第八章 弹性体的应力和应变
- 格式:ppt
- 大小:585.00 KB
- 文档页数:16
弹性体的应变与应力特性弹性体是一种特殊的材料,具有独特的应变和应力特性。
在应用中,了解弹性体的应变和应力特性对于设计和制造具有弹性特性的产品至关重要。
首先,了解什么是应变。
应变是弹性体在受力作用下发生的形变量。
它通常以变形体积与初始体积之比来表示。
当施加外力时,弹性体内的分子或原子之间的相对位置会发生变化,从而引起材料的形变。
应变是弹性体发生的可逆性变形,即当外力消失时,弹性体会恢复到原始形态。
而应力则是弹性体内部由于外界施加力而产生的内部力。
应力和力的大小成正比,与受力点附近的弹性体横截面积成反比。
应力可以分为拉伸应力、压缩应力和剪切应力等。
在材料的应变-应力曲线中,通常可以观察到不同阶段的特征。
首先是线性弹性阶段,这个阶段的特点是应变与应力成正比。
当外力移除时,弹性体会回到原始状态,没有留下永久变形。
接着是屈服点之后的塑性变形阶段。
在这个阶段,应变增加,但材料没有完全失去可逆性。
当外力移除后,材料会部分恢复,但仍然存在永久塑性变形。
最后是断裂阶段,材料无法恢复原状,会发生破裂。
这时,应变和应力之间的关系失去线性关系,也就是材料的断裂点。
弹性体的应变和应力特性对于产品设计和材料选择至关重要。
学习和预测这些特性可以帮助工程师选择恰当的材料,并了解产品在受力时的行为。
例如,汽车制造业中常用的悬挂系统。
这些悬挂系统需要具有弹性特性,以吸收和缓解车辆在不平路面上的震动和冲击。
由于弹性体的应变和应力特性,悬挂系统可以使车辆在行驶过程中保持稳定性和驾驶舒适度。
另一个例子是运动鞋的制造。
在设计运动鞋的缓震系统时,工程师必须考虑弹性体的应变和应力特性。
优秀的缓震系统可以缓解由于跑步等运动产生的震动和冲击,为运动员提供更加舒适和安全的体验。
除了产品设计,了解弹性体的应变和应力特性还有助于研究材料的性能和改进材料的制造工艺。
利用工程分析和模拟方法,可以精确地预测弹性体在不同受力情况下的行为,进而优化产品的设计和生产过程。
力学(第二版)漆安慎习题解答第八章弹性体的应力和应变第八章一、基本知识小结1•弹性体力学研究力与形变的规律;弹性体的基本形变有拉伸压缩形变和剪切形变,弯曲形变是由程度不同的拉伸压缩形变组成,扭转形变是由程度不同的剪切形变组成。
2•应力就是单位面积上作用的内力;如果内力与面元垂直就叫正应力,用c表示; 如果内力方向在面元内,就叫切应力,用T表示。
3•应变就是相对形变;在拉压形变中的应变就是线应变,如果10表示原长,A l表示绝对伸长或绝对压缩,则线应变c =A l/l o;在剪切形变中的应变就是切应变,用切变角书表示。
4.力与形变的基本规律是胡克定律,即应力与应变成正比。
在拉压形变中表示为c = Y c Y是由材料性质决定的杨氏模量,在剪切形变中表示为T = N书,N 是由材料性质决定的切变模量。
5.发生形变的弹性体具有形变势能:拉压形变的形变势能密度E p0弓Y 2,剪切形变的形变势能密度E p01N 26•梁弯曲的曲率与力偶矩的关系12Ybh37•杆的扭转角与力偶矩的关系NR421、思考题解答8.1作用于物体内某无穷小面元上的应力是面元两侧的相互作用力,其单位为N.这句话对不对?答:不对,应力为作用于该无穷小面元两侧单位面积上的相互作用内力,其单位为或。
其面元法向分量称正应力,切向分量称切应力。
8.2(8.1.1)式关于应力的定义当弹性体作加速运动时是否仍然适用?答:适用,(8.1.1)式中的是面元两侧的相互作用内力,它与作用于物体上的外力和物体的运动状态有关。
8.3牛顿第二定律指出:物体所受合力不为零,则必有加速度。
是否合力不为零,必产生变形,你能否举出一个合力不为零但无形变的例子?答:不一定,物体是否发生形变应看物体内应力是否为零,应力为零,则不形变。
自由落体运动,物体受重力作用,但物体内部应力为零,则不发生形变。
8. 4胡克定律是否可叙述为:当物体受到外力而发生拉伸(压缩)形变时,外力与物体的伸长(压缩)成正比,对于一定的材料,比例系数是常数,称作该材料的杨氏模量?答:不对。
弹性力学课后习题及答案弹性力学课后习题及答案弹性力学是力学的一个重要分支,研究物体在受力作用下的形变和应力分布规律。
在学习弹性力学的过程中,课后习题是巩固所学知识、提高解题能力的重要环节。
本文将为大家提供一些常见的弹性力学课后习题及其答案,希望对大家的学习有所帮助。
一、弹性体的应力与应变1. 一个长为L,截面为A的弹性体,在受力F作用下产生了长度为ΔL的形变。
求该弹性体的应变。
答案:根据胡克定律,应变ε等于形变ΔL与原始长度L的比值,即ε = ΔL / L。
2. 一个弹性体的应变为ε,如果该弹性体的截面积为A,求该弹性体在受力F作用下的应力。
答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。
二、弹性体的应力分布1. 一个长为L,截面为A的弹性体,在受力F作用下,其应力沿着截面的分布是否均匀?答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。
由此可知,应力与截面积成反比,即截面积越大,应力越小;截面积越小,应力越大。
因此,弹性体受力作用下的应力分布是不均匀的。
2. 一个长为L,截面为A的弹性体,在受力F作用下,其应力是否与截面的形状有关?答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。
由此可知,应力与截面积成正比,即截面积越大,应力越小;截面积越小,应力越大。
因此,弹性体受力作用下的应力与截面的形状有关。
三、弹性体的弹性模量1. 一个弹性体的应力为σ,应变为ε,求该弹性体的弹性模量E。
答案:根据胡克定律,应力σ等于弹性模量E与应变ε的乘积,即σ = E * ε。
由此可得,弹性模量E等于应力σ与应变ε的比值,即E = σ / ε。
2. 一个弹性体的弹性模量为E,如果该弹性体的截面积为A,求该弹性体在受力F作用下的形变。
答案:根据胡克定律,形变ΔL等于弹性模量E与受力F的乘积再除以截面积A,即ΔL = (E * F) / A。
第八章弹性体的应力和应变学时安排:3课时教学目的与要求:1、掌握应力和应变的相互关系、拉伸形变的胡克定律及其适用范围;2、了解杨氏模量、泊松比、剪切模量、固体的弹性形变势能、弹性形变势能密度等概念;3、了解梁的弯曲、杆的扭转的基本知识和结论。
教学重点:弹性体的拉伸和压缩。
教学难点:应力、杨氏模量、剪切模量、泊松比等概念的物理意义。
习题:8.1.2 8.1.3 8.1.6Chapter8 弹性体的应力和应变形变的分类:塑性形变:外力撤消后,形变不完全消失;弹性形变:外力撤消后,形变完全消失,此类物体为弹性体——理想模型;本章的研究范围:各向同性的均匀弹性体的弹性形变,均匀弹性体:体内各点的弹性相同。
各向同性的弹性体:体内各点的弹性与方向无关。
弹性形变的种类:伸长、缩短、切变、扭转、弯曲……; 弹性形变的基本种类:长应变、切应变。
§8—1 弹性体的拉伸和压缩一、外力、内力与应力1.外力:对于给定物体,外界(其它物体)对它的作用力2.内力:物体内部各部分之间的相互作用力。
内力的求法:外力→物体形变→内力,为了研究内力,用一假想的平面S 将物体分为两个部分:则S 面的两侧的相互作用力——内力F ' 、F求内力的方法:隔离体法,S 面的两侧分别为一个隔离体。
物体处于平衡时,列出左侧(或右侧)隔离体的平衡方程式,由外力求内力。
S 面上受力不均匀时,在S 面上任一点(O 点)处取面元S ∆,0n 自受力一侧指向施力物一侧,是S ∆的外法向,S ∆确定了即可确定S ∆的受力(内力)。
3.应力:描述物体内部各点处内力强度的物理量(1)定义:①平均应力:F p S ∆=∆ ②应力:0lim S F p S∆→∆=∆ 物理意义:作用于物体某点处某有向面元的平均应力,当面元0S ∆→时的极限——该无限小有向面元上的应力。
③正应力:p n σ=⋅ σ正应力为p 在无穷小有向面元的外法向上的投影,σ取“+”——有向面元的某一侧受到另一侧的拉力σ取“-”——有向面元的某一侧受到另一侧的压力 ④剪切应力:τ,p 在无穷小有向面元的外法线垂直方向上的投影。
弹性体的应力与应变弹性体是一种在受力作用下可以发生形变,但当受力停止时,能够恢复原来形状和大小的材料。
了解弹性体的应力与应变关系对于工程设计和材料科学具有重要意义。
在本文中,我们将探讨弹性体的应力与应变之间的关系,分析材料的弹性性质以及应力与应变的计算方法。
1. 应力的概念与计算方法应力是指单位面积上作用的力,合理地计算应力是分析弹性体性质的关键。
在计算应力时,常用到两种基本的力学概念:张力和压力。
张力是指沿一维方向的受力情况,通常用F表示,单位为牛顿。
而压力是指在一个平面上均匀分布的力,用P表示,单位是帕斯卡。
应力的计算公式如下:应力 = 受力 / 横截面积2. 应变的概念与计算方法应变是指材料在受力作用下发生的形变,一般用ΔL / L表示。
其中,ΔL是材料长度的变化量,L是材料的初始长度。
应变可以分为线性弹性应变和非线性应变。
线性弹性应变是指材料在受力作用下,形变与受力成正比的状态。
计算线性弹性应变的方法如下:应变 = 形变 / 初始长度而非线性应变则需要更复杂的计算方法来进行分析,涉及到材料的本构关系等。
3. 应力与应变的关系应力与应变之间存在一定的关系,即应力-应变曲线。
弹性体的应力-应变曲线通常可以分为三个阶段:弹性阶段、屈服点和塑性阶段。
在弹性阶段,材料受力时会产生应变,但当受力停止时,材料会完全恢复到原来的状态。
这是因为材料内部的原子或分子只发生了相对位移,而没有发生永久性的结构变化。
当应力超过材料的屈服点时,就进入了屈服点阶段。
在这个阶段中,材料开始发生塑性变形,不再能够完全恢复到原来的状态,具有一定的永久性形变。
塑性阶段是材料的应力与应变不再成正比,继续增加应力会导致更大的应变。
这是由于材料的内部结构发生了永久性的改变,无法恢复原状。
4. 弹性模量和刚度弹性模量是描述材料抵抗形变的能力,可以用来评估材料的刚度。
弹性模量越大,表示材料越难发生形变,具有较高的刚度。
常用的弹性模量有三种:杨氏模量、剪切模量和体积模量。
弹性体的应力和应变应力和应变是弹性体力学中重要的概念。
弹性体是指在受力作用下能够发生形变,但在去除力后能够恢复原状的物质。
应力是表示物体内部各点在力作用下的应对程度的物理量,而应变则是表示物体形变程度的物理量。
在本文中,我们将探讨弹性体的应力和应变之间的关系,以及弹性体在不同应力条件下的行为。
首先,我们来介绍应力的概念。
应力是由于外部力作用于物体而引起的内部应力,即单位面积上作用的力。
通常情况下,应力可以分为三种类型:拉应力、压应力和剪应力。
拉应力是指沿物体的长度方向作用的力,压应力则是指作用于物体表面的垂直方向力,而剪应力则是作用于物体表面的平行于其平面的力。
这些应力可以通过数学计算来求得。
对于拉伸或压缩情况下的应力,一般可以通过应力=外力/截面积来计算。
而对于剪切情况下的应力,则可以通过应力=外力/接触面积来计算。
接着,我们来谈谈应变的概念。
应变是指物体由于受到外力作用而产生的形变程度。
同样,应变也可以分为三种类型:线性应变、体积应变和剪切应变。
线性应变是指物体沿作用力方向的长度变化与未受力前的原始长度之比,体积应变则是物体单位体积的变化量与未受力前的原始体积之比,剪切应变是物体平行于受力平面上的平面与未受力前的原始平面之间的夹角变化。
这些应变可以通过数学计算来求得。
通常情况下,线性应变可以通过应变=位移/原始长度来计算,体积应变可以通过应变=体积变化/原始体积来计算,而剪切应变可以通过应变=变形角度/90度来计算。
在了解了应力和应变的概念后,我们可以进一步讨论弹性体在不同应力条件下的行为。
根据背景和材料性质的不同,弹性体在应力作用下会出现不同的应变情况。
当应力作用于弹性体时,弹性体会发生形变,但在去除应力后,弹性体又会恢复到原来的形状。
这种恢复力就是弹性体的回弹力,是由于弹性体内部的分子结构和键的特性所决定的。
此外,弹性体还有一个重要的性质,即背应力。
背应力是指在弹性体内部的不同位置上,由于力的传递产生的相对应力差。
弹性体与变形弹性体的应力与应变关系弹性体是指在外部施加力后能够发生形变,但在去除力后能够恢复原状的物质。
而变形弹性体则是指在外力作用下形变后不能完全恢复原状的物质。
弹性体与变形弹性体在受力时会出现应力与应变的关系,这种关系是研究材料力学性能的重要内容。
一、弹性体的应力与应变关系弹性体在外力作用下,发生形变。
应力是单位面积上的力,定义为单位面积上的力与面积的比值,通常用σ表示,单位为帕斯卡(Pa)。
应变是物体的相对形变,定义为单位长度的变化量与被测长度的比值,通常用ε表示,无单位。
根据弹性体的应力与应变关系,我们可以得到胡克定律,即应力与应变成正比关系。
弹性体的胡克定律可表示为:σ = E * ε其中,E表示弹性体的弹性模量,是反映弹性体变形能力大小的重要参数,单位为帕斯卡(Pa)。
弹性模量越大,代表弹性体越难形变,具有较好的弹性性能。
根据胡克定律,当外力施加于弹性体上时,应力与应变成正比,且两者之间的关系是线性的。
即在弹性极限之内,如果应力增大,应变也会相应增大;如果应力减小,应变也会相应减小。
而且,当外力去除后,弹性体会恢复到原来的形状和大小,应变会回到零。
二、变形弹性体的应力与应变关系变形弹性体与弹性体不同,其在外力作用下形变后不能完全恢复原状。
因此,其应力与应变关系也存在一定的差异。
变形弹性体的应力与应变关系可以用应力-应变曲线来描述。
在应力-应变曲线中,随着应变的逐渐增大,物体的应力并不是线性变化的,而是呈现出一定的非线性特性。
应力-应变曲线通常可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。
在弹性阶段,应力与应变基本保持线性关系,符合胡克定律;而在屈服阶段,应力增加的同时,应变开始出现非比例增长。
当应力达到一定程度后,材料会发生塑性变形,进入塑性阶段;在断裂阶段,材料发生破裂。
变形弹性体的应力与应变关系还可以通过一些指标进行描述,如屈服强度、断裂强度、延伸率等。
这些指标是衡量材料变形能力和抗破坏能力的重要参数。
弹性力学中的应力和应变弹性力学是物理学中的一个重要分支,研究物体在外力作用下的变形和应力分布规律。
在弹性力学中,应力和应变是两个关键的概念。
本文将详细介绍弹性力学中的应力和应变,并探讨它们之间的关系和物体在外力作用下的行为。
一、应力的概念与分类在弹性力学中,应力是描述物体内部受力状况的物理量。
它的定义是单位面积上的力,即单位面积上所受的力。
在材料力学中,通常将力的作用面积取无限小,这样就可以得到面积趋于无穷小的情况下的应力。
根据作用方向的不同,应力可以分为三种类型:正应力、剪应力和体应力。
1. 正应力:即垂直于物体截面的力在该截面上单位面积的作用力。
正应力可以分为正拉应力和正压应力,正拉应力是指物体上的拉力,正压应力是指物体上的压力。
2. 剪应力:即平行于物体截面的力在该截面上单位面积的作用力。
剪应力是指物体上的切力,它使得物体相对于截面沿切应变方向发生形变。
3. 体应力:即物体内部体积元素上的力在该体积元素上单位体积的作用力。
体应力是指物体中各个点处的压力或拉力。
二、应变的概念与分类应变是描述物体变形程度的物理量,它是物体的形状改变相对于初始形状的相对变化量。
应变也可以分为三种类型:线性应变、剪应变和体应变。
1. 线性应变:即物体在受力下沿作用力方向产生的长度变化与初始长度的比值。
线性应变通常用拉伸应变表示。
2. 剪应变:即物体在受剪力作用下发生的相对位移与物体初始尺寸的比值。
3. 体应变:即物体受力时体积的相对变化量与初始体积的比值。
三、应力和应变的关系应力和应变之间存在着一定的关系,它们之间通过杨氏模量来联系。
杨氏模量是描述物体在拉伸应力作用下的应变程度的物理量。
弹性体的材料有两个重要的杨氏模量:弹性模量(或称杨氏模量)和剪切模量。
1. 弹性模量(E):它描述的是物体在正应力作用下的正应变情况。
根据材料的不同,弹性模量也不同。
2. 剪切模量(G):它描述的是物体在剪应力作用下的剪应变情况。