多项式理论
- 格式:ppt
- 大小:1.27 MB
- 文档页数:57
数学中的正交多项式理论研究正交多项式是数学中的一种重要概念,在统计学、物理学、工程学、金融等领域中都有广泛的应用。
它们的理论研究也是现代数学中的一个重要分支。
本篇文章将介绍正交多项式的基本概念、性质和应用,并简要探讨正交多项式的研究现状。
一、正交多项式的基本概念正交多项式是一组相互正交的多项式。
简单来说,就是它们在一定的定义域内满足一定的正交性质。
其中最著名的就是勒让德多项式、拉盖尔多项式、埃尔米特多项式和切比雪夫多项式。
勒让德多项式是指满足勒让德方程 $P_n(x)=\frac{1}{2^nn!}\frac{d^n}{dx^n}((x^2-1)^n)$ 的多项式 $P_n(x)$。
勒让德多项式是正交多项式的代表之一,它们在定义域 $[-1,1]$ 上相互正交。
勒让德多项式具有广泛的应用,如估计球形体积、计算球面积、解决一些微积分方程等。
拉盖尔多项式是指满足拉格尔方程 $x y''+(1-x)y'+ny=0$ 的多项式 $L_n(x)$。
拉盖尔多项式也是正交多项式的代表之一,它们在定义域 $(0,\infty)$ 上相互正交。
拉格尔多项式是用来描述一堆相互独立的分子通过碰撞而达到热平衡时,粒子的能量分布和概率分布的函数。
埃尔米特多项式是指满足埃尔米特方程 $y''-2xy'+2ny=0$ 的多项式 $H_n(x)$。
埃尔米特多项式也是正交多项式的代表之一,它们在定义域 $(-\infty,\infty)$ 上相互正交。
埃尔米特多项式常被应用于描述量子力学中粒子的状态,特别是谐振子的状态。
切比雪夫多项式是指满足切比雪夫方程 $(1-x^2)y''-xy'+n^2y=0$ 的多项式 $T_n(x)$。
切比雪夫多项式也是正交多项式的代表之一,它们在定义域 $[-1,1]$ 上相互正交。
切比雪夫多项式常用于数值逼近和信号处理等领域中。
多项式的基本概念和性质多项式是数学中的一种基本概念,它是由若干个单项式相加或相减而成的函数。
多项式包含了许多重要的性质和特征,具有极高的应用价值。
本文将介绍多项式的基本概念和性质,希望能为读者深入了解多项式提供帮助。
1. 多项式的定义及基本概念多项式是由若干个单项式相加或相减而成的函数,通常用字母x来表示自变量,常数a1、a2、……、an和非负整数k1、k2、……、kn来表示系数和指数,多项式的一般形式可以写成:f(x) = a1x^k1 + a2x^k2 + …… + anx^kn其中,ai和ki都是实数。
如果所有的ki都是非负整数,那么此多项式就称为非负整数幂次多项式。
多项式中最高次项的指数称为多项式的次数,用symbolic degree(f(x)) 表示。
其次数不为0的多项式称为非零多项式,而次数为0的多项式则称为常数多项式。
例如,f(x) = 3x^4 - 2x^3 + x^2 - 4x + 8是一个4次多项式,其次数为4;g(x) = 2x^3 - 3x^2 + 4x - 1是一个3次多项式,其次数为3;h(x) = 5是一个常数多项式,其次数为0。
2. 多项式的性质多项式具有众多的性质,以下列举其中几个重要的性质:(1)多项式的加法和减法具有可交换性和可结合性,即对于任意多项式f(x)、g(x)和h(x)以及实数a和b,都有:f(x) + g(x) = g(x) + f(x)(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x))f(x) + 0 = f(x)f(x) - f(x) = 0a(f(x) + g(x)) = af(x) + ag(x)(a + b)f(x) = af(x) + bf(x)(2)多项式的乘法具有可交换性和可结合性,即对于任意多项式f(x)、g(x)和h(x),都有:f(x)g(x) = g(x)f(x)(f(x)g(x))h(x) = f(x)(g(x)h(x))(3)多项式的除法不一定有余数,但如果有余数,则余数的次数一定小于被除多项式的次数。
多项式的定义是什么多项式函数以其简单的结构和性质在数值逼近中起到重要的作用,多项式的定义是什么?以下是店铺为大家整理的关于多项式的定义,欢迎大家前来阅读!多项式的定义多项式是代数学中的基础概念,是由称为不定元的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。
例如X2 - 3X + 4就是一个多项式。
多项式是整式的一种。
不定元只有一个的多项式称为一元多项式;不定元不止一个的多项式称为多元多项式。
多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。
多项式数学术语多项式 polynomial不含字母的项叫做常数项。
如:5X+6,6就是常数项。
比较广义的定义,1个或0个单项式的和也算多项式。
按这个定义,多项式就是整式。
实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。
0作为多项式时,次数为正无穷大。
单项式和多项式统称为整式。
多项式几何特性多项式是简单的连续函数,它是平滑的,它的微分也必定是多项式。
泰勒多项式的精神便在于以多项式逼近一个平滑函数,此外闭区间上的连续函数都可以写成多项式的均匀极限。
多项式定理基本定理代数基本定理是指所有一元 n 次(复数)多项式都有 n 个(复数)根。
高斯引理两个本原多项式的乘积是本原多项式。
应用高斯引理可证,如果一个整系数多项式可以分解为两个次数较低的有理系数多项式的乘积,那么它一定可以分解为两个整系数多项式的乘积。
这个结论可用来判断有理系数多项式的不可约性。
关于Q[x]中多项式的不可约性的判断,还有艾森斯坦判别法:对于整系数多项式,如果有一个素数p能整除αn-1,αn-2,…,α1,α0,但不能整除αn,且p2不能整除常数项α0,那么ƒ(x)在Q上是不可约的。
由此可知,对于任一自然数n,在有理数域上xn-2是不可约的。
因而,对任一自然数n,都有n次不可约的有理系数多项式。
分解定理F[x]中任一个次数不小于 1的多项式都可以分解为F上的不可约多项式的乘积,而且除去因式的次序以及常数因子外,分解的方法是惟一的。
第一章多项式多项式理论是高等数学研究的基本对象之一,在整个高等代数课程中既相对独立,又贯穿其他章节。
换句话说,多项式理论的讨论可以不依赖于高等数学的其他内容而自成体系,却可为其他章节的内容提供范例与理论依据。
本章主要讨论多项式的基本概念与基本性质,包括数域的概念、一元多项式的定义与运算规律、整除性、因式分解及根等概念。
对于多元多项式,则主要讨论字典排列法与对称多项式。
一重难点归纳与分析(一)基本内容概述多项式理论又分为一元多项式与多元多项式两大部分,其中一元多项式主要讨论:1.一元多项式的基本概念与基本性质:主要讨论数域的概念、一元多项式的定义与运算规律。
2.一元多项式的整除性理论:主要讨论带余除法与余数定理、整除的基本概念与基本性质、最大公因式和互素的基本概念与基本性质。
3.一元多项式的因式分解理论:主要讨论不可约多项式的基本概念与基本性质、因式分解及其唯一性定理、三个特殊数域上的多项式分解。
4.一元多项式的根与重根:主要讨论重因式的定义与性质、多项式的根、多项式根的个数定理。
多元多项式则主要讨论多元多项式的基本概念、字典排列法与对称多项式。
(二)重难点归纳本章的重点为一元多项式的概念,因式分解理论,多项式的根和对称多项式;难点为最大公因式的定义,一元多项式的整除性,一元多项式的整除、最大公因式、互素及不可约多项式等概念的联系与区别。
(三)题型归类与分析本章的基本题型主要有:1.关于一元多项式的基本概念,通常有一元多项式的比较次数法、比较系数法,用以确定多项式的次数及证明有关命题。
2.关于一元多项式整除性理论,通常有多项式整除性的检验、最大公因式的求法、互素的判别、按幂展开等等,可采取综合除法、带余除法、辗转相除法、待定系数法、反证法及利用多项式的整除、最大公因式、互素等定义与性质求证有关命题。
3.关于一元多项式的因式分解理论,通常有多项式的可约性判别、因式分解、重因式的判别等等,可采取艾森斯坦判别法、克龙莱克尔分解法、求有理根的分解法、分离重因式法、辗转相除法以及利用不可约多项式的定义与性质求证有关命题。