钢结构第四章
- 格式:ppt
- 大小:4.31 MB
- 文档页数:123
P1084.1解: 示意图要画焊缝承受的剪力V=F=270kN ;弯矩M=Fe=270⨯300=81kN.mI x =[0.8⨯(38-2⨯0.8)3]/12+[(15-2)⨯1⨯19.52]⨯2=13102cm 4=腹板A e =0.8⨯(38-2⨯0.8)=29.12 cm 2截面最大正应力σmax =M/W= 81⨯106⨯200/13102⨯104=123.65 N/mm 2≤f t w =185N/mm 2剪力全部由腹板承担τ=V/A w =270⨯103/2912≤=92.72 N/mm 2 =f v w =125N/mm 2腹板边缘处”1”的应力σ1=(M/W)(190/200)=123.65(190/200)=210.19=117.47腹板边缘处的折算应力应满足1.1w zs t f σ=≤=2≤1.1f t w =203.5N/mm 2焊缝连接部位满足要求4.2解:(1) 角钢与节点板的连接焊缝“A ”承受轴力N=420kN连接为不等边角钢长肢相连 题意是两侧焊肢背分配的力N 1=0.65 ⨯420=273 kN肢背分配的力N 2=0.35 ⨯420=147 kNh fmin =1.5(t max )1/2=1.5(10)1/2=4.74mmh fmax =1.2(t min )=1.2(6)=7.2mm取h f =6mm肢背需要的焊缝长度l w1=273⨯103/(2⨯0.7⨯6⨯160)+2⨯6=203.12+12=215.13mm肢尖需要的焊缝长度l w2=147⨯103/(2⨯0.7⨯6⨯160)+2⨯6=109.38+12=121.38mm端部绕角焊2h f 时,应加h f (书中未加)取肢背的焊缝长度l w1=220mm ;肢尖的焊缝长度l w2=125mm 。
l wmax =60h f =360mm ;l wmin =8h f =48mm ;焊缝“A ”满足要求4.3解:节点板与端板间的连接焊缝“B ”承受拉力N 对焊缝“B ”有偏心,焊缝“B ”承受拉力N=(1.5/1.8) ⨯420=350kN ;剪力V=(1/1.8) ⨯420=233.33 kN ;弯矩M=350⨯50=17.5 kN.mh fmin =1.5(t max )1/2=1.5(20)1/2=6.71mmh fmax =1.2(t min )=1.2(10)=12mm焊缝“B ”h f =7mm焊缝“B ”A 点的力最大焊缝“B ”承受的剪应力τ=233.33⨯103/(2⨯0.7⨯7⨯386)=61.68 N/mm 2焊缝“B ”承受的最大正应力σ=N/Ae+M/W=350⨯103/(2⨯0.7⨯7⨯386)+17.5⨯106⨯200/(2⨯0.7⨯7⨯3863/12)=92.52+71.91 =164.43 N/mm 2验算焊缝“B ”的强度=148.19 N/mm 2<f f w 焊缝“B ”满足要求。
第四章钢结构延性设计1. 引言钢结构在工业、民用和桥梁等方面的应用越来越广泛,钢材的高强度、耐久性以及施工快捷等优点使得其成为一种常见的结构材料。
但是,由于钢的弹性模量高、刚度大,在受到外部载荷作用时,易于发生零点扭转、局部失稳等屈曲形态,其缺乏剪切强度以及变形能力也带来了结构损坏的风险。
为了保证钢结构的安全性能,提高其抗震、抗风、抗振能力,延性设计成为了现代钢结构设计中不可或缺的一部分。
2. 延性设计的概念延性是描述结构弹性阶段过渡到强度破坏阶段时的变形能力大小的一个指标。
钢结构的延性设计,就是对结构在弹性阶段发生位移的同时,要求其能够产生足够多的塑性变形以吸收能量,从而在承载能力发生下降的同时,保证整个结构的稳定性。
在设计过程中,需要根据结构的实际使用环境和功能需求,针对不同的荷载、流体力学、非线性材料和动力学等因素进行综合分析,制定不同的延性设计标准和方案,确保钢结构在设计寿命内稳定可靠地工作。
3. 钢结构延性设计的方法钢结构延性设计是一个涉及多个因素的复杂过程,需要从结构设计、材料选择、施工等方面综合考虑。
常用的延性设计方法包括以下几种:3.1 静力弹塑性分析法静力弹塑性分析法是利用结构抗力特性曲线的非线性特性进行结构分析的一种方法。
该方法通过建立结构刚度与位移的函数关系,预测结构在各种荷载作用下的变形和受力状态,并通过荷载位移曲线来分析结构变形状态的稳定性和能量吸收能力。
静力弹塑性分析法能够在充分考虑结构塑性变形的同时,确保结构的稳定和承载能力,被广泛应用于大型钢结构延性设计中。
3.2 等效静力法等效静力法是将结构地震作用下的动力响应等效为相应的静力作用,进而应用静力分析方法进行结构分析的一种方法。
该方法根据结构的抗震能力,将输入地震波分解为不同频率段以及不同振动模态的静力作用,以此建立结构的静力刚度方程,分析结构静力响应和塑性变形状态的稳定性和能量吸收能力。
等效静力法具有计算简便、便于实用和设计和改进的优点,被广泛运用于中小型钢结构地震设计中。
第4章单个构件的承载能力--稳定性4.1 稳定问题的一般提法4.1.1 失稳的类别传统分类:分支点失稳和极值点失稳。
分支点失稳:在临界状态时,初始的平衡位形突变到与其临近的另一平衡位形。
(轴心压力下直杆)极值点失稳:没有平衡位形分岔,临界状态表现为结构不能再承受荷载增量。
按结构的极限承载能力:(1)稳定分岔屈曲:分岔屈曲后,结构还可承受荷载增量。
轴心压杆(2)不稳定分岔屈曲:分岔屈曲后,结构只能在比临界荷载低的荷载下才能维持平衡位形。
轴向荷载圆柱壳(3))跃越屈曲:结构以大幅度的变形从一个平衡位形跳到另一个平衡位形。
铰接坦拱,在发生跃越后, 荷载还可以显著增加,但是其变形大大超出了正常使用极限状态。
4.1.2 一阶和二阶分析材料力学:EI M //1+=ρ 高数:()()2/3222/1///1dx dy dx y d +±=ρ M>0 22/dx y d <0 ; M<0 22/dx y d >0 ;∴ M 与y ''符号相反()()EI M y y /1/2/32-='+''∴ (大挠度理论)当y '与1相比很小时 EI M y /-='' (1) (小挠度理论)不考虑变形,据圆心x 处 ()x h P M --=α1 一阶弯矩 考虑变形 ()()y p x h p M ----=δα2 二阶弯矩 将它们代入(1)式:()x h p y EI -=''α 一阶分析()()y p x h p y EI -+-=''δα 二阶分析边界条件: ()()000='=y y ()δ=h yEI ph 3/3αδ=()()]/)tan(3[)]3/([33kh kh kh EI ph -⨯=αδ (2) EI P k /2=由(2)有 ()∞=--32//)(t a n l i m kh kh kh kh π 得欧拉临界荷载 224/h EI P E π= 此为稳定分析过程:达临界荷载,构件刚度退化为0,无法保持稳定平衡,失稳过程本质上是压力使构件弯曲刚度减小,直至消失。
14.1轴心受力构件的截面形式4.2轴心受力构件的强度和刚度计算4.2.1 轴心受力构件的强度计算4.2.2 轴心受力构件的刚度计算4.3 轴心受压构件的整体稳定4.3.1 轴心受压构件的弹性弯曲屈曲4.3.2 轴心受压构件的弹塑性弯曲屈曲4.3.3初始缺陷对压杆稳定承载力的影响4.3.4 轴心受压构件的整体稳定计算24.4 实腹式轴心受压构件的局部稳定4.4.1 薄板屈曲(1) 薄板的弹性屈曲(2) 薄板的弹塑性屈曲4.4.2 受压构件局部稳定计算4.4.2.1 确定板件宽厚比(高厚比)限值的准则4.4.2.2 板件宽厚比(高厚比)限值4.4.2.3受压构件的腹板不满足高厚比限值时的处理例题-格构柱例题-轴压柱,截面削弱34.5.2 格构式轴压构件的整体稳定计算(1) 格构式构件绕实轴的整体稳定计算(2) 格构式构件绕虚轴的整体稳定计算①换算长细比②格构式构件绕虚轴的整体稳定计算4.5.3 格构式轴心受压构件分肢的稳定(1) 缀条柱(2) 缀板柱4.5.1 格构式轴心受压构件的截面形式与组成4.5 格构式轴压构件44.5.4 格构式轴心受压构件缀材计算(1) 缀材面承担的剪力①单缀条强度设计值的调整②斜缀条承受的轴向力(2) 缀条设计(3) 缀板设计③斜缀条整体稳定计算④缀条与分肢连接焊缝计算⑤缀条与分肢连接形式(4) 横隔设置①缀板受力②缀板与分肢连接③缀板线刚度54.6 轴心受压构件截面设计4.6.1 实腹式轴心受压构件截面设计4.6.2 格构式轴心受压构件截面设计(3) 截面验算(1) 确定截面所需的面积、回转半径、截面高度、截面宽度等(2) 确定型钢号或组合截面各板件尺寸(1) 根据绕实轴的稳定性确定分肢截面尺寸(2) 根据虚轴和实轴的等稳性确定分肢的间距(3) 截面验算(4)缀材设计7轴心受力构件:承受通过构件截面形心轴线的轴向力作用的构件。
(轴心受拉构件和轴心受压构件)截面形式型钢截面组合截面热轧型钢截面冷弯薄壁型钢截面实腹式组合截面格构式组合截面4.1轴心受力构件的截面形式应用:屋架、托架、塔架和网架、工作平台和其它结构的支柱等8实腹式构件:格构式构件:优点:构造简单、制造方便,整体受力和抗剪性能好缺点:截面尺寸大时钢材用量较多。