二重积分对称性定理的证明与应用
- 格式:doc
- 大小:754.50 KB
- 文档页数:14
情形一:积分区域关于坐标轴对称定理4设二元函数在平面区域连续,且关于轴对称,则1)当(即就是关于得奇函数)时,有、2)当(即就是关于得偶函数)时,有、其中就是由轴分割所得到得一半区域.例5 计算,其中为由与围成得区域。
解:如图所示,积分区域关于轴对称,且即就是关于得奇函数,由定理1有、类似地,有:定理5设二元函数在平面区域连续,且关于轴对称,则其中就是由轴分割所得到得一半区域。
例6 计算其中为由所围。
解:如图所示,关于轴对称,并且,即被积分函数就是关于轴得偶函数,由对称性定理结论有:、定理6设二元函数在平面区域连续,且关于轴与轴都对称,则(1)当或时,有、(2)当时,有其中为由轴与轴分割所得到得1/4区域。
9例7 计算二重积分,其中: 、解:如图所示,关于轴与轴均对称,且被积分函数关于与就是偶函数,即有,由定理2,得其中就是得第一象限部分,由对称性知,,故、情形二、积分区域关于原点对称定理7 设平面区域,且关于原点对称,则当上连续函数满足1)时,有2)时,有、例8 计算二重积分,为与所围区域、解:如图所示,区域关于原点对称,对于被积函数,有,有定理7,得、情形三、积分区域关于直线对称定理8 设二元函数在平面区域连续,且,关于直线对称,则1);、2)当时,有、3)当时,有、例9 求,为所围、解:积分区域关于直线对称,由定理8,得,故、类似地,可得:定理9设二元函数在平面区域连续,且,关于直线对称,则(1)当,则有;(2)当,则有、例10 计算,其中为区域:, 、解:如图所示,积分区域关于直线对称,且满足,由以上性质,得:、注:在进行二重积分计算时,善于观察被积函数得积分区域得特点,注意兼顾被积函数得奇偶性与积分区域得对称性,恰当地利用对称方法解题,可以避免繁琐计算,使二重积分得解答大大简化。
㊀㊀㊀137㊀数学学习与研究㊀2022 17对称性在积分计算中的应用对称性在积分计算中的应用Һ姚晓闺㊀陈俊霞㊀丁小婷㊀(陆军炮兵防空兵学院基础部数学教研室,安徽㊀合肥㊀230031)㊀㊀ʌ摘要ɔ在数学范围内,特别是在积分方面,对称性的应用极为普遍.在研究和计算积分类的问题时,对称性的应用对简化解题过程㊁优化计算步骤的作用十分显著,这也使其成为积分计算中一种不可或缺的手段.利用对称性计算积分主要包括两方面:一是积分区域关于坐标面㊁坐标轴和原点对称的情况下被积函数具有奇偶性的积分;二是积分区域关于积分变量具有轮换对称性的情况下的积分.本文通过对各类积分的对称性进行归纳总结,使读者能够有效理解和掌握.ʌ关键词ɔ对称性;积分区域;被积函数;积分计算;积分一㊁定积分的对称性及其应用定理㊀若f(x)在[-a,a]上可积,则(1)当f-x()=-f(x)时,ʏa-af(x)dx=0;(2)当f-x()=f(x)时,ʏa-af(x)dx=2ʏa0f(x)dx.例㊀求ʏπ0xsinx1+cos2xdx.解㊀令x=π2+t,则原式=ʏπ2-π2π2+t()cost1+sin2tdt=ʏπ2-π2tcost1+sin2tdt+π2ʏπ2-π2cost1+sin2tdt=0+πʏπ20cost1+sin2tdt=πarctansintπ20=π24.二㊁重积分的对称性及其应用1.二重积分的对称性原理二重积分具有以下对称性:定理1㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴对称,则1)当f(x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0}.当D关于y轴对称时,也有类似结论.定理2㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴和y轴都对称,则1)当f(x,-y)=-f(x,y)或f-x,y()=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f-x,y()=f(x,y)时,∬Df(x,y)dxdy=4∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0,yȡ0}.定理3㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于原点对称,则1)当f(-x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(-x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.定理4㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于直线y=x对称,则1)∬Df(x,y)dxdy=∬Df(y,x)dxdy;2)当f(y,x)=-f(x,y)时,有∬Df(x,y)dxdy=0;3)当f(y,x)=f(x,y)时,有∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.当D1,D2关于直线y=-x对称时,也有类似结论.例1㊀求∬D(|x|+|y|)dxdy,其中D={(x,y)|x|+|y|ɤ1}.解㊀易知题中被积函数|x|+|y|为x,y的偶函数,且D区域具有对称性.记D1={(x,y)|x|+|y|ɤ1,且xȡ0,yȡ0},于是㊀㊀㊀㊀㊀138数学学习与研究㊀2022 17∬D(|x|+|y|)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=2ʏ101-x2()dx=43.例2㊀求∬Dx1+yf(x2+y2)[]dxdy,其中D为y=x3㊁y=1㊁x=-1所围区域,f是连续函数.解㊀此题积分区域D关于坐标轴不具有对称性,根据积分区域的特点,做辅助曲线y=-x3,将D分为D1和D2,它们分别关于y轴和x轴对称,而xyf(x2+y2)关于x是奇函数,关于y也是奇函数.故∬Dxyf(x2+y2)dxdy=∬D1xyf(x2+y2)dxdy+∬D2xyf(x2+y2)dxdy=0.原式=∬Dx1+yf(x2+y2)[]dxdy=∬Dxdxdy=ʏ0-1dxʏ-x3x3xdy=-25.2.三重积分的对称性原理定理1㊀设f(x,y,z)在区域Ω上可积,Ω关于xOy面对称,Ω1是Ω在xOy面上方部分,则有∭Ωf(x,y,z)dV=0,f(x,y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(x,y,-z)=f(x,y,z).当Ω关于其他坐标面对称时,也有类似结论.定理2㊀设f(x,y,z)在区域Ω上可积,Ω关于原点对称,Ω1是Ω位于过原点O的平面一侧的部分.则有∭Ωf(x,y,z)dV=0,f(-x,-y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(-x,-y,-z)=f(x,y,z).例㊀计算三重积分∭Ω(x+z)2dV,其中Ω为区域{(x,y,z)x2+y2+z2ɤ1,zȡ0}.解㊀设Ω1表示开球{(x,y,z)x2+y2+z2ɤ1},注意到Ω关于yOz面对称,而Ω1关于三个坐标面都是对称的,所以∭Ω(x+z)2dV=∭Ωx2+2xz+z2()dV=∭Ωx2+z2()dV=12∭Ω1x2+z2()dV=13∭Ωx2+y2+z2()dV=13ʏ2π0dθʏπ0sinφdφʏ10r4dr=415π.三㊁对弧长的曲线积分的对称性及其应用定理㊀设L是平面上分段光滑的曲线,且P(x,y)在L上连续.1)若L关于x轴对称,则ʏLP(x,y)ds=0,P(x,-y)=-P(x,-y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(x,-y)=P(x,-y).其中L1是L在上半平面的部分.当L关于y轴对称时,也有类似结论.2)若L关于原点对称,则ʏLP(x,y)ds=0,P(-x,-y)=-P(x,y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(-x,-y)=P(x,y).其中L1是L在右半平面或上半平面部分.例㊀计算ʏL3x2+2xy+4y2()ds,其中曲线L是椭圆x24+y23=1,其周长为a.解㊀由于L关于x轴对称且2xy是关于y的奇函数,故ʏL2xyds=0,则ʏL3x2+2xy+4y2()ds=ʏL3x2+4y2()ds+ʏL2xyds=ʏL3x2+4y2()ds=ʏL12ds=12ʏL1㊃ds=12a.四㊁对面积的曲面积分的对称性及其应用定理[2]㊀设有界光滑或分片光滑曲面 关于xOy平面对称,f(x,y,z)为曲面 上的连续函数,则∬ f(x,y,z)dS=0,f(x,y,-z)=-f(x,y,z);∬f(x,y,z)dS=2∬ 1f(x,y,z)dS,f(x,y,-z)=f(x,y,z).其中 1:z=z(x,y)ȡ0.㊀㊀㊀139㊀数学学习与研究㊀2022 17当 关于yOz面㊁zOx面对称时,也有类似结论.五㊁积分区域关于积分变量具有轮换对称性情况下的积分定义㊀设ΩɪR3,如果(x,y,z)ɪΩ时,都有(z,x,y),(y,z,x)ɪΩ,,则称区域Ω关于变量x,y,z具有轮换对称性.定理1[3]㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x,y,z)dV=∭Ωf(z,x,y)dV=∭Ωf(y,z,x)dV=13∭Ω[f(x,y,z)+f(z,x,y)+f(y,z,x)]dV.推论㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x)dV=∭Ωf(z)dV=∭Ωf(y)dV.定理2㊀设积分区域D关于变量x,y具有轮换对称性,则有∬Df(x,y)dσ=∬Df(y,x)dσ=12∬D[f(x,y)+f(y,x)]dσ.对于第一类曲线积分和曲面积分,同理可得到如下定理:定理3㊀设曲线Γ关于变量x,y,z具有轮换对称性,则有ʏΓf(x,y,z)ds=ʏΓf(z,x,y)ds=ʏΓf(y,z,x)ds=13ʏΓ[f(x,y,z)+f(z,x,y)+f(y,z,x)]ds.定理4㊀设曲面 关于变量x,y,z具有轮换对称性,则有∬f(x,y,z)dS=∬f(z,x,y)dS=∬f(y,z,x)dS=13∬[f(x,y,z)+f(z,x,y)+f(y,z,x)]dS.例1㊀计算二重积分∬Daf(x)+bf(y)f(x)+f(y)dσ,其中D={(x,y)x2+y2ɤ4,xȡ0,yȡ0},f(x)为D上的正值连续函数,a,b为常数.解㊀易知积分区域D关于变量x,y具有轮换对称性,由定理2,得∬Daf(x)+bf(y)f(x)+f(y)dσ=12∬Daf(x)+bf(y)f(x)+f(y)+af(y)+bf(x)f(y)+f(x)éëêêùûúúdσ=12(a+b)∬Ddσ=12(a+b)ˑ14πˑ22=(a+b)2π.例2㊀计算曲线积分ɥΓ(y2+z2)ds,其中Γ:x2+y2+z2=a2,x+y+z=0.{解㊀因为积分区域Γ关于变量x,y,z具有轮换对称性,由定理3,得ɥΓy2ds=ɥΓz2ds=13ɥΓ(x2+y2+z2)ds=13a2ɥΓds=13a2ˑ2πa=23πa3,所以,ɥΓ(y2+z2)ds=2ɥΓy2ds=43πa3.六㊁结束语本文通过实际例题有力地说明了对称性方法对计算效率的提高和优化是切实可行的.通过各类积分综合题的计算回顾了对称性的相关知识点,较好地说明了对称性在积分计算中的应用.与其他解题方法相比较,对称性由于其显著的优化作用和简单易用,在积分领域一骑绝尘,得到了广泛的应用,使读者在领略数学独特魅力的同时,还激发人们无尽的想象力,使对称性的应用充满无限的可能.ʌ参考文献ɔ[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2007:80-86.[2]胡纪华,王静先.对称性在曲线积分及曲面积分计算中的应用[J],江西科学,2012(1):1-4.[3]秦勇.轮换对称性在积分中的应用[J].常州工学院学报,2015(3):68-71.[4]张锴.对称性在物理问题中的应用[J].科技信息,2011(35):895-896.[5]刘洁,戴长城.对称性在积分计算中的应用[J].邵阳学院学报,2008(4):28-32.[6]曹斌,孙艳.对称性在积分计算中的应用[J].吉林师范大学学报,2012(3):130-133.[7]张东,张宁.对称性在物理学中的应用研究[J].北京联合大学学报,2006(1):21-24.[8]费时龙,张增林,李杰.多元函数中值定理的推广及应用[J].安庆师范学院学报,2011(1):88-89.。
对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系, 小到分子原子.根据对称性, 我们就可以把复杂的东西简单化,把整体的东西部分化. 本文介绍运用数学中的对称性来解决积分中的计算问题, 主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性, 从而简化定积分、重积分、曲线积分、曲面积分的计算方法. 另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算. 积分的计算是高等数学教学的难点, 在积分计算时, 许多问题用“正规” 的方法解决,反而把计算复杂化, 而善于运用积分中的对称性,往往能使计算简捷, 达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献引言积分的对称性包括重积分、曲线积分、曲面积分的对称性•在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果•下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨•本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义•二、相关的定义定义1:设平面区域为D ,若点(x, y) • D= (2a-x,y),则D关于直线x = a对称,对称点(x,y)与(2a - x,y)是关于x = a的对称点•若点(x, y) € D = (x,2b-y)-D(x, y),则D关于直线y二b对称,称点(x, y)与(x,2b - y)是关于y = b的对称(显然当a =0,b = 0对D关于y , x轴对称).定义2:设平面区域为D ,若点(x, y) • D = (y—a,x-a),则D y二x,a对称,称点(x, y)与(y - a, x - a)是关于y 二x • a 的对称点.若点(x, y) • D = (a - y,a - x)-D,贝U D关于直线y 对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义.空间对称区域.定义3: (1)若对-(x, y, z^ 1,点(x,y,-z)・1 ,则称空间区域门关于xoy面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.⑵ 若对P(x, y, z)匕0 ,二点(x, y,—z)匕O ,则称空间区域0关于z轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对_(x, y, z^ 1 1, -J点(-x,-y,-z) • 11,则称空间区域门关于坐标原点对称.⑷ 若对一(x, y,z) •门,T点(y,乙x),(z, x, 1 1 ,则称空间区域门关于x, y, z具有轮换对称性.定义4:若函数f(x)在区间- a,a上连续且有f(x-a) = f(x • a),则f(x)关于x二a对称当且仅当a = 0时f (-x)二f (x),则f (x)为偶函数.若f (a - x) =-f (a x),则f(x)为关于a,0中心对称.当且仅当a=0时有f(_x)-_f(x)则f(x)为奇函数.若f (x -a) = f (x • a)且f (a -x) = - f (a x)则f (x)既关于x = a对称,又关于a,0 中心对称.定义5 若n元函数f(X i,X2,…,X n)三f (X i,X i 1,…,X n,X i,…,x:丄),(i =1,2,…,n ), 则称n元函数f (X i,X2,…,X n)关于X i,X2,…,X n具有轮换对称性•定义6:若- p(X i,X2, ,X n) D n R n( n N)有P i(X i,X i 1, ,X n,X i,厶J D n(i =1,2,…,n)成立,则称D n关于p(X i,X2,…,X n)具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算■在特殊情况下,甚至可以求出原函数不是初等函数的定积分■因此掌握对称性在积分中的方法是必要的■下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用■引理设函数f (x)在a - h, a h上连续,则有f (x)dx = f (a x) f (a - x) dx (1)证令x二a t,有a h h hf(x)dx f(a t)dt f(a t)dta -h ' -h 0令t u,则0 0 hf (a t)dt = f (a -u)du = i f (a - u)du•山h 0将( 3)式带入(2)式,并将积分变量统一成x ,则(x)dx = ° f (a x) f (a - x)dx dx特别地,令a =0,就得公式:f(x)dx= :〔f(x) f (-x)d x由函数奇偶性的定义及上式,易知定理1设函数f (x)在[- h, h上连续,那么h h2)若 f(x)为偶函数,则f(x)dx=2 f(x)dx■_hoh3)若f(x)为奇函数,则 』f(x)dx=O次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.2一 : cosxdx 2_ cosxdx匕x 21 2 2cosxdx=2注:而对于任 意区间上的定积分问题,可以平移 到对称区间Lh,h 1上求解。
㊀㊀㊀125㊀㊀对称性在二重积分计算中的应用对称性在二重积分计算中的应用Һ陈楚申1㊀廖小莲2㊀(1.湖南工业大学数学与应用数学专业1802班,湖南㊀株洲㊀412000;2.湖南人文科技学院数学与金融学院,湖南㊀娄底㊀417000)㊀㊀ʌ摘要ɔ‘数学分析“是所有高校数学与应用数学专业的一门重要的基础课,二重积分是‘数学分析“的内容之一,解二重积分的常见方法是在直角坐标系或极坐标系下根据积分区域的类型将其转化为定积分后进行计算,但遇到比较复杂的积分计算或证明时,常规方法解题有局限性.我们如果能灵活运用积分区域和被积函数的对称性,那么许多积分的解题过程可以得到简化.本文着重讨论了对称性在二重积分计算中的应用,并借助实例分五种情况进行了讨论,指出了对称性解题的优点及应该注意的条件.ʌ关键词ɔ二重积分;对称性;应用ʌ基金项目ɔ湖南省普通高校教学改革研究项目(编号:湘教通 2019 291号No920)1㊀引㊀言二重积分是二元函数在平面区域上的积分,在‘数学分析“中占据着重要的地位,对我们学习诸如‘概率论与数理统计“等后续课程至关重要,其在几何㊁力学等多方面都有着广泛的应用.因此,灵活掌握二重积分的计算是十分必要的.我们知道,二重积分的计算是通过将该二重积分转化为定积分而实现的,但这个转化过程既要受积分区域的类型又要受被积函数的特点的约束.在直角坐标系下,我们将积分区域分为X-型区域和Y-型区域,或者将区域的划分转化为X-型区域与Y-型区域的和,然后再将二重积分化为先对y后对x和先对x后对y的累次积分.有时我们利用二重积分的变量变换公式,可使得被积函数简单化或积分区域简单化.除此之外,用极坐标来计算二重积分也是常见的办法.但是,有些二重积分,单纯用这些方法来计算,计算量会很大且容易出错.我们如果能够充分利用积分区域的对称性和被积函数的奇偶性,有时就可达到事半功倍的效果.因此,本文对对称性在二重积分计算中的应用进行较详细的探讨,并辅以实例来分析二重积分的具体计算过程.2㊀文献综述积分学是‘数学分析“课程中的重要内容,而二重积分是积分学的重要组成部分,是学习曲线积分㊁三重积分问题的基础.许多学者对二重积分的计算的问题进行了研究,并给出了一些好的计算方法和计算技巧.张云艳在文献[1]中举例说明了积分区城的轮换对称性在积分计算中的应用,指出我们在某些复杂的积分计算过程中,若能注意并充分利用积分区域轮换对称性或被积函数的奇偶对称性,往往可以简化计算过程,提高解题的效率.马志辉在文献[2]中对对称性在积分中的应用进行了研究,文章首先阐述了对称性在多元函数积分下的性质,并借助实例对对称性在积分中的应用进行了研究,主要考虑了两种情况:一是当且仅当积分区域和被积函数都具有对称性时,我们可以利用对称性简化积分的计算,二是当积分区域和被积函数具有轮换对称性时,我们也可以利用对称性简化二重积分的计算.葛淑梅在文献[3]中通过由类比一元连续函数在对称区间上定积分的计算方法,导出二元连续函数在对称区域上二重积分的计算方法,使得对称区域上难于计算的二重积分得以简化.在原被积函数不具备奇偶性计算困难的情况下,利用积分对积分区域的可加性,将其转换为几个容易计算的二重积分来计算.景慧丽㊁屈娜在文献[4]中介绍了二重积分的计算具有较大的开放性,针对一道二重积分的题目存在许多计算方法,并且对每种方法的使用技巧及使用范围进行了说明,这可以培养学生的思维发散性.刘红梅在文献[5]中对二重积分的求解进行了研究,通过证明和推导指出二重积分在区域对称以及函数奇偶下有简便算法,并通过具体的实例进行求解进一步证明,巧妙利用二重积分的对称性质能极大地简化二重积分问题,提高求解的效率.3㊀对称性在二重积分计算中的应用利用对称性计算二重积分∬Df(x,y)dσ,既要考虑积分区域的对称性,又要考虑被积函数f(x,y)关于某一自变量x或y的奇偶性,而且还要将被积函数的奇偶性与积分区域的对称性相结合进行考虑.我们如果能充分利用对称性来考虑二重积分问题,那么很多时候可以简化计算.3.1㊀平面区域D是关于y轴对称的情形引理1㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于y轴对称,则有如下结论:(1)当被积函数f(x,y)关于自变量x为奇函数时,即f(-x,y)=-f(x,y),则二重积分∬Df(x,y)dσ=0;(2)当被积函数f(x,y)关于自变量x为偶函数时,即f(-x,y)=f(x,y),则二重积分∬Df(x,y)dσ=2∬D1f(x,y)dσ,其中D1是平面区域D的右半部分,即D1=(x,y)ɪD|xȡ0{}.例1㊀计算二重积分∬Dxsin(x2+y2)dxdy,其中D=(x,y)x2+y2ɤ2y{}.解㊀因为积分域D关于y轴对称,被积函数f(x,y)=xsin(x2+y2)是关于x的奇函数,所以由对称性得∬Dxsin(x2+y2)dxdy=0.3.2㊀平面区域D是关于x轴对称的情形引理2㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于x轴对称,则有如下结论:(1)当被积函数f(x,y)关于自变量y为奇函数时,即f(x,-y)=-f(x,y),则二重积分∬Df(x,y)dσ=0;(2)当被积函数f(x,y)关于自变量y为偶函数时,即f(x,-y)=f(x,y),则二重积分∬Df(x,y)dσ=2∬D2f(x,y)dσ,其中D2是平面区域D的上半部分,即D2={(x,y)ɪD|yȡ0}.㊀㊀㊀㊀㊀126㊀例2㊀计算二重积分∬D(xy2+xyex2+y22)dxdy,其中D是由直线x=1,y=x与y=-x所围区域.解㊀由积分对区域的可加性,有∬Dxy2+xyex2+y22()dxdy=∬Dxy2dxdy+∬Dxyex2+y22dxdy.设区域D:0ɤxɤ1,-xɤyɤx,{区域D1:0ɤxɤ1,0ɤyɤx,{则区域D是关于x轴对称的区域,且函数f(x,y)=xy2是关于y的偶函数,函数g(x,y)=xyex2+y22是关于y的奇函数,因此,由上面的引理知,∬Dxy2dxdy=2∬D1xy2dxdy,∬Dxyex2+y22dxdy=0,所以原二重积分∬D(xy2+xyex2+y22)dxdy=∬D12xy2dxdy=ʏ10dxʏx02xy2dy=215.3.3㊀平面区域D是关于y轴以及x轴均对称的情形引理3㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于y轴以及x轴均对称,则如果f(x,y)关于变量x,y都是偶函数,即f(-x,y)=f(x,y),且f(x,-y)=f(x,y),则∬Df(x,y)dσ=4∬D3f(x,y)dσ,其中D3是平面区域D在第一象限的部分,即D3=(x,y)ɪD|xȡ0,yȡ0{}.例3㊀计算二重积分:∬D(x+y)dxdy,其中区域D的范围是x+yɤ1.解㊀区域D是关于两坐标轴都对称的区域,同时被积函数f(x,y)=x+y关于变量x,y都是偶函数,由引理3知∬D(x+y)dxdy=4∬D1(x+y)dxdy,其中D1为区域D中的第一象限所在的部分且D1是关于直线y=x对称的,所以∬D(x+y)dxdy=4∬D1(x+y)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=43.其中D1是平面区域D在第一象限的部分,即D1={(x,y)ɪD|xȡ0,yȡ0}.3.4㊀平面区域D是关于原点对称的情形引理4㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于原点对称,则:(1)如果f(x,y)关于变量x为奇函数而关于y是偶函数(或者f(x,y)关于变量x为偶函数而关于y是奇函数),则∬Df(x,y)dσ=∬D1f(x,y)dσ+∬D1f(-x,-y)dσ=0;(2)如果f(x,y)关于变量x,y都是偶函数(或者f(x,y)关于变量x,y都是奇函数),则∬Df(x,y)dσ=2∬D1f(x,y)dσ,其中D1为原点一侧的部分.例4㊀计算二重积分:I=∬Dxydσ,其中平面区域D是由方程(x2+y2)2=2xy所确定的区域.解㊀因为区域D是关于原点对称的,且被积函数f(x,y)=xy关于变量x为奇函数,关于变量y也为奇函数,所以由引理4,有:I=2∬D1xydσ,其中D1为平面区域D的第一象限部分.下面利用极坐标计算此二重积分,得I=2∬D1xydσ=2ʏπ20cosθsinθdθʏsin2θ0γ2dγ.(计算略)3.5㊀平面区域D具有轮换对称性的情形引理5㊀若二元函数f(x,y)在平面区域D上连续,则:(1)如果积分区域D关于x,y具有轮换对称性,则∬Df(x,y)dxdy=∬Df(y,x)dxdy=12∬D(f(x,y)+f(y,x))dxdy.(2)如果区域D关于直线y=x对称,则:①如果被积函数满足f(x,y)=f(y,x),则∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.②如果被积函数满足f(x,y)=-f(y,x),则∬Df(x,y)dxdy=0.其中D1为D位于直线y=x上半部分的区域.例5㊀计算二重积分I=∬Dx2-y2x+y+3dxdy,其中区域D=(x,y)丨x+yɤ1{}.解㊀因为在积分区域中x与y互换不影响积分结果,所以该积分具有轮换对称性,由引理5,我们可得:∬Dx2x+y+3dxdy=∬Dy2x+y+3dxdy所以I=∬Dx2x+y+3dxdy-∬Dy2x+y+3dxdy=∬Dx2x+y+3dxdy-∬Dx2x+y+3dxdy=0.小结:该题巧用了积分区域的轮换性简化了计算,解题十分容易,但如果用常规方法求解,计算量很大.二重积分是‘数学分析“中积分学的重要内容之一,是学习后续课程的基础.二重积分计算的方法灵活,常常是借助直角坐标系或极坐标系,将二重积分化为定积分进行计算,但遇到比较复杂的积分计算或证明时,常规方法解题有局限性.对于被积函数或者积分区域具有某种对称性的积分计算问题,我们如果能灵活运用对称性,那么许多积分的解题过程可以化繁为简㊁化难为易,提高解题效率.ʌ参考文献ɔ[1]张云艳.轮换对称性在积分计算中的应用[J].毕节师范高等专科学校学报,2002(03):90-92.[2]马志辉.对称性在积分计算中的应用[J].高等数学研究,2017(01):102-105.[3]葛淑梅.对称区域上二重积分的简化计算方法[J].焦作大学学报,2018(01):101-103.[4]景慧丽,屈娜.一个二重积分的计算方法探讨[J].商丘职业技术学院学报,2018(01):74-76.[5]刘红梅.二重积分计算巧用对称性简化求解[J].普洱学院学报,2018(06):45-47.。
二重积分的对称性
对称性计算二重积分:当被积函数integrand是奇函数时,在对称于原点的区域内积
分为0。
被积函数或被积函数的一部分是否关於某个坐标对称,积分区间是否对称,如果
可以就可以用对称性,只用积分一半再乘以2。
性质须知:
1、被内积函数提供更多不定积分内积出的函数,虽然看看可以探讨原函数的奇偶性,但是探讨分数函数回去奇偶性时,考量的仅仅就是被内积函数。
2、有界性:设函数f(x)在区间x上有定义,如果存在m\ue0,对于一切属于区间x 上的x,恒有|f(x)|≤m,则称f(x)在区间x上有界,否则称f(x)在区间上无界。
3、单调性:设立函数f(x)的定义域为d,区间i涵盖于d。
如果对于区间上任一两点x1及x2,当x1\ucx2时,恒存有f(x1)\ucf(x2),则表示函数f(x)在区间i上
就是单调递减的。