在原点的极限不存在的证明
- 格式:ppt
- 大小:60.00 KB
- 文档页数:1
二元函数极限证明设p=f(x,y),p0=(a,b),当p→p0时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。
此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。
我们必须注意有以下几种情形:’(1)两个二次极限都不存在而二重极限仍有可能存在(2)两个二次极限存在而不相等(3)两个二次极限存在且相等,但二重极限仍可能不存在2函数f(x)当x→x0时极限存在,不妨设:limf(x)=a(x→x0)根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有|f(x)-a|<ε而|x-x0|<δ即为x属于x0的某个邻域u(x0;δ)又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-1再取m=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域u(x0;δ)时,有|f(x)|证毕3首先,我的方法不正规,其次,正确不正确有待考察。
1,y以y=x^2-x的路径趋于0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路径趋于0结果是无穷大。
2,3可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是p(x,y)以任何方式趋向于该点。
4f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)显然有y->0,f->(x^2/|x|)*sin(1/x)存在当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的所以不存在而当x->0,y->0时由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|)而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2所以|f|<=|x|+|y|所以显然当x->0,y->0时,f的极限就为0这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的正无穷或负无穷或无穷,我想这个就可以了就我这个我就线了好久了5(一)时函数的极限:以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=为使需有为使需有于是,倘限制,就有例7验证例8验证(类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有=§2函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。
219理论研究证明二元函数极限不存在的方法与技巧杨万娟,杨子艳,木绍良(云南大学旅游文化学院 信息学院,云南 丽江 674100)摘 要:本文主要解决在证明二元函数极限不存在的问题时选择特殊路径的方法和技巧。
关键词:二元函数极限;无穷小量;无穷小量的阶;特殊路径DOI:10.16640/ki.37-1222/t.2019.19.1961 二元函数极限概念分析 二元函数的极限存在,是指点沿任意路径无限接近某一点时,函数总是无限接近某一固定的数A 。
此时称A 为二元函数在时的极限,记作。
定理(1)设函数在内有定义,则;(2)设函数在有定义,且,则。
由定理可知,在求二元函数极限时,通过选择特殊的路径可转化为一元函数极限问题,所以,当沿着不同的路径趋于时(即当时,沿着不同的趋近于)函数趋于不同的值,那么就可以断定此函数的极限不存在。
但是找到特殊路径对学生来说不是一件容易的事,因此很有必要探究该问题。
本文对常见的两种类型作了讨论,其思路为:考虑分母中的最高次幂与分子中的最低次幂保持一致,通过化解可知极限是否与有关,若与有关,则可知极限不存在。
2 证明二元函数极限不存在时找特殊路径的方法2.1 类型一:证明(,)(0,0)lim a bm mx y x y x y →±极限不存在时找特殊路径的方法 (1)当且时,令; (2)当时,令。
例1 证明233(,)(0,0)limx y x yx y →−极限不存在。
证明:,故令, 显然,当k 不同时,31k k −便不同,所以极限233(,)(0,0)lim x y x yx y →−不存在。
例2 证明极限(,)(0,0)lim +x y xyx y→不存在。
证明:,故令,, 显然,当k 不同时,1k−便不同,所以极限(,)(0,0)lim +x y xyx y →不存在。
2.2 类型二:证明(,)(0,0)+lima b x y x y x y→±极限不存在时找特殊路径的方法 (1)当时,令; (2)当时,令。
证明极限不存在证明极限不存在二元函数的极限是高等数学中一个很重要的内容,因为其定义与一元函数极限的定义有所不同,需要定义域上的点趋于定点时必须以任意方式趋近,所以与之对应的证明极限不存在的方法有几种.其中有一种是找一种含参数的方式趋近,代入二元函数,使之变为一元函数求极限.若最后的极限值与参数有关,则说明二重极限不存在.但在证明这类型的题目时,除了选y=kx这种趋近方式外,许多学生不知该如何选择趋近方式.本文给出证明一类常见的有理分式函数极限不存在的一种简单方法.例1[1]证明下列极限不存在:(1)lim(x,y)→(0,0)x4y2x6+y6;(2)lim(x,y)→(0,0)x2y2x2y2+(x-y)2.证明一般地,对于(1)选择当(x,y)沿直线y=kxy=kx趋近于(0,0)时,有lim(x,y)→(0,0)x4y2x6+y6=limx→0k2x6(1+k6)x6=k21+k6.显然它随着k值的不同而改变,故原极限不存在.对于(2)若仍然选择以上的趋近方式,则不能得到证明.实际上,若选择(x,y)沿抛物线y=kx2+x(k≠0)(x,y)→(0,0)趋近于(0,0),则有l..2是因为定义域D={(x,y)|x不等于y}吗,从哪儿入手呢,请高手指点沿着两条直线 y=2xy=-2x 趋于(0,0)时极限分别为 -3 和 -1/3 不相等极限存在的定义要求延任何过(0,0)直线求极限时极限都相等所以极限不存在3lim (x 和y)趋向于无穷大 (x^2-5y^2) / (x^2+3y^2)证明该极限不存在lim(x^2-5y^2) / (x^2+3y^2)=lim(x^2+3y^2) / (x^2+3y^2) - 8y^2 / (x^2+3y^2)=1-lim8 / [(x/y)^2+3]因为不知道x、y的大校所以lim (x 和y)趋向于无穷大 (x^2-5y^2) / (x^2+3y^2) 极限不存在4如图用定义证明极限不存在~谢谢!!反证法若存在实数L,使limsin(1/x)=L,取ε=1/2,在x=0点的任意小的邻域X内,总存在整数n,①记x1(n)=1/(2nπ+π/2)∈X,有sin[1/x1(n)]=1,②记x2(n)=1/(2nπ-π/2)∈X,有sin[1/x2(n)]=-1,使|sin[1/x1(n)]-L|和|sin[1/x2(n)]-L|同时成立。
证明极限不存在的方法引言极限是微积分中的重要概念,用于描述函数在某一点附近的行为。
在某些情况下,我们可能希望证明一个函数的极限不存在,即在某一点上函数无法趋近于一个确定的值。
本文将介绍几种常见的证明极限不存在的方法。
反证法反证法是一种常用的证明方法,用于证明某个命题的否定。
在证明极限不存在时,我们可以假设极限存在,并通过推理得出矛盾的结论,从而得出极限不存在的结论。
步骤:1.假设函数f(x)在点a处存在极限L。
2.利用极限的定义,选择一个足够小的正数ε,使得对于任意的x,只要|x-a|<δ,就有|f(x)-L|<ε。
3.通过推理得出矛盾的结论,例如找到一个特定的x值,使得|f(x)-L|≥ε。
4.得出结论:函数f(x)在点a处的极限不存在。
间隔法间隔法是一种通过构造两个不同的数列来证明极限不存在的方法。
我们可以选择两个不同的数列,使得它们分别趋近于函数极限的两个不同值,从而得出极限不存在的结论。
步骤:1.找到两个不同的数列{xn}和{yn},使得lim(xn)=a,lim(yn)=b,其中a≠b。
2.利用函数的性质,证明对于任意的ε>0,存在正整数N1和N2,使得当n>N1时,|f(xn)-L1|<ε,当n>N2时,|f(yn)-L2|<ε。
3.选择一个足够小的正数ε,使得ε<|L1-L2|,从而得出矛盾的结论。
4.得出结论:函数f(x)的极限不存在。
Cauchy准则Cauchy准则是一种常用于证明数列极限存在的方法,但也可以用于证明极限不存在。
该准则要求函数在某一点附近的值具有一定的波动性,即存在一对足够接近的点,使得函数在这两个点上的取值差异较大。
步骤:1.假设函数f(x)在点a处存在极限L。
2.利用Cauchy准则,选择一个足够小的正数ε,使得对于任意的x1和x2,只要|x1-a|<δ1,|x2-a|<δ2,就有|f(x1)-f(x2)|<ε。
如何证明极限不存在如何证明极限不存在反证法若存在实数L,使limsin(1/x)=L,取ε=1/2,在x=0点的任意小的邻域X内,总存在整数n,①记x1(n)=1/(2nπ+π/2)∈X,有sin[1/x1(n)]=1,②记x2(n)=1/(2nπ-π/2)∈X,有sin[1/x2(n)]=-1,使|sin[1/x1(n)]-L|和|sin[1/x2(n)]-L|同时成立。
即|1-L|这与|1-L|+|-1-L|≥|(1-L)-(-1-L)|=2发生矛盾。
所以,使limsin(1/x)=L 成立的实数L不存在。
反证法:一个数列{an}极限存在,另一个数列{bn}极限不存在假设两数列之和{cn}的极限存在,那么bn=cn-an极限也存在(两个数列和的极限等于两个数列极限的和)矛盾所以原命题成立令y=x, lim(x,y)趋于(0,0)xy/x+y=lim(x趋于0)x^2/(2x)=0令y=x^2-x,lim(x,y)趋于(0,0)xy/x+y= lim(x趋于0) x^3-x^2/ x^2 =-1两种情况极限值不同,故原极限不存在2答案:首先需要二项式定理:(a+b)^n=∑ C(i=0 – i=n)n i a^(n-i) * b^i (式一)用数学归纳法证此定理:n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1a+b故此,n=1时,式一成立。
设n1为任一自然数,假设n=n1时,(式一)成立,即:(a+b)^n1=∑ C(i=0 – i=n1)n1 i a^(n1-i) * b^i (式二)则,当n=n1+1时:式二两端同乘(a+b)[(a+b)^n1]*(a+b)=[∑ C(i=0 – i=n1)n1 i a^(n1-i) * b^i]*(a+b) = (a+b)^(n1+1)= ∑ C(i=0 – i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)因此二项式定理(即式一成立)下面用二项式定理计算这一极限:(1+1/n)^n (式一)用二项式展开得:(1+1/n)^n =1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2 *1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) …2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) …2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n - +∞,得0。