高频功率放大器
- 格式:ppt
- 大小:1.96 MB
- 文档页数:42
1.原理说明利用选频网络作为负载回路的功率放大器称为谐振功率放大器。
它是无线电发射机中的重要组成部件。
根据放大器电流导通角θ的范围可以分为甲类、乙类、丙类等不同类型的功率放大器。
电流导通角θ愈小放大器的效率η愈高。
如甲类功放的θ=180o ,效率η最高也只能达50%,而丙类功放的θ<90o ,效率η可达到80%。
甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
高频功率放大器按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。
高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。
1.1高频功放的主要技术指标1.1.1 功率关系:功率放大器的作用原理是利用输入到基极的信号来控制集电极的直流电源所供给的直流功率O P ,使之一部分转变为交流信号功率1P 输出去,一部分功率以热能的形式消耗在集电极上,成为集电极耗散功率C P 。
根据能量守衡定理:1o C P P P =+直流功率: 输出交流功率:2211111222c c c c L L U P U I I R R =⋅== C U -----回路两端的基频电压 c1I ----- 基频电流 L R ----回路的负载阻抗。
1.1.2 放大器的集电极效率1101122c c o CC c U I P P U I ηξγ⋅===⋅ 其中集电极电压利用系数:1c c L CC CCU I RU U ξ== 0o c CCP I U =⋅波形系数:1100()()c c I I αθγαθ==为通角 θ 的函数;θ 越小γ越大。
1.1.3 谐振功率放大器临界状态的计算临界状态下,若已知电源电压Ucc ,BB U 三极管的参数C g ,'U BB ,设电压利用系数为 ξ,集电极的导通角为θ。
高频功率放大器的原理
高频功率放大器是一种电子器件,用于放大高频信号的功率。
它的工作原理基于晶体管的放大特性和放大原理。
晶体管是一种半导体器件,具有放大信号的能力。
高频功率放大器中通常采用的晶体管是场效应管(FET)或双极性晶体管(BJT)。
这些晶体管具有不同的构造和工作方式,但都可以用于高频功率放大器的设计。
在高频功率放大器中,输入信号被放大器的输入电路接收。
输入电路通常包括一个匹配网络,以确保输入信号能够有效传递到晶体管。
接下来,输入信号被传输到晶体管的控制电极,如场效应管的栅极或双极性晶体管的基极。
当输入信号到达控制电极时,晶体管的工作会受到控制,从而导致电流或电压的变化。
这个变化会在晶体管中产生一个放大的输出信号。
输出信号可以通过一个匹配网络传递到负载电阻或其他外部电路中。
为了实现高频功率放大,放大器中的晶体管需要满足一些特殊要求。
首先,晶体管需要具有高增益和宽带宽,以确保放大器在高频范围内能够有效工作。
其次,晶体管需要具有较低的噪声系数,以避免在放大过程中引入额外的噪声。
除了晶体管,高频功率放大器中还包括其他组件,如电容器、电感器和电阻器等。
这些组件用于构建输入和输出匹配网络、稳定电路工作和控制电流等。
总之,高频功率放大器通过晶体管的放大特性实现对高频信号的功率放大。
它在通信、雷达、无线电和广播等领域有着广泛的应用。
第2章高频功率放大器第2章高频功率放大器2.1 谐振功率放大器基本工作原理2.2 丙类谐振功率放大器的工作状态分析2.3 谐振功率放大器的高频特性2.4 谐振功率放大器电路2.5 高效率高频功率放大器及功率合成技术第2章高频功率放大器一、工作状态分类A 类(甲类)、B 类(乙类)、C 类(丙类)等。
i i BEC tCu QA 类(甲类):工作点Q 较高(I CQ 大),信号360°内,管子均导通。
通角:θ=180 °U CCR LR L′N 1∶N 2RBVCBu i第2章高频功率放大器甲类功放电路及交、直流负载线i Ct 0I C Q I C QI C Qu CE i Cu CEt00U CE QU CU CCQ直流负载线交流负载线i B1R L′-I CR B 为偏置电阻,决定Q 点的I CQ 及I BQ 。
变压器是理想的,则直流工作点电压U CEQ =U CC ,直流负载线为一垂直线,而交流负载线通过Q 点,其斜率为(-1/R ′L )第2章高频功率放大器CQCC C CQ CC TE I U dt t I I U TP ⋅=+=∫)sin (10ω1.电源功率P E2. 交流输出功率P LLC C C C C TL R U I U tdt I t U TP ′=⋅=⋅=∫22121sin sin 1ωωCC Cm U U =CQCm I I =CQCC CC E L I U I U P P 21==ηA 类放大器无信号时,效率为零,信号最强时最大效率只有50%。
这是A 类放大器的致命弱点,也是晶体管功率放大器极少采用A 类放大器的原因。
%50max =η一般: 20%~30%第2章高频功率放大器i C t 0i Cu BEQπ2π0u iV 1V 2V 0VD1VD 2I COi C1i C2U CCu o-U EER Li C1i C2B 类(乙类):工作点Q 选在截止点,管子只有半周导通,另外半周截止。
高频电子技术第六章 高频功率放大器§6.1 概述为了获得足够大的高频输出功率,必须采用高频功率放大器。
如发射机中,振荡器产生的高频振荡功率往往很小,因此在后面要经过一系列放大——缓冲级、中间放大级、末级功率放大器,才能获得足够的高频功率,然后从天线将信号发送出去。
高频功率放大器的工作频率很高,且工作时要求其频带很窄,如调幅广播电台(535~1605kHz 频段范围),每个台的频带宽度为10kHz ,与1000kHz 左右的工作频率相比,仅相当于百分之一。
因此,高频功率放大器的负载一般都是选频网络(选择有用信号,滤除干扰)。
§6.2 谐振功率放大器的工作原理晶体管的工作频率范围分为三部分:低频区:βf f 0.5<(βf 截止频率,放大倍数下降为低频值的2/1) 中频区:T f f f 2.00.5<<β(T f 特征频率,放大倍数下降为1时的频率) 高频区:T T f f f <<2.0中频区需要考虑晶体管结电容的作用,高频需进一步考虑电极引线电感的作用,分析和计算都非常困难。
因此,从低频区入手来进行分析。
6.2.1 获得高效率所需要的条件(P206)率直流电源提供的直流功==P交流输出信号功率=o P 集电极本身耗散功率=c P 则c o P P P +== 定义集电极效率co oo c P P P P P +===η 可见,如果能降低集电极耗散功率c P ,则集电极效率c η就会提高,给定直流电源提供功率=P 时,晶体管的交流输出功率o P 就会增加。
由c cco P P )1(ηη-=可知 如果%20=c η(甲类功放),则c o P P 41)(1=,如果%75=c η(丙类功放)则得到c o P P 3)(2=,可见,c η从20%提高到75%,输出功率则提高12倍。
************************************************************************************** 甲类功放:通角180°,晶体管完全工作在线性区,交流大信号完全通过晶体管传递到下一级; 乙类功放:通角90°,晶体管部分工作在线性区,部分工作在截止区,交流大信号半波通过晶体管;丙类功放:通角小于90°,晶体管小部分工作在线性区,大部分工作在截止区,交流大信号半波的一部分通过晶体管;丁类功放:固定通角为90°,且工作于开关状态:导通时,进入饱和区,内阻接近于0;截止时,电流为0,内阻接近无穷大。
高频功率放大器
高频功率放大器是指能够放大高频信号的功率的放大器。
在无线通信、雷达、医学诊断等领域,需要对高频信号进行放大,因此高频功率放大器具有重要的应用价值。
高频功率放大器通常采用半导体器件如晶体管、场效应管等作为放大元件。
不同的放大器结构和电路设计可以用于不同的频率范围和功率要求。
在设计高频功率放大器时,需要考虑以下几个关键因素:
1. 频率响应:要保证放大器在所需的频率范围内具有良好的增益和相位特性,以确保信号的准确放大。
2. 功率输出:放大器应能够提供所需的输出功率,以满足系统的功率要求。
3. 效率:高频功率放大器的效率越高,其在转换输入功率为输出功率时损耗的能量越少。
4. 线性度:在大功率输出时,要保持放大器的线性度,以避免失真和干扰。
5. 稳定性:放大器应具有良好的稳定性,以避免产生震荡或变换输出。
6. 抗干扰性:高频功率放大器应能够抵抗外部干扰,保持信号的纯净性。
高频功率放大器在无线通信系统中扮演着重要的角色,能够增强信号传输的距离和可靠性,提高信号的质量和覆盖范围。