核苷酸的合成分解
- 格式:ppt
- 大小:449.50 KB
- 文档页数:31
核苷酸代谢LOGO目录1核苷酸的生物合成2核苷酸的分解代谢3核苷酸的异常代谢核苷酸的主要生理功能l合成 DNA、RNA 的原料。
l生物体的直接供能物质:主要为 ATPl某些核苷酸的衍生物是多种生物合成过程的活性中间物质: UDP-葡萄糖,CDP-甘油二酯等。
l环核苷酸 cAMP 与 cGMP 作为信息分子。
l AMP是某些辅酶(NAD+、NADP+、FAD、辅酶A)的组成成分。
核苷酸的代谢动态核苷酸食物核酸生物合成组织核酸NTP 组织核酸某些辅酶 活性中间物质cAMP 与 cGMP核苷酸的生物合成l从头合成(de novo synthesis)途径:利用简单物质为原料,经过一系列酶促反应(复杂过程),合成核苷酸。
l补救合成(或重新利用,salvage pathway)途径:利用体内游离的碱基或核苷(现成原料),经过比较简单的反应过程,合成核苷酸。
核苷酸的从头合成途径l嘌呤类在磷酸核糖焦磷酸PRPP (核糖-5-P的活化态)的基础上逐步构建嘌呤环(次黄嘌呤核苷酸IMP)。
l嘧啶类则是先形成尿嘧啶后再与PRPP连接。
从头合成可分为两个阶段:l先形成IMPl再转化为AMP和GMP 来自磷酸戊糖途径嘌呤核苷酸从头合成途径5-磷酸核糖焦磷酸的合成l IMP合成的直接起始物是PRPP (构建载体)嘌呤环合成元素来源 (同位素标记)l 尿酸是首个被发现的嘌呤化合物(Karl Scheele等,1776年,尿液和肾结石)l John Buchanan等在1950s以碳、氮同位素标记化合物饲喂鸽子,并通过分离及降解其排泄的尿酸以追踪这些同位素在嘌呤环中的分布。
甲酸盐由N 10-甲酰四氢叶酸提供合成原料:天谷甘碳碳1:从头合成途径从头合成是体内嘌呤核苷酸合成的主要途径l原料:磷酸核糖、氨基酸(甘氨酸、天冬氨酸、谷 氨酰胺)、CO2 及一碳单位l部位:胞液Step1IMP合成(11步反应)① 在谷氨酰胺 - 磷酸核糖焦磷酸转酰胺酶的作用下,由 1st 个 Gln 以 -NH2 形式引入N9,连接在核糖的 C1 位上;l脱下 PP i之后的核糖衍生物由 α-构型转变为 β-构型;l5-磷酸核糖胺很不稳定, pH 7.5 时的半衰期仅为30s。
核苷酸彻底水解产物
核苷酸彻底水解的产物是核苷和磷酸。
在核苷酸的结构中,核苷由一个含氮碱基、一个核糖和一个磷酸基团组成。
当核苷酸彻底水解时,磷酸基团与核糖分子中的羟基发生酯键水解反应,生成核苷和磷酸。
具体的水解反应式如下:
N10-核苷酸+ H2O → N10-核苷+ H3PO4
其中,N10-核苷酸代表一种含有10个氮碱基的核苷酸,N10-核苷代表水解后得到的核苷,H2O代表水,H3PO4代表磷酸。
需要注意的是,核苷酸的水解是一个可逆反应,可以通过加入碱或酸等化学试剂来促进或抑制反应的进行。
在生物体内,核苷酸的水解是一个重要的代谢途径,可以为细胞提供能量和合成新的核酸分子。
第十章核苷酸代谢核苷酸是组成核酸的单位,此外尚具有其他功能。
与组成蛋白质的氨基酸不同,无论是核糖核苷酸或脱氧核糖核苷酸主要都是在体内利用一些简单原料从头合成的,所以本章的重点是介绍核苷酸的合成代谢。
核苷酸不是营养必需物质。
食物中的核酸多以核蛋白的形式存在,核蛋白经胃酸作用,分解成蛋白质和核酸(RNA和DNA)。
核酸经核酸酶、核苷酸酶及核苷酶的作用,可逐级水解成核苷酸、核苷、戊糖、磷酸和碱基。
这些产物均可被吸收,磷酸和戊糖可再被利用,碱基除小部分可再被利用外,大部分均可被分解而排出体外。
第一节嘌呤核苷酸的合成代谢体内嘌呤核苷酸的合成有两条途径。
第一,由简单的化合物合成嘌呤环的途径,称从头合成(de novo synthesis)途径。
第二,利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸,称为补救合成(或重新利用)(salvage pathway)途径。
肝细胞及多数细胞以从头合成为主,而脑组织和骨髓则以补救合成为主。
一、嘌呤核苷酸的从头合成(一)原料核素示踪实验证明嘌呤环是由一些简单化合物合成的,如图10-1所示,甘氨酸提供C-4、C-5及N-7;谷氨酰胺提供N-3、N-9; N10-甲酰四氢叶酸提供C-2, N5,N10-甲炔四氢叶酸提供C-8;CO2提供C-6。
磷酸戊糖则来自糖的磷酸戊糖旁路,当活化为5-磷酸核糖-1-焦磷酸(PRPP)后, 可以接受碱基成为核苷酸。
其活化的反应式如下。
(二)过程合成的主要特点是在磷酸核糖的基础上把一些简单的原料逐步接上去而成嘌呤环。
而且首先合成的是次黄嘌呤核苷酸(IMP),由后者再转变为腺嘌呤核苷酸(AMP)和鸟嘌呤核苷酸(GMP)。
如图10-2及图10-3所示。
1. IMP的合成嘌呤核苷酸的从头合成的起始或定向步骤是谷氨酰胺提供酰胺基取代5-磷酸核糖-1-焦磷酸(PRPP)C-1的焦磷酸基,从而形成5-磷酸核糖胺(PRA),催化此反应的酶为谷氨酰胺磷酸核糖酰胺转移酶(glutamine phosphoribosyl amidotransferase),此酶是一种别构酶,是调节嘌呤核苷酸合成的重要酶。