρ≥0),直线l 与射线l ′交于点B . (1)求B 点的极坐标;(2)若点P 是椭圆C :x 2+y 23=1上的一个动点,求△PAB 面积的最大值及面积最大时点P的直角坐标.解 (1)l :y =3(x -3)=3x -3, 则l 的极坐标方程为ρsin θ=3ρcos θ-3. 令θ=π6得ρ=3,∴B 点的极坐标为⎝ ⎛⎭⎪⎫3,π6.(2)∵|AB |=|OA |=3,∴S =3d2. 设P 点坐标为(cos α,3sin α),l :3x -y -3=0.∴d =|3cos α-3sin α-3|2=32|(cos α-sin α)-3|=32⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫α+π4-3. 当α+π4=π+2k π(k ∈Z )时,d max =3+62,∴S max =33+324.此时cos α=cos 3π4=-22,sin α=sin 3π4=22,∴P 点坐标为⎝ ⎛⎭⎪⎫-22,62.23.设函数f (x )=|2x -4|+|x +1|. (1)求函数f (x )的最小值;(2)若直线y =a 与曲线y =f (x )围成的封闭区域的面积为9,求a 的值. 解 (1)①当x ≥2时,f (x )=3x -3≥3; ②当-1<x <2时,f (x )=5-x ∈(3,6); ③当x ≤-1时,f (x )=3-3x ≥6, ∴f (x )min =3.(2)f (x )=⎩⎪⎨⎪⎧3x -3,x ≥2,5-x ,-1<x <2,3-3x ,x ≤-1,f (x )的图象如图所示:y =6与y =f (x )围成的三角形面积为S =12×[3-(-1)](6-3)=6<9,∴a >6.故y =f (x ),y =6,y =a 围成的梯形面积为3. 令f (x )=3x -3=a ⇒x 1=a +33;令f (x )=3-3x =a ⇒x 2=3-a3,故梯形面积为12⎣⎢⎡⎦⎥⎤4+⎝ ⎛⎭⎪⎫a +33-3-a 3(a -6)=3,∴a =3 5.解答题(三)17.已知a 1=2,a 2=4,数列{b n }满足:b n +1=2b n +2且a n +1-a n =b n . (1)求证:数列{b n +2}是等比数列; (2)求数列{a n }的通项公式. 解 (1)证明:由题知,b n +1+2b n +2=2b n +2+2b n +2=2, ∵b 1=a 2-a 1=4-2=2,∴b 1+2=4,∴数列{b n +2}是以4为首项,2为公比的等比数列. (2)由(1)可得,b n +2=4·2n -1,故b n =2n +1-2.∵a n +1-a n =b n , ∴a 2-a 1=b 1,a 3-a 2=b 2, a 4-a 3=b 3,…a n -a n -1=b n -1.累加得,a n -a 1=b 1+b 2+b 3+…+b n -1(n ≥2),a n =2+(22-2)+(23-2)+(24-2)+…+(2n -2)=21-2n1-2-2(n -1)=2n +1-2n ,故a n =2n +1-2n (n ≥2).∵a 1=2=21+1-2×1,∴数列{a n }的通项公式为a n =2n +1-2n (n ∈N *).18.(2019·安徽江淮十校5月考前最后一卷)如图,已知三棱柱ABC -A ′B ′C ′的底面ABC 是等边三角形,侧面AA ′C ′C ⊥底面ABC ,D 是棱BB ′的中点.(1)求证:平面DA ′C ⊥平面ACC ′A ′;(2)求平面DA ′C 将该三棱柱分成上、下两部分的体积比.解 (1)证明:如图,取AC ,A ′C ′的中点O ,F ,连接OF 与A ′C 交于点E ,连接DE ,OB ,B ′F ,则E 为OF 的中点,OF ∥AA ′∥BB ′,且OF =AA ′=BB ′,所以BB ′FO 是平行四边形.又D 是棱BB ′的中点,所以DE ∥OB .侧面AA ′C ′C ⊥平面ABC ,且OB ⊥AC ,所以OB ⊥平面ACC ′A ′,则DE ⊥平面ACC ′A ′,又DE ⊂平面DA ′C ,所以平面DA ′C ⊥平面ACC ′A ′.(2)连接A ′B ,设三棱柱ABC -A ′B ′C ′的体积为V .故四棱锥A ′-BCC ′B ′的体积V A ′-BCC ′B ′=V -13V =23V ,又D 是棱BB ′的中点,△BCD 的面积是BCC ′B ′面积的14,故四棱锥A ′-B ′C ′CD 的体积V A ′-B ′C ′CD =34V A ′-BCC ′B ′=34×23V =12V ,故平面DA ′C 将该三棱柱分成上、下两部分的体积比为1∶1.19.(2019·江西南昌第一次模拟)市面上有某品牌A 型和B 型两种节能灯,假定A 型节能灯使用寿命都超过5000小时,经销商对B 型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,A 型20瓦和B 型55瓦的两种节能灯照明效果相当,都适合安装.已知A 型和B 型节能灯每支的价格分别为120元、25元,当地商业电价为0.75元/千瓦时.假定该店面一年周转期的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换(用频率估计概率).(1)根据频率直方图估算B 型节能灯的平均使用寿命;(2)根据统计知识知,若一支灯管一年内需要更换的概率为p ,那么n 支灯管估计需要更换np 支.若该商家新店面全部安装了B 型节能灯,试估计一年内需更换的支数;(3)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由. 解 (1)由图可知,各组中值依次为3100,3300,3500,3700,对应的频率依次为0.1,0.3,0.4,0.2,故B 型节能灯的平均使用寿命为3100×0.1+3300×0.3+3500×0.4+3700×0.2=3440小时.(2)由图可知,使用寿命不超过3600小时的频率为0.8,将频率视为概率,每支灯管需要更换的概率为0.8,故估计一年内5支B 型节能灯需更换的支数为5×0.8=4.(3)若选择A 型节能灯,一年共需花费5×120+3600×5×20×0.75×10-3=870元; 若选择B 型节能灯,一年共需花费(5+4)×25+3600×5×55×0.75×10-3=967.5元. 因为967.5>870,所以该商家应选择A 型节能灯.20.(2019·河北石家庄模拟一)已知函数f (x )=ln x -4ax ,g (x )=xf (x ). (1)若a =18,求g (x )的单调区间;(2)若a >0,求证:f (x )≤14a-2.解 (1)由a =18,g (x )=x ln x -12x 2(x >0),g ′(x )=ln x -x +1,令h (x )=ln x -x +1,h ′(x )=1-xx,故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,h (x )max =h (1)=0,从而当x >0时,g ′(x )≤0恒成立,故g (x )的单调递减区间为(0,+∞).(2)证明:f ′(x )=1x -4a =1-4ax x ,由a >0,令f ′(x )=0,得x =14a ,故f (x )在⎝ ⎛⎭⎪⎫0,14a 上单调递增,⎝ ⎛⎭⎪⎫14a ,+∞上单调递减,所以f (x )max =f ⎝ ⎛⎭⎪⎫14a =ln 14a -1,只需证明ln 14a -1≤14a -2,令t =14a>0,即证ln t -t +1≤0(*),由(1)易知(*)式成立,故原不等式成立.21.(2019·广东深圳适应性考试)在平面直角坐标系xOy 中,离心率为63的椭圆C :x2a2+y 2b 2=1(a >b >0)过点M ⎝⎛⎭⎪⎫1,63. (1)求椭圆C 的标准方程;(2)若直线x +y +m =0上存在点G ,且过点G 的椭圆C 的两条切线相互垂直,求实数m的取值范围.解 (1)由题意得⎩⎪⎨⎪⎧c a =63,a 2=b 2+c 2,解得a 2=3b 2,又1a 2+23b 2=1,解得⎩⎪⎨⎪⎧a 2=3,b 2=1,所以椭圆C 的标准方程为x 23+y 2=1.(2)①当过点G 的椭圆C 的一条切线的斜率不存在时,另一条切线必垂直于y 轴,易得G (±3,±1).②当过点G 的椭圆C 的切线的斜率均存在时,设G (x 0,y 0),x 0≠±3,切线方程为y =k (x -x 0)+y 0,代入椭圆方程得(3k 2+1)x 2-6k (kx 0-y 0)x +3(kx 0-y 0)2-3=0,Δ=[6k (kx 0-y 0)]2-4(3k 2+1)·[3(kx 0-y 0)2-3]=0,化简得(kx 0-y 0)2-(3k 2+1)=0,则(x 20-3)k 2-2x 0y 0k +y 20-1=0,设过点G 的椭圆C 的切线的斜率分别为k 1,k 2,则k 1k 2=y 20-1x 20-3. 因为两条切线相互垂直,所以y 20-1x 20-3=-1,即x 20+y 20=4(x 0≠±3),由①②知点G 在圆x 20+y 20=4上,又点G 在直线x +y +m =0上, 所以直线x +y +m =0与圆x 2+y 2=4有公共点,所以|m |1+1≤2,所以-22≤m ≤2 2.综上所述,m 的取值范围为[-22,22].22.在直角坐标系xOy 中,圆C 的普通方程为x 2+y 2-4x -6y +12=0,在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4= 2. (1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的任意一点,求PA →·PB →的取值范围.解 (1)圆C 的参数方程为⎩⎪⎨⎪⎧x =2+cos θ,y =3+sin θ(θ为参数).直线l 的直角坐标方程为x+y -2=0.(2)由直线l 的方程x +y -2=0可得点A (2,0), 点B (0,2).设点P (x ,y ),则PA →·PB →=(2-x ,-y )·(-x,2-y )=x 2+y 2-2x -2y .由(1)知⎩⎪⎨⎪⎧x =2+cos θ,y =3+sin θ,则PA →·PB →=4sin θ+2cos θ+4=25sin(θ+φ)+4,其中tan φ=12.因为θ∈R ,所以4-25≤PA →·PB →≤4+2 5. 23.已知函数f (x )=|x -a |-⎪⎪⎪⎪⎪⎪x +1a .(1)当a =1,求函数f (x )的定义域;(2)当a ∈[1,2]时,求证:f 2(x )+f 2⎝ ⎛⎭⎪⎫-1x ≤5.解 (1)当a =1时,f (x )=|x -1|-|x +1|, 所以|x -1|-|x +1|≥0, 得(x -1)2≥(x +1)2,解得x ≤0. 所以定义域为(-∞,0].(2)证明:f 2(x )+f 2⎝ ⎛⎭⎪⎫-1x =|x -a |-⎪⎪⎪⎪⎪⎪x +1a +⎪⎪⎪⎪⎪⎪-1x -a -⎪⎪⎪⎪⎪⎪-1x +1a ≤2⎪⎪⎪⎪⎪⎪a +1a =2⎝ ⎛⎭⎪⎫a +1a ≤5(a ∈[1,2]),当且仅当a =2时等号成立.解答题(四)17.(2019·全国卷Ⅱ)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.解 (1)设{a n }的公比为q ,由题设得2q 2=4q +16,即q 2-2q -8=0. 解得q =-2(舍去)或q =4. 因此{a n }的通项公式为a n =2×4n -1=22n -1.(2)由(1)得b n =(2n -1)log 22=2n -1,因此数列{b n }的前n 项和为1+3+…+(2n -1)=n 2.18.(2019·北京人大附中信息卷二)某绿色有机水果店中一款有机草莓,味道鲜甜.店家每天以每斤10元的价格从农场购进适量草莓,然后以每斤20元的价格出售,如果当天卖不完,剩下的草莓由果汁厂以每斤2元的价格回收.(1)若水果店一天购进17斤草莓,求当天的利润y (单位:元)关于当天需求量n (单位:斤,n ∈N )的函数解析式;(2)水果店记录了100天草莓的日需求量(单位:斤),整理得下表:日需求量n 14 15 16 17 18 19 20 频数1422141615136元)的平均数;②若水果店一天购进17斤草莓,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于150元的概率.解 (1)当日需求量n ≥17时,利润y =17×10=170;当日需求量n ≤16时,利润y =10n -8(17-n )=18n -136.所以当天的利润y 关于当天需求量n 的函数解析式为y =⎩⎪⎨⎪⎧18n -136,n ≤16,n ∈N *,170,n ≥17,n ∈N *.(2)①假设水果店在这100天内每天购进17斤草莓,则日需求量为14斤时,利润为116;日需求量为15斤时,利润为134;日需求量为16斤时,利润为152;日需求量不小于17时,利润为170.故这100天的日利润(单位:元)的平均数为 y -=1100×(14×116+22×134+14×152+16×170+15×170+13×170+6×170),解得y -=152(元).②利润不低于150元时,当日需求量当且仅当不少于16斤.以频率预估概率,得当天的利润不少于150元的概率为p =0.14+0.16+0.15+0.13+0.06=0.64.19.(2019·江西省名校5月联考)已知空间几何体ABCDE 中,△BCD 与△CDE 均为边长为2的等边三角形,△ABC 为腰长为13的等腰三角形,平面CDE ⊥平面BCD ,平面ABC ⊥平面BCD .(1)试在平面BCD 内作一条直线,使直线上任意一点F 与A 的连线AF 均与平面CDE 平行,并证明;(2)求点B 到平面AEC 的距离.解 (1)如图所示,分别取BC 和BD 的中点H ,G ,作直线HG ,则HG 为所求直线.证明如下:因为点H ,G 分别为BC 和BD 的中点,所以HG ∥CD ,分别取CD ,BC 的中点O ,H ,连接EO ,AH ,则EO ⊥CD ,AH ⊥BC ,因为平面CDE ⊥平面BCD ,且EO ⊥CD ,∴EO ⊥平面BCD ,又平面ABC ⊥平面BCD ,AH ⊥BC ,则AH ⊥平面BCD ,所以EO ∥AH ,又AH ⊄平面CDE ,EO ⊂平面CDE ,所以AH ∥平面CDE .因为GH ∥CD ,GH ⊄平面CDE ,CD ⊂平面CDE ,所以GH ∥平面CDE ,因为AH ,GH ⊂平面AGH ,AH ∩GH =H ,则平面AHG ∥平面CDE ,所以直线HG 上任意一点F 与A 的连线AF 均与平面CDE 平行.(2)由(1)可得EO ∥AH ,即EO ∥平面ABC ,所以点E 到平面ABC 的距离和点O 到平面ABC 的距离相等,连接DH ,则DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,则DH ⊥平面ABC .记点E 到平面ABC 的距离为d ,则d =12DH =32,又△ABC 的面积S =12×2×13-1=23,△ACE 的面积S 1=12×13×32=394,因为V E -ABC =V B -ACE ,设点B 到平面AEC 的距离为h ,所以13×23×32=13×394×h , 解得h =43913.即点B 到平面AEC 的距离为43913.20.已知抛物线C :y 2=2px 的焦点为F ,抛物线C 上的点M (2,y 0)到F 的距离为3. (1)求抛物线C 的方程;(2)斜率存在的直线l 与抛物线相交于相异两点A (x 1,y 1),B (x 2,y 2),x 1+x 2=4,若AB 的垂直平分线交x 轴于点G ,且GA →·GB →=5,求直线l 的方程.解 (1)由抛物线定义知|MF |=2+p2,所以2+p2=3,p =2,所以,抛物线C 的方程为y 2=4x .(2)解法一:设AB 中点坐标(2,m ),直线l 的斜率存在,所以m ≠0,k AB =y 2-y 1x 2-x 1=y 2-y 1y 224-y 214=2m,所以直线AB 的方程为y -m =2m(x -2).即2x -my +m 2-4=0.由⎩⎪⎨⎪⎧2x =my -m 2+4,y 2=4x ,得y 2-2my +2m 2-8=0,其中Δ>0得到m2<8,⎩⎪⎨⎪⎧y 1+y 2=2m , ①y 1y 2=2m 2-8, ②AB 的垂直平分线方程为y -m =-m2(x -2),令y =0,得x =4,所以G (4,0),GA →=(x 1-4,y 1),GB →=(x 2-4,y 2), 因为GA →·GB →=5,所以(x 1-4)(x 2-4)+y 1y 2=5,x 1x 2-4(x 1+x 2)+16+y 1y 2=5,y 21y 2216-4×4+16+y 1y 2=5. ③把②代入③得(m 2-4)2+8(m 2-4)-20=0, (m 2+6)·(m 2-6)=0,m 2=6<8,m =± 6.所以,直线l 的方程为2x -6y +2=0或2x +6y +2=0. 解法二:设直线AB 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,y 2=4x 消y 得k 2x 2+(2km -4)x +m 2=0或消x 得ky 2-4y +4m =0.则⎩⎪⎨⎪⎧x 1+x 2=-2mk +4k 2=4,x 1x 2=m 2k 2,y 1y 2=4m k,Δ=16-16km >0,即2k 2+mk =2. ①AB 中点坐标为(2,2k +m ),AB 的垂直平分线方程为y -(2k +m )=-1k(x -2).令y =0,x G =2k 2+mk +2=4,所以GA →·GB →=(x 1-4,y 1)·(x 2-4,y 2)=x 1x 2-4(x 1+x 2)+16+y 1y 2=m 2k2-16+16+4m k=5,m 2k 2+4mk-5=0. 解得m =k 或m =-5k ,分别代入①得3k 2=2(符合Δ>0)或3k 2=-2(舍去). 所以,直线l 的方程为2x -6y +2=0或2x +6y +2=0.21.(2019·安徽皖南八校联考三)已知函数f (x )=a ln x -(a 2+1)x +12ax 2,其中a ∈R .(1)讨论f (x )的单调性;(2)若f (x )+x >0对x >1恒成立,求a 的取值范围. 解 (1)由题意,得f ′(x )=a x-a 2-1+ax =ax -1x -ax(x >0),当a ≤0时,f ′(x )<0,f (x )的单调递减区间为(0,+∞),没有单调递增区间. 当0<a <1时,当a <x <1a 时,f ′(x )<0;当0<x <a 或x >1a时,f ′(x )>0.∴f (x )的单调递增区间为(0,a ),⎝ ⎛⎭⎪⎫1a,+∞,单调递减区间为⎝⎛⎭⎪⎫a ,1a .当a =1时,f ′(x )≥0对x >0成立,f (x )的单调递增区间为(0,+∞),没有单调递减区间.当a >1时,当1a<x <a 时,f ′(x )<0;当0<x <1a或x >a 时,f ′(x )>0.∴f (x )的单调递增区间为⎝⎛⎭⎪⎫0,1a ,(a ,+∞),单调递减区间为⎝ ⎛⎭⎪⎫1a,a .(2)f (x )+x >0,即a ln x -a 2x +12ax 2>0,当a >0时,ln x -ax +12x 2>0,a <ln x x +12x ,令g (x )=ln x x +12x ,x ≥1,则g ′(x )=1-ln x x 2+12=2-2ln x +x22x 2,令h (x )=2-2ln x +x 2,则h ′(x )=2x -2x,当x ≥1时,h ′(x )≥0,h (x )是增函数,h (x )≥h (1)=3>0,∴g ′(x )>0.∴当x ≥1时,g (x )是增函数,g (x )的最小值为g (1)=12,∴0<a ≤12.当a =0时,显然f (x )+x >0不成立,当a <0时,由g (x )的最小值为12,且g (x )没有最大值,得a >g (x )不成立,综上,a 的取值范围是⎝ ⎛⎦⎥⎤0,12. 22.在直角坐标系xOy中,圆锥曲线C 1的参数方程为⎩⎪⎨⎪⎧x =6cos θ,y =3sin θ(θ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系中取相同的长度单位,曲线C 2的极坐标方程为(ρcos φ+k )2+(ρsin φ-2)2=k 2+25(φ为参数,k ∈R ).(1)写出C 1,C 2的直角坐标方程;(2)是否存在曲线C 2包围曲线C 1?请说明理由. 解 (1)C 1:x 236+y 29=1,C 2:x 2+y 2+2kx -4y -21=0.(2)若k ≥0,由62+02+12k -0-21=15+12k >0可知点(6,0)在曲线C 2外; 若k <0,(-6)2+02-12k -0-21=15-12k >0可知点()-6,0在曲线C 2外.综上,无论k 取何值,曲线C 2都不能包围曲线C 1. 23.已知函数f (x )=|2x +1|,g (x )=|x +1|.(1)在图中画出f (x )和g (x )的图象,并写出不等式f (x )>g (x )的解集; (2)若|f (x )-2g (x )|≤a (a ∈R )恒成立,求a 的取值范围.解 (1)f (x ),g (x )的图象如图,不等式f (x )>g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >0或x <-23.(2)|f (x )-2g (x )|=||2x +1|-2|x +1||=⎩⎪⎨⎪⎧1,x >-12或x <-1,|4x +3|,-1≤x ≤-12,所以|f (x )-2g (x )|≤1,所以a ≥1.解答题(五)17.近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.某共享单车公司为了更好地服务用户,在其官方APP 中设置了用户评价反馈系统,以了解用户对该公司的车辆状况和优惠活动的评价.现从评价系统中较为详细的评价信息里随机选出200条进行统计,车辆状况和优惠活动评价的2×2列联表如下:对优惠活动好评对优惠活动不满意合计 对车辆状况好评 100 30 130 对车辆状况不满意40 30 70 合计14060200(1)能否在犯错误的概率不超过0.001的前提下,认为对优惠活动好评与对车辆状况好评有关系?(2)为了回馈用户,该公司通过APP 向用户随机派送骑行券.用户可以将骑行券用于骑行付费,也可以通过APP 转赠给好友.某用户共获得了5张骑行券,其中只有2张是一元券.现该用户从这5张骑行券中随机选取2张转赠给好友,求选取的2张中至少有1张是一元券的概率.参考数据:P (K 2≥k 0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828参考公式:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .解 (1)由2×2列联表的数据,得K 2的观测值 k =200×100×30-40×302130×70×140×60=200×18213×7×14×6=5400637≈8.48<10.828. 因此,在犯错误的概率不超过0.001的前提下,不能认为对优惠活动好评与对车辆状况好评有关系.(2)把2张一元券分别记作A ,B ,其余3张券分别记作a ,b ,c ,则从5张骑行券中随机选取2张的所有情况有:{A ,a },{A ,b },{A ,c },{B ,a },{B ,b },{B ,c },{A ,B },{a ,b },{a ,c },{b ,c },共10种.记“选取的2张中至少有1张是一元券”为事件M ,则事件M 包含的基本事件个数为7, 所以P (M )=710,所以该用户从这5张骑行券中随机选取2张转赠给好友,选取的2张中至少有1张是一元券的概率为710.18.已知△ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,且a =42,点D 在线段AC 上,∠DBC =π4.(1)若△BCD 的面积为24,求CD 的长;(2)若C ∈⎝ ⎛⎭⎪⎫0,π2,且c =122,tan A =13,求CD 的长.解 (1)由S △BCD =12·BD ·BC ·22=24,解得BD =12.在△BCD 中,CD 2=BC 2+BD 2-2BC ·BD ·cos45°, 即CD 2=32+144-8×12,解得CD =4 5.(2)因为tan A =13,且A ∈(0,π),可以求得sin A =1010,cos A =31010.由正弦定理,得asin A =c sin C ,即421010=122sin C, 解得sin C =31010.因为C ∈⎝⎛⎭⎪⎫0,π2,故cos C =1010,故sin ∠BDC =sin ⎝⎛⎭⎪⎫C +π4=255.在△BCD 中,由正弦定理可得CDsin ∠DBC=BCsin ∠BDC,解得CD =2 5.19.(2019·广东天河区毕业综合测试二)如图,D 是AC 的中点,四边形BDEF 是菱形,平面BDEF ⊥平面ABC ,∠FBD =60°,AB ⊥BC ,AB =BC = 2.(1)若点M 是线段BF 的中点,证明:BF ⊥平面AMC ; (2)求六面体ABCEF 的体积.解 (1)证明:如图,连接MD ,FD .∵四边形BDEF 为菱形,且∠FBD =60°,∴△DBF 为等边三角形. ∵M 为BF 的中点, ∴DM ⊥BF ,∵AB ⊥BC ,AB =BC =2,又D 是AC 的中点,∴BD ⊥AC .∵平面BDEF ∩平面ABC =BD ,平面ABC ⊥平面BDEF ,AC ⊂平面ABC ,∴AC ⊥平面BDEF . 又BF ⊂平面BDEF ,∴AC ⊥BF ,由DM ⊥BF ,AC ⊥BF ,DM ∩AC =D ,∴BF ⊥平面AMC .(2)∵S 菱形BDEF =2·12·BD ·BF ·sin60°=32,又AC ⊥平面BDEF ,D 是AC 的中点,∴V 六面体ABCEF =2V 四棱锥C -BDEF =2×13S 菱形BDEF ·CD=2×13×32×1=33.∴六面体ABCEF 的体积为33. 20.(2019·湖南株洲二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆C 截直线y =1所得的线段的长度为2 2.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,点D 是椭圆C 上的点,O 是坐标原点,若OA →+OB →=OD →,判定四边形OADB 的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.解 (1)由⎩⎪⎨⎪⎧c a =22,2a 2+1b 2=1,a 2=b 2+c 2,解得a =2,b =c =2,所以椭圆C 的方程为x 24+y 22=1.(2)当直线l 的斜率不存在时,直线AB 的方程为x =-1或x =1,此时四边形OADB 的面积为 6.当直线l 的斜率存在时,设直线l 的方程是y =kx +m ,则⎩⎪⎨⎪⎧y =kx +m ,x 24+y22=1 ⇒(1+2k 2)x2+4kmx +2m 2-4=0,Δ=8(4k 2+2-m 2)>0,x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-41+2k2,所以y 1+y 2=k (x 1+x 2)+2m =2m1+2k2,|AB |=x 1-x 22+y 1-y 22=x 1-x 22+k2x 1-x 22=1+k 2·2 2 4k 2+2-m21+2k 2, 又点O 到直线AB 的距离是d =|m |1+k2,由OA →+OB →=OD →,得x D =-4km 1+2k 2,y D =2m 1+2k 2. 因为点D 在曲线C 上,所以⎝ ⎛⎭⎪⎫-4km 1+2k 224+⎝ ⎛⎭⎪⎫2m 1+2k 222=1,整理得1+2k 2=2m 2,由题意知四边形OADB 为平行四边形,所以四边形OADB 的面积为 S OADB =|AB |d =1+k 22 2 4k 2+2-m 21+2k 2×|m |1+k2=22|m |4k 2+2-m21+2k2. 由1+2k 2=2m 2得S OADB =6, 故四边形OADB 的面积是定值,其定值为 6. 21.(2019·河南洛阳第二次统一考试)已知函数f (x )=12x 2-a ln x .(1)讨论函数f (x )的单调性;(2)若a >0,函数f (x )在区间(1,e)上恰有两个零点,求实数a 的取值范围. 解 (1)f (x )=12x 2-a ln x 的定义域为(0,+∞),f ′(x )=x -a x =x 2-ax.①当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增; ②当a >0时,由f ′(x )>0得x >a ,f ′(x )<0得0<x <a . 即f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)当a >0时,由(1)知f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增, ①若a ≤1,即0<a ≤1时,f (x )在(1,e)上单调递增,f (1)=12,f (x )在区间(1,e)上无零点.②若1<a <e ,即1<a <e 2时,f (x )在(1,a )上单调递减,在(a ,e)上单调递增,f (x )min =f (a )=12a (1-ln a ).∵f (x )在区间(1,e)上恰有两个零点,∴⎩⎪⎨⎪⎧f 1=12>0,f a =12a 1-ln a <0,fe =12e 2-a >0,∴e <a <12e 2.③若a ≥e,即a ≥e 2时,f (x )在(1,e)上单调递减,且f (1)=12>0,f (e)=12e 2-a <0,则f (x )在区间(1,e)上有一个零点.综上,f (x )在区间(1,e)上恰有两个零点时a 的取值范围是⎝ ⎛⎭⎪⎫e ,12e 2. 22.(2018·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.解 (1)由x =ρcos θ,y =ρsin θ,得C 2的直角坐标方程为(x +1)2+y 2=4. (2)解法一:由(1)知C 2是圆心为A (-1,0),半径为2的圆.由题设知,C 1是过点B (0,2)且关于y 轴对称的两条射线,曲线C 1的方程为y =⎩⎪⎨⎪⎧kx +2,x ≥0,-kx +2,x <0.记y 轴右边的射线为l 1,y 轴左边的射线为l 2.由于点B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,点A 到l 1所在直线的距离为2,所以|-k +2|k 2+1=2,故k =-43或k =0. 经检验,当k =0时,l 1与C 2没有公共点;当k =-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点.当l 2与C 2只有一个公共点时,点A 到l 2所在直线的距离为2,所以|k +2|k 2+1=2,故k =0或k =43.经检验,当k =0时,l 1与C 2没有公共点;当k =43时,l 2与C 2没有公共点.综上,所求C 1的方程为y =-43|x |+2.解法二:因为C 2:(x +1)2+y 2=4,所以C 2是以(-1,0)为圆心,2为半径的圆. 又因为C 1:y =k |x |+2是关于y 轴对称的曲线,且C 1:y =⎩⎪⎨⎪⎧kx +2,x ≥0,-kx +2,x <0,显然,若k =0时,C 1与C 2相切,此时只有一个交点; 若k >0时,C 1与C 2无交点. 若C 1与C 2有且仅有三个公共点,则必须满足k <0且y =kx +2(x >0)与C 2相切,所以圆心到射线的距离为d ,则d =|2-k |1+k2=2,所以k =0或k =-43,因为k <0,所以k =-43,所以C 1:y =-43|x |+2.23.(2019·全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1. 证明:(1)1a +1b +1c≤a 2+b 2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24.证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1,故有a 2+b 2+c 2≥ab +bc +ca =ab +bc +ca abc =1a +1b +1c .当且仅当a =b =c =1时,等号成立.所以1a +1b +1c≤a 2+b2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥33a +b3b +c3a +c3=3(a +b )(b +c )(a +c )≥3×(2ab )×(2bc )×(2ac )=24.当且仅当a =b =c =1时,等号成立. 所以(a +b )3+(b +c )3+(c +a )3≥24.解答题(六)17.已知在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足a +2a cos B =c . (1)求证:B =2A ;(2)若△ABC 为锐角三角形,且c =2,求a 的取值范围. 解 (1)证明:因为a +2a cos B =c ,由正弦定理知sin A +2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin A =cos A sin B -sin A cos B =sin(B -A ).因为A ,B ∈(0,π),所以B -A ∈(-π,π), 且A +(B -A )=B ∈(0,π),所以A +(B -A )≠π, 所以A =B -A ,B =2A .(2)由(1)知A =B 2,C =π-A -B =π-3B2.由△ABC 为锐角三角形得⎩⎪⎨⎪⎧0<B 2<π2,0<B <π2,0<π-3B 2<π2,得π3<B <π2. 由a +2a cos B =2,得a =21+2cos B∈(1,2).18.(2019·安徽江淮十校第三次联考)在三棱柱ABC -A 1B 1C 1中,D 为AB 的中点,点E 在侧棱CC 1上,DE ∥平面AB 1C 1.。
压轴题(五)12.(2019·河南焦作四模)已知f (x )=m sin 2x +sin 3x -sin x ,其中x ∈[0,π],则给出下列说法:①函数f (x )可能有两个零点;②函数f (x )可能有三个零点;③函数f (x )可能有四个零点;④函数f (x )可能有六个零点.其中所有正确说法的编号是( ) A .①② B .①②③ C .①②④ D .②④ 答案 B解析 由f (x )=0,得m sin 2x +sin 3x -sin x =0⇒sin x =0或m sin x =-sin 2x +1.所以x =0或x =π或m =-⎝ ⎛⎭⎪⎫sin x -1sin x ,x ∈(0,π).设sin x =t ,则m =-⎝ ⎛⎭⎪⎫t -1t ,t ∈(0,1].易知函数m =-⎝⎛⎭⎪⎫t -1t 在t ∈(0,1]上为减函数,最小值为0,所以当m ∈(-∞,0)时,sin x =t无解;当m =0时,sin x =t =1,解得x =π2;当m ∈(0,+∞)时,t ∈(0,1),sin x =t 在(0,π)上有两个解.综上所述,当m ∈(-∞,0)时,f (x )在区间[0,π]上零点的个数为2;当m =0时,f (x )在区间[0,π]上零点的个数为3;当m ∈(0,+∞)时,f (x )在区间[0,π]上零点的个数为4.故选B.16.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.若四棱锥M -ABCD 为阳马,侧棱MA ⊥底面ABCD ,且MA =BC =AB =2,则该阳马的外接球与内切球表面积之和为________.答案 36π-162π解析 设该阳马的外接球与内切球的半径分别为R 与r ,则2R =MA 2+AB 2+BC 2=23,即R =3,由13S M -ABCD 表·r =13S ABCD ·MA , 得r =S ABCD ·MAS M -ABCD 表=2×2×22×2+2×⎝ ⎛⎭⎪⎫12×2×2+12×2×22=2- 2.所以该阳马的外接球与内切球表面积之和为4π(R 2+r 2)=36π-162π.20.已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为抛物线C 上异于原点的任意一点,过点A 的直线l 交抛物线C 于另一点B ,交x 轴的正半轴于点D ,且有|FA |=|FD |.当点A 的横坐标为3时,△ADF 为正三角形.(1)求抛物线C 的方程;(2)若直线l 1∥l ,且l 1和抛物线C 有且只有一个公共点E ,试问直线AE 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.解 (1)由题意知F ⎝ ⎛⎭⎪⎫p2,0, 设D (t,0)(t >0),则FD 的中点为⎝ ⎛⎭⎪⎫p +2t 4,0,因为|FA |=|FD |,由抛物线的定义知,3+p 2=⎪⎪⎪⎪⎪⎪t -p 2, 解得t =3+p 或t =-3(舍去). 由p +2t4=3,解得p =2,所以抛物线C 的方程为y 2=4x .(2)由(1)知F (1,0),设A (x 0,y 0)(x 0>0),D (x D,0)(x D >0), 因为|FA |=|FD |,则|x D -1|=x 0+1, 由x 0>0,x D >0得x D =x 0+2,故D (x 0+2,0),故直线AB 的斜率为k AB =-y 02,因为直线l 1和直线AB 平行, 故可设直线l 1的方程为y =-y 02x +b ,代入抛物线方程得y 2+8y 0y -8b y 0=0,由题意知Δ=64y 20+32b y 0=0,得b =-2y 0.设E (x E ,y E ),则y E =-4y 0,x E =4y 20,当y 20≠4时,k AE =y E -y 0x E -x 0=4y 0y 20-4, 可得直线AE 的方程为y -y 0=4y 0y 20-4(x -x 0), 由y 20=4x 0,整理可得y =4y 0y 20-4(x -1),所以直线AE 恒过点F (1,0), 当y 20=4时,直线AE 的方程为x =1,过点F (1,0),所以直线AE 恒过定点F (1,0). 21.(2019·山西太原一模)已知函数f (x )=2ln x -12ax 2+(2-a )x ,a ∈R .(1)讨论函数f (x )的单调性;(2)当a >0时,若对于任意x 1,x 2∈(1,+∞)(x 1<x 2),都存在x 0∈(x 1,x 2),使得f ′(x 0)=f x 2-f x 1x2-x1,证明:x1+x22>x0.解(1)由题意得f′(x)=2x-ax+(2-a)=-x +ax -x,x>0,①当a≤0时,f′(x)>0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上单调递增;②当a>0时,令f′(x)>0,则0<x<2a;令f′(x)<0,则x>2a,∴f(x)在⎝⎛⎭⎪⎫0,2a上单调递增,在⎝⎛⎭⎪⎫2a,+∞上单调递减.(2)证明:当a>0时,∵f x 2-f x 1x2-x1=2x2-x1lnx2x1-a2(x2+x1)+(2-a),f′(x0)=2x0-ax0+(2-a),∴2x2-x1lnx2x1-a2(x2+x1)=2x0-ax0,∵f′⎝⎛⎭⎪⎫x1+x22-f′(x0)=4x2+x1-a2(x2+x1)-⎝⎛⎭⎪⎫2x0-ax0=4x2+x1-2x2-x1lnx2x1=2x2-x1⎣⎢⎡⎦⎥⎤x2-x 1x2+x1-lnx2x1=2x2-x12⎝⎛⎭⎪⎫x2x1-1x2x1+1-lnx2x1,令t=x2x1,g(t)=t -t+1-ln t,t>1,则g′(t)=-t -2t t +2<0,∴g(t)在(1,+∞)上单调递减,g(t)<g(1)=0,∴f′⎝⎛⎭⎪⎫x1+x22-f′(x0)<0,∴f′⎝⎛⎭⎪⎫x1+x22<f′(x0),设h(x)=f′(x)=2x-ax+(2-a),x>0,则h′(x)=-2x2-a<0,∴h(x)=f′(x)在(1,+∞)上单调递减,∴x1+x22>x0.。
压轴题(三)
12.(2019·江西上饶重点中学六校第二次联考)已知A (-2,0),B (2,0),若x 轴上方
的点P 满足对任意λ∈R ,恒有|AP →-λAB →|≥2成立,则P 点的纵坐标的最小值为( )
A.14
B.12
C .1
D .2 答案 D
解析 设P (x ,y ),则AP →=(x +2,y ),AB →=(4,0),故AP →-λAB →=(x +2-4λ,y ),|AP
→-λAB →|≥2恒成立,即|AP →-λAB →|2≥4恒成立,则(x +2-4λ)2+y 2-4≥0,故y 2-4≥0,又由题意可知y >0,所以y ≥2,
即P 点的纵坐标的最小值为2.故选D.
16.(2019·湖北宜昌元月调考)已知函数f (x )=x 2
+(a -1)x -a ,若函数g (x )=f [f (x )]有且仅有两个零点,则实数a 的取值集合为________.
答案 {-1}
解析 由题意得f (x )=x 2+(a -1)x -a =(x +a )(x -1),令f (x )=t ,则函数g (x )=f [f (x )]可化为y =f (t ),令f (t )=0,解得t 1=1或t 2=-a ,即f (x )=1或f (x )=-a ,因为函数g (x )=f [f (x )]有且仅有两个零点,所以f (x )=1与f (x )=-a 共有两个不同的实数解,f (x )=-a 可化为x 2+(a -1)x =0,即f (x )=-a 的根为x 1=0或x 2=1-a ,要使得f (x )=1与f (x )=-a 共有两个不同的实数解,则两方程的根必须相同.即-a =1时,才可以使得f (x )=-a 的两根与f (x )=1的两个根相同,实数a 的取值集合为{-1}.
20.已知过A (0,2)的动圆恒与x 轴相切,设切点为B ,AC 是该圆的直径.
(1)求C 点轨迹E 的方程;
(2)当AC 不在y 轴上时,设直线AC 与曲线E 交于另一点P ,该曲线在P 处的切线与直线BC 交于Q 点.求证:△PQC 恒为直角三角形.
解 (1)设C 点坐标为(x ,y ),则B 点坐标为⎝ ⎛⎭
⎪⎫x 2,0.因为AC 是直径,所以BA ⊥BC ,或C ,B 均在坐标原点,
因此BA →·BC →=0,而BA →=⎝ ⎛⎭⎪⎫-x 2,2,BC →=⎝ ⎛⎭
⎪⎫x 2,y , 故有-x 24+2y =0,即x 2
=8y . 另一方面,设C ⎝
⎛⎭⎪⎫x 0,x 208是曲线x 2=8y 上一点, 则有|AC |=x 2
0+⎝ ⎛⎭⎪⎫x 208-22=x 2
0+168,
AC 中点的纵坐标为2+x 2082=x 20+1616=|AC |2
, 故以AC 为直径的圆与x 轴相切.
综上可知,C 点轨迹E 的方程为x 2=8y .
(2)证明:设直线AC 的方程为y =kx +2,
由⎩⎪⎨⎪
⎧ y =kx +2,x 2=8y 得x 2
-8kx -16=0, 设C (x 1,y 1),P (x 2,y 2),则有x 1x 2=-16.
由y =x 28,对x 求导知y ′=x 4
, 从而曲线E 在P 处的切线斜率k 2=x 24, 直线BC 的斜率k 1=x 2
18x 1-x 12
=x 14, 于是k 1k 2=x 1x 216=-1616
=-1. 因此QC ⊥PQ ,所以△PQC 恒为直角三角形.
21.已知函数f (x )=a eln x 和g (x )=12
x 2-(a +e)x (a >0). (1)设h (x )=f (x )+g (x ),求函数h (x )的单调区间;
(2)当x ∈⎝ ⎛⎭
⎪⎫e 2,+∞时,M 为函数f (x )=a eln x 图象与函数m (x )=2-e x 图象的公共点,且在点M 处有公共切线,求点M 的坐标及实数a 的值.
解 (1)h (x )=a eln x +12
x 2-(a +e)x (x >0), h ′(x )=a e x +x -(a +e)=x 2-a +e x +a e x =x -a x -e x
. ①当0<a <e 时,
在x ∈(0,a )时,h ′(x )>0,函数h (x )在(0,a )上单调递增,
在x ∈(a ,e)时,h ′(x )<0,函数h (x )在(a ,e)上单调递减;
在x ∈(e ,+∞)时,h ′(x )>0,函数h (x )在(e ,+∞)上单调递增.
②当a =e 时,在x ∈(0,+∞)时,h ′(x )≥0,函数h (x )在(0,+∞)上单调递增. ③当a >e 时,在x ∈(0,e)时,h ′(x )>0,函数h (x )在(0,e)上单调递增,
在x ∈(e ,a )时,h ′(x )<0,函数h (x )在(e ,a )上单调递减;
在x ∈(a ,+∞)时,h ′(x )>0,函数h (x )在(a ,+∞)上单调递增.
综上:
当0<a <e 时,函数h (x )的单调递增区间是(0,a )和(e ,+∞);单调递减区间是(a ,e); 当a =e 时,函数h (x )的单调增区间是(0,+∞);
当a >e 时,函数h (x )的单调递增区间是(0,e)和(a ,+∞),单调递减区间是(e ,a ).
(2)设点M (x 0,y 0),x 0>e 2
,在点M (x 0,y 0)处有公共切线,设切线斜率为k , 因为f ′(x )=a e x ,m ′(x )=e x 2, 所以k =a e x 0=e x 20
,即ax 0=1, 由M (x 0,y 0)是函数f (x )=a eln x 与函数m (x )=2-e x
图象的公共点,所以y 0=a eln x 0=2-e x 0
, 化简可得a e x 0ln x 0=2x 0-e ,
将ax 0=1代入,得eln x 0-2x 0+e =0,
设函数u (t )=eln t -2t +e ⎝ ⎛⎭
⎪⎫t >e 2, u ′(t )=e t -2=e -2t t
. 因为t >e 2,u ′(t )<0,函数u (t )在⎝ ⎛⎭
⎪⎫e 2,+∞上单调递减, 因为u ⎝ ⎛⎭
⎪⎫e 2=eln e 2>0,u (e 2)=eln e 2-2e 2+e =3e -2e 2=e(3-2e)<0, 所以在t ∈⎝ ⎛⎭
⎪⎫e 2,+∞时,u (t )=eln t -2t +e 只有一个零点. 由u (e)=eln e -2e +e =0,
知方程eln x 0-2x 0+e =0在x 0∈⎝ ⎛⎭
⎪⎫e 2,+∞上只有一个实数根为x 0=e , 代入y 0=a eln x 0=a eln e =a e =1,所以M (e,1),此时a =1e
.。