城市轨道交通自动化系统概述
- 格式:ppt
- 大小:17.35 MB
- 文档页数:30
城市轨道交通的自动化控制与信号系统研究随着城市人口的快速增长和交通需求的不断增加,城市轨道交通系统变得越来越重要。
为了满足市民的出行需求,提高交通效率和安全性,自动化控制与信号系统在城市轨道交通中的应用越来越普遍。
本论文将对城市轨道交通的自动化控制与信号系统进行研究和分析。
一、自动化控制系统在城市轨道交通中的应用(500字)1.1 自动驾驶技术在地铁系统中的应用随着科技的进步,自动驾驶技术在城市轨道交通系统中得到了广泛的应用。
本节将介绍自动驾驶技术在地铁系统中的应用,并讨论其对交通效率和安全性的影响。
1.2 自动列车运行控制系统的优势自动列车运行控制系统是提高城市轨道交通系统效率和安全性的关键技术之一。
本节将介绍自动列车运行控制系统的原理和优势,并分析其对交通系统的影响。
1.3 自动化信号系统的设计和实施自动化信号系统在城市轨道交通中起着重要的作用。
本节将探讨自动化信号系统的设计和实施,包括信号灯控制、区间控制和列车调度等方面。
二、城市轨道交通信号系统的现状与挑战(500字)2.1 城市轨道交通信号系统的发展历程城市轨道交通信号系统的发展经历了多年的演变和改进。
本节将回顾城市轨道交通信号系统的发展历程,并分析其中的关键技术和应用。
2.2 城市轨道交通信号系统存在的问题与挑战城市轨道交通信号系统在实际应用中面临一些问题和挑战。
本节将分析这些问题和挑战,并提出改进和解决方案,以进一步提高交通系统的效率和安全性。
2.3 国内外城市轨道交通信号系统的比较研究通过对国内外城市轨道交通信号系统的比较研究,可以更好地了解各地的技术应用和发展趋势。
本节将比较不同城市轨道交通系统的信号系统,并分析其优势和不足。
三、城市轨道交通自动化控制与信号系统的未来发展(500字)3.1 城市轨道交通自动化控制系统的新技术应用城市轨道交通自动化控制系统在不断发展和改进,新技术的应用为交通系统的效率和安全性带来了新的突破。
本节将介绍一些新技术的应用,例如人工智能、大数据和物联网等,并讨论其对城市轨道交通系统的影响。
城市轨道交通全自动运行系统分析一全自动运行系统现状(一)全自动运行系统的概念及发展过程1.全自动运行系统的发展过程国外全自动运行系统的运营发展过程是循序递进的。
1983年法国里尔开通了世界上第一条全自动运行系统的城轨线路,1998年法国巴黎14号线首次实现了无人值守,2003年新加坡东北线开通,标志着全自动运行系统在大运量的地铁中应用(见表1)。
|Excel下载表1 国外全自动运行系统发展过程2.全自动运行系统及自动化等级全自动运行系统是基于现代计算机、通信、控制和系统集成技术,由信号、车辆、综合监控、通信、站台门等与列车运行相关的设备组成,实现列车运行全过程自动化的系统。
根据中国城市轨道交通协会发布的团体标准《城市轨道交通全自动运行系统规范第1部分:需求》(T/CAMET 04017.1-2019),我国城市轨道交通不同运行自动化等级包括GoA0(人工驾驶运行模式)、GoA1(非自动化驾驶运行模式)、GoA2(半自动化驾驶运行模式)、GoA3(无人驾驶运行模式)、GoA4(无干预运行模式),其中全自动运行系统包含自动化等级GoA3、GoA4,即全自动运行系统的运行模式包括有人值守下的列车自动运行(Driverless Train Operation,简称DTO)和无人值守下的列车自动运行(Unattended Train Operation,简称UTO)。
3.全自动运行系统的主要特点全自动运行系统将列车司机执行的工作完全由自动化的、高度集中控制的列车运行系统完成,实现了行车计划自动匹配、列车自动唤醒、自检、列车自动出入库、列车自动运行及停站、自动开关车门/站台门、列车自动折返、列车自动回库休眠、自动洗车等主要功能,具有常规运行、降级运行和灾害工况等多种运行场景。
全自动运行系统实现了列车的全自动运行,关键运行设备采用了冗余技术,同时又具备状态自检测和故障自诊断等功能,不仅能够减少大量的人工操作,降低劳动强度,提高运营效率,而且能够提升系统可靠性,具备更高的可用性、安全性,受到了全球各个城市轨道交通运营商的青睐。
现代城市轨道交通综合自动化系统的研究摘要:电伴随着物联网技术、大数据技术在城市轨道交通中的应用,城市轨道交通越来越向着智能化发展,而智能化变革也为智能运维方法的设计提供了技术支撑。
针对交通车辆的全生命周期进行分析,明确智能运维管理应该从车辆制造、运营管理和故障维修等方面入手。
结合城市轨道交通发展现状,应用新一代信息感知技术和通信技术,设计了以故障维修为主、运行效率提升为辅的智能运维策略。
但是,该方法实施成本较高。
本文主要分析现代城市轨道交通综合自动化系统。
关键词:自动化技术;城市轨道交通;智能运维;故障跟踪引言将监控箱与云平台、手机APP相连接,实现远程监控、自动报警等多项功能,达到精细化管控城市轨道交通的效果。
但是,该运维方法的故障处理时间较长。
考虑到上述文献提出的智能运维方法存在较多不足之处,无法满足城市轨道交通运维的自动化要求。
为此,文中应用自动化技术,建立了以自动化技术为核心的智能运维体系,以此为基础提升城市轨道交通智能运维效率。
1、城市轨道交通设备运维现状城市轨道交通设备运维涉及行车类设备和非行车类设备:前者包括包含车辆、信号、通信、供电等设备;后者主要指各类车站设备,如PIS、AFC、CCTV、电扶梯、屏蔽门等设备。
线网和运营规模不断扩张,导致城轨设备的数量迅速增加,但设备运维水平并未得到明显提升,现有的设备运维系统主要存在以下几个问题:1)终端检测监测设备智能感知水平不高,感知覆盖范围有限,监测信息不全面。
2)运维系统通常根据专业分别独立建设,各专业相关设备运维较为分散,各系统、各专业间互联互通性差,很难实现各专业协同运维。
3)各专业运维数据共享程度低,容易形成数据孤岛,数据关联融合应用能力和数据智能分析较为薄弱。
4)设备多采取故障修与预防修相结合的检修方式,无法有效地转变为状态修,且普遍依靠人工完成,设备维修维护成本高且效率低。
5)受网络带宽和运维系统架构的影响,终端设备运维数据难以实时传输、处理、分析、存储和应用,系统实时性差。
城市轨道交通全自动运行系统应用的分析摘要:本文先分析了全自动运行系统的优点,然后探究了全自动运行系统的应用,接下来对全自动运行系统主要技术原则以及全自动运行系统和常规驾驶系统的主要区别进行了研究,以供相关的工作人员参考借鉴。
关键词:城市轨道交通;全自动运行;系统1全自动运行系统的优点轨道交通全自动运行(Fully Automatic Operation,FAO)是基于现代计算机、通信、控制和系统集成等技术实现列车运行全过程自动化的新一代轨道交通控制系统,是进一步提升现有基于通信的列车运行控制(Communication- basedTrain Control,CBTC)系统的安全性和效率的国际公认发展方向。
FAO系统具有传统CBTC系统之外的更多优点,包括如下方面:(1)高度自动化、多专业系统集成度深,各系统高效联动控制,实现列车运行的全面监控及乘客服务功能;(2)充分的冗余配置,保证运行高可用性;(3)更加完善的安全防护功能,增强了工作人员、乘客、障碍物、应急情况下的防护;(4)提高效率、节能减排,实现列车运行、供电、车站机电设备的综合节能优化运行;(5)完全兼容常规驾驶模式。
因此,FAO系统是城市轨道交通技术的发展方向。
目前我国尚处在起步阶段,与国际差距较大。
但随着我国国产化信号、综合监控、车辆等关键系统已实现自主化,并且具有一定的成熟性,我国已经具备研发FAO系统的条件,因此,在新一轮的建设中有必要大力发展自主化FAO系统,推动自主化装备达到国际先进水平并引领该项技术。
2全自动运行系统应用截止2016年7月,全球已建成6条无人自动驾驶的轨道交通线路,共789km。
北京地铁燕房线于2017年12月开通,是我国首条自主研发的全自动运行线路。
国际公共交通协会(UITP)预测,全自动运行在今后将会有一个巨大的增长,2022年全球将有2000公里以上的地铁线路采用全自动运行方式,75%新线将采用FAO技术,40%的既有线改造时将采用FAO技术。