反函数的几种题型及解法素材
- 格式:doc
- 大小:347.50 KB
- 文档页数:6
大一反函数的经典例题(范文5篇)以下是网友分享的关于大一反函数的经典例题的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
大一反函数的经典例题(1)[例1]若函数f (x ) 与g (x)的图象关于直线y =x 对称,且f (x )=(x -1) (x ≤1) ,求g (x ). 选题意图:本题考查互为反函数的函数的图象间的对称关系.解:f (x ) 与g (x ) 在定义域内互为反函数,f (x )=(x -1) 2(x ≤1) 的反函数是2y =1-x (x ≥0) ,∴g (x )=1-x (x ≥0).说明:互为反函数的图象关于y =x 对称,反之亦然,也是判断两个函数互为反函数的方法之一,本是f (x ) 与g (x )互为反函数,要求g (x ), 只须求f (x ) 在限定区间上的反函数即可.[例2]若点P (1,2) 在函数y=ax +b 的图象上,又在它的反函数的图象上,求a , b 的值.选题意图:本题考查反函数的概念,反函数的图象与原函数图象的对称关系的应用.解:由题意知P (1,2) 在其反函数的图象上,根据互为反函数的函数图象关于y =x 对称的性质,P′(2,1) 也在函数y =+b 的图象上,⎧⎪2=a +b 因此:⎨解得:a =-3,b =7. ⎪⎩1=2a +b说明:引导学生树立创造性思考问题的方式、方法,利用互为反函数的图象的对称关系. (1,2)在反函数图象上,则(2,1) 也在原函数图象上是解决该问题的关键所在,即f (2)=1,这是得到a , b 的另一个关系式的条件,这样两个条件两个未知数,就可解出a , b 的值.[例3]已知函数f (x )=(1+x 2-1) -2(x ≥-2) ,求方程f (x )=f (x ) 的2解集.选题意图:本题考查互为反函数的函数的图象关于y =x 对称的关系,灵活运用这一关系解决问题的能力.分析:若先求出f (x )=2x +2-2(x ≥-2), 再解方程(1+-1-1图2—8 x 2) -2=2x +2-2,整理得四2次方程,求解有困难,但我们可以利用y =f (x ) 与y =f (x ) 的图象的关系求解. 先画出y =f (x )=(1+x 2-1) -2的图象,如图,因为y =f (x ) 的图象和y =f (x ) 的图象关于直线y =x 对称,2-1可立即画出y =f (x ) 的图象,由图象可见两图象恰有两个交点,且交点在y =x 上,因此,由x 2⎧⎪y =(1+) -2方程组⎨联立即可解得. 2⎪⎩y =x解:由函数f (x )=(1+x 2) -2(x ≥-2) 画出图象,如图,由于函数f (x ) 的反函数的图象与2函数f (x ) 的图象关于y =x 对称,故可以画出其反函数图象(如图),由图可知两图象恰有两x 2⎧y =(1+) -2⎪-1个交点且交点都在y =x 上. 因此,方程组⎨的解即为f (x )=f (x ) 的解,于是2⎪⎩y =x解方程组得x =-2或x =2,从而方程f (x )=f (x ) 的解集为{-2,2}.说明:解决本题的关键是,根据互为反函数的图象关于y =x 对称,若两个函数有交点,则交点必在直线y =x 上,由此,将要解的两个较复杂的方程组转化为直线y =x 与其中-1y =(1+x 2) -2一个方程组的解的问题. 2大一反函数的经典例题(2)[例1]下列各组函数中,不互为反函数的是( ) ......1(x -3) 21B. f (x )=2x +3,g (y )= (y -3)2A. f (x )=2x +3,g (x )=C. f (x )=x , g (x )=x2D. f (x )=x (x <0) , g (x )=-x (x >0)2选题意图:本题主要考查函数的反函数的有关概念,判断互为反函数的两个函数必须满足的条件:即函数解析式之间的关系是互相能确定x 、y ,定义域与值域之间的关系,是否是一个函数的定义域和值域分别是另一个函数的值域和定义域.解析:由f (x )=x 的定义域为x ∈R ,而值域为y ≥0; g (x )= x 的定义域为x ≥0,而值域为y ≥0. 由反函数的概念知反函数的定义域和值域正是原函数的值域和定义域推得它们不能互为反函数.说明:注意例1是判断不互为反函数的命题,否定互为反函数的三条件之一即不是反函数.[例2]判断函数y =x -x 有无反函数? 如果有,求出其反函数.选题意图:加深函数有无反函数判断的理解以及熟悉求反函数的方法与步骤.解:判断函数y =f (x ) 有无反函数,根据反函数的概念,应该判断:对每个确定的y 的(可能取到) 值,是否有惟一确定的x 值与之相对应. 由y =x -x112-12-1,得∴(x ) -y ⋅x -1=0112212①.11y ±y 2+4y -y +4x =, , x 0, ∴x =舍去,22y +y 2+4y 2+y y 2+4∴x =, ∴x =+1∴每一个确定的y 值,对应着(即只能221求出) 一个x , ∴x是y 的函数,即y =x -x1-1有反函数,,由上面过程,易见反函数为x 2+x x 2+4x 2+x x 2+4,值域为(0,y =+1, 且f (x ) =y =+1的定义域是(x ∈R)22+∞).说明:上述过程包含着:对于任意实数y 的取值方程①必有根,因此x 2-x11-12可以取到任意实数即函数y =x -x 的值域为(-∞,+∞),所以反函数的定义域为(-∞,x 2+x x 2+4+∞),恰是函数y =+1的定义域,在这种情况下,可以不注明函数的定义2域,当然原函数y =x -x 的值域也可以用以下方法解:当x =1时,y =0,当0<x<1时,0<x <1,x112-12-1>1, 则y <0,且当x →0时,x →0, x121-1→+∞, 这时y 可以取任12何负数. 当x >1时,x >1,0<x12-12<1, 则y >0,且当x →+∞时,x →+∞, x-12-12→0.这时y 可以取任何正数,∴y =x -x 的值域为R ,即(-∞,+∞).[例3]已知一次函数y =f (x ) 的反函数仍是它自己,求f(x ). 选题意图:本题考查反函数的概念,利用反函数与原函数的关系分析问题解决问题的能力.解:设y =f (x )=ax +b (a ≠0) ,则f1bx -, a a 1bax +b =x -对于一切x 都成立,a a-1(x ) =1⎧a =⎪⎧a =1⎧a =-1⎪a ∴⎨∴⎨或⎨⎪-b =b , ⎩b =0. ⎩b ∈R, ⎪⎩a∴f (x )=x 或f (x )=-x +b (b ∈R).说明:利用互为反函数的条件判断或证明某个或某两个函数是互为反函数的基本方法,此题是一个特殊函数的反函数的证明,希望读者掌握这种证明方法和思路.大一反函数的经典例题(3)函数的性质、反函数函数的单调性例题例1-5-1 下列函数中,属于增函数的是[ ]解 D例1-5-2 若一次函数y=kx+b(k≠0) 在(-∞,+∞) 上是单调递减函数,则点(k,b) 在直角坐标平面的[ ]A .上半平面B.下半平面C .左半平面D.右半平面解 C 因为k <0,b ∈R .例1-5-3 函数f(x)=x2+2(a-1)x+2在区间(-∞,4) 上是减函数,则实数a 的取值范围是[ ]A .a ≥3 B.a ≤-3C .a ≤5 D.a=-3解 B 因抛物线开口向上,对称轴方程为x=1-a,所以1-a ≥4,即a ≤-3.例1-5-4 已知f(x)=8+2x-x2,如果g(x)=f(2-x2) ,那么g(x) [ ]A .在区间(-1,0) 内是减函数B .在区间(0,1) 内是减函数C .在区间(-2,0) 内是增函数D .在区间(0,2) 内是增函数解 A g(x)=-(x2-1) 2+9.画出草图可知g(x)在(-1,0) 上是减函数.+bx在(0,+∞) 上是______函数(选填“增”或“减”) .解[-2,1]大一反函数的经典例题(4)反函数例题讲解例1.下列函数中,没有反函数的是(A) y = x 2-1(x 1)2( )(B) y = x 3+1(x ∈R )(D) y =⎨⎧2x -2(x ≥2) ,-4x (x x(x ∈R ,x ≠1)x -1分析:一个函数是否具有反函数,完全由这个函数的性质决定.判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y 表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数.本题应选(D ).因为若y = 4,则由⎨⎧2x -2=4,得x = 3.x ≥2⎩由⎨⎧-4x =4,得x = -1.x ∴(D )中函数没有反函数.如果作出y =⎨⎧2x -2(x ≥2) ,的图像(如图),依图-4x (x 更易判断它没有反函数.例2.求函数y =1--x 2(-1≤x ≤0)的反函数.解:由y =1--x 2,得:-x 2=1-y .∴1-x 2 = (1-y ) 2,x 2 = 1-(1-y ) 2 = 2y -y 2 .∵-1≤x ≤0,故x =-2y -y 2.又当-1≤x ≤0 时,0≤1-x 2≤1,∴0≤-x 2≤1,0≤1--x 2≤1,即0≤y ≤1 .∴所求的反函数为y =-2x -x 2(0≤x ≤1).由此可见,对于用解析式表示的函数,求其反函数的主要步骤是:①把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ ( y ).②求给出函数的值域,并作为所得函数的定义域;③依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y ) 为y = φ ( x ).例3.已知函数 f ( x ) = x 2 + 2x + 2(x 分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ),再求f -1 (2 )的值(略).依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f -1(2 )的值会简捷些.令x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 .∴x = 0 或x =-2 .又x 的图像是(( )(B((分析:作为选择题,当然不必由f ( x )求出f -1 ( x ),再作出f -1 ( x )图像,予以比较、判断.由f (x ) =+4x 2(x ≤0)易得函数f ( x )的定义域为(-∞, 0],值域为[1, +∞).于是有函数f-1( x )的定义域为[1, +∞),值域为(-∞, 0].依此对给出图像作检验,显然只有(D )是正确的.因此本题应选(D ).例5.给定实数a ,a ≠0,a ≠1,设函数y =x -11(x ∈R ,x ≠).a ax -1求证:这个函数的图像关于直线y = x 成轴对称图形.分析:本题可用证明此函数与其反函数是同一个函数的思路.证明:先求给出函数的反函数:由y =∴x -11(x ∈R ,x ≠),得y ( ax -1) = x -1 .a ax -1(ay -1) x = y -1 .①若ay -1 = 0,则ay = 1 .又a ≠0,故y =11.此时由①可有y = 1.于是=1,即a = 1, a a这与已知a ≠1是矛盾的,故ay -1 ≠ 0 .则由①得x =∴函数y =≠).由于函数f ( x )与f -1 ( x )的图像关于直线y = x 对称,故函数y =(x ∈R 且x ≠1)的图像关于直线y = x 成轴对称图形. a1ay -11(y ∈R ,y ≠).ay -1ax -11x -1(x ∈R ,x ≠)的反函数还是y =(x ∈R ,xa ax -1ax -1x -1ax -1本题证明还可依轴对称的概念进行,即证明:若点P (x ,y )是函数f ( x ) 图像上任一点,则点P 关于直线的对称点Q (y ,x )也在函数f ( x )的图像上(过程略).例题讲解(反函数)例1.求下列函数的反函数:(1) y =3x -1 (x ∈R ) ;(2) y =x 3+1 (x ∈R ) ;(3)y =x +1 (x ≥0) ;(4)y =2x +3(x ∈R ,且x ≠1) .x -1通过本例,使学生掌握求反函数的方法.求反函数时,要强调分三个步骤进行.第一步将y = f (x ) 看成方程,解出x = f -1 (y ) ,第二步将x ,y 互换,得到y = f -1 (x ) ,第三步求出原函数的值域,作为反函数的定义域.其中第三步容易被忽略,造成错误.如第(3)小题,由y =x +1解得x = (y -1) 2,再将x ,y 互换,得y = (x -1) 2.到此以为反函数即y = (x -1) 2,这就错了.必须根据原函数的定义域x ≥0,求得值域y ≥1,得到反函数的定义域,于是所求反函数为y = (x -1) 2 (x ≥1) .例2.求下列函数的反函数:(1) y = x 2-2x -3 (x ≤0) ;⎧x -1(x ≤0) ,⎪(2) y =⎨1-1(x >0) .⎪⎩x通过本例,使学生进一步掌握求反函数的方法,明确求解中三个步骤缺一不可.解:(1) 由y = x 2-2x -3,得y = (x -1) 2-4,即(x -1) 2 = y +4,因为x ≤0,所以x -1=-y +4,所以原函数的反函数是y =1-x +4 ( x≥-3) .(2) 当x ≤0时,得x = y+1且y ≤-1;当x >0时,得x =1且y >-1,y +1所以,原函数的反函数是:x ≤-1,x >-1.⎧x +1⎪y =⎨1⎪⎩x +1例题讲解(反函数)[例1]若函数f (x ) 与g (x)的图象关于直线y =x 对称,且f (x )=(x -1) 2(x ≤1) ,求g (x ).选题意图:本题考查互为反函数的函数的图象间的对称关系. 解:f (x ) 与g (x ) 在定义域内互为反函数,f (x )=(x -1) 2(x ≤1) 的反函数是y =1-x (x ≥0) ,∴g (x )=1-x (x ≥0).说明:互为反函数的图象关于y =x 对称,反之亦然,也是判断两个函数互为反函数的方法之一,本是f (x ) 与g (x ) 互为反函数,要求g (x ), 只须求f (x ) 在限定区间上的反函数即可.[例2]若点P (1,2) 在函数y=ax +b 的图象上,又在它的反函数的图象上,求a , b 的值. 选题意图:本题考查反函数的概念,反函数的图象与原函数图象的对称关系的应用. 解:由题意知P (1,2) 在其反函数的图象上,根据互为反函数的函数图象关于y =x 对称的性质,P′(2,1) 也在函数y =ax +b 的图象上,⎧⎪2=a +b因此:⎨解得:a =-3,b =7.⎪⎩1=2a +b说明:引导学生树立创造性思考问题的方式、方法,利用互为反函数的图象的对称关系. (1,2)在反函数图象上,则(2,1) 也在原函数图象上是解决该问题的关键所在,即f (2)=1,这是得到a , b 的另一个关系式的条件,这样两个条件两个未知数,就可解出a , b 的值.x[例3]已知函数f (x )=(1+) 2-2(x ≥-2) ,求方程2-1f (x )=f (x ) 的解集.选题意图:本题考查互为反函数的函数的图象关于y =x 对称的关系,灵活运图2—8 用这一关系解决问题的能力.x分析:若先求出 f -1(x )=2x +2-2(x ≥-2), 再解方程(1+) 2-2=2x +2-2,2整理得四次方程,求解有困难,但我们可以利用y =f (x ) 与y =f -1(x ) 的图象的关系x求解. 先画出y =f (x )=(1+) 2-2的图象,如图,因为y =f (x ) 的图象和y =f -1(x ) 的2图象关于直线y =x 对称,可立即画出y =f -1(x ) 的图象,由图象可见两图象恰有两x 2⎧y =(1+) -2⎪个交点,且交点在y =x 上,因此,由方程组⎨联立即可解得. 2⎪⎩y =xx 2) -2(x ≥-2) 画出图象,如图,由于函数f (x ) 的反函2数的图象与函数f (x ) 的图象关于y =x 对称,故可以画出其反函数图象(如图) ,解:由函数f (x )=(1+x 2⎧⎪y =(1+) -2由图可知两图象恰有两个交点且交点都在y =x 上. 因此,方程组⎨2⎪⎩y =x 的解即为f (x )=f -1(x ) 的解,于是解方程组得x =-2或x =2,从而方程f (x )=f -1(x )的解集为{-2,2}.说明:解决本题的关键是,根据互为反函数的图象关于y =x 对称,若两个函数有交点,则交点必在直线y =x 上,由此,将要解的两个较复杂的方程组转化为x 2直线y =x 与其中y =(1+) -2一个方程组的解的问题.2例题讲解(练习)例1.函数f (x )=x -x 是否存在反函数?说明理由点评:不存在,∵ f (0)=f (-1)=f (1)=0.例2.求下列函数的反函数.(1) f (x )=36x +5x -1(2) y =-x -1(3) f (x )=x -2x +3,x ∈(1,+∞) (4)f (x )=1--x 2(-1≤x ≤0)点评:(1) f-12(x )=2x +5(x ∈R 且x ≠6) x -6(2) f (x )=x +1 (x ≤0) (3) f (4) f-1-1(x )=(x )=-x -2+1 (x >2)-x -1 (0≤x ≤1)2-1⎧⎪x -1(x ≥1)例3.求函数y =⎨的反函数.⎪⎩--x (x 2 ⎧⎪x +1点评:反函数为y =⎨2⎪⎩1-x(x ≥0).(x 例4.已知f (x )=3x +2-1,求f [f (x )]的值.x +1⎡点评:f ⎢f⎢⎣-1⎛2⎫⎤2⎪⎥=,注意f (x ) 的定义域为{x |x ∈R 且x ≠-1},值域为{y |y 2⎪2⎝⎭⎥⎦∈R 且y ≠-3}.例5.已知一次函数y =f (x ) 反函数仍是它自己,试求f (x ) 的表达式.分析:设y =f (x )=ax +b (a ≠0) ,则f (x )=-11(x -b ) .a⎧1=a ⎪⎧a =-1⎧a =11⎪a由(x -b )=ax +b 得⎨或⎨⇒⎨a b b ∈R b =0⎩⎩⎪-=b ⎪⎩a∴ f (x )=x 或f (x )=-x+b (b ∈R )例6.若函数y =ax +1在其定义域内存在反函数.4x +3(1) 求a 的取值范围;(2) 求此函数的值域.解:(1)方法一:原式可化为4xy +3y =ax +1,(4y -a ) x =1-3y ,a ax +1a≠时,,即44x +344解得a ≠时原函数有反函数.3ax +1方法二:要使y =在其定义域内存在反函数,则需此函数为非常数函数,4x +3a 14ax +1即≠,所以a ≠时函数y =在其定义域内存在反函数.3434x +3当y ≠(2) 由y =ax +1-3y +1解得x =.4x +34y -aax +1-3x +1的反函数为y =.4x +34x -a -3x +1a ∵y =的定义域是{x |x ∈R 且x =}44x -aax +1a 故y =的值域是{y |y ∈R 且y ≠}.44x +3∴y =例7.设函数y =f (x ) 满足f (x -1)=x -2x +3(x ≤0) ,求f (x +1).解:∵x ≤0,则x -1≤-1.∵ f (x -1)=(x -1) +2 (x ≤0) ∴ f (x )=x +2 (x ≤-1) .由y =x +2 (x ≤1) 解得x =-y -2(y ≥3)2222-1∴ f 故f-1(x )=-x -2 (x ≥3) .x -1 (x ≥2) .-1-1-1(x +1)=--1点评:f (x +1)表示以x +1代替反函数f (x ) 中的x ,所以要先求f (x ) ,再以x +1代x ,不能把f (x +1)理解成求f (x +1)的反函数.习题1.已知函数 f (x )=x -1 (x ≤-2) ,那么 f (4)=______________.2.函数y =-x +x -1 (x ≤22-1-11) 的反函数是_________________.22⎧1]⎪x -1,x ∈(0,3.函数y =⎨2的反函数为__________________.⎪⎩x ,x ∈[-1,0)4.函数y =5.已知y =x 2-2x +3 (x ≤1) 的反函数的定义域是_____________.11x +m 与y =nx -是互为反函数,则m =______和n =________.23答案1.-2.y =1--4x -3⎛⎝x ≤-3⎫24⎪⎭3.y =⎧⎪⎨x +1,x ∈(-1,0],⎪⎩-x ,x ∈(0,1]4.2,+∞)5.16,2大一反函数的经典例题(5)反函数求值例1、设互为反函数,求有反函数的值.,且函数与分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果.解:设在函数这样即有,则点的图象上,即,从而在函数的图象上,从而点.由反函数定义有.,小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解.两函数互为反函数, 确定两函数的解析式例2 若函数的值.与函数互为反函数,求分析:常规思路是根据已知条件布列关于布列?如果注意到g(x)的定义域、值域已知,又义域与值域互换,有如下解法:的三元方程组,关键是如何与g(x)互为反函数,其定解:∵g(x)的定义域为.且,的值域为又∵g(x) 的定义域就是∵g(x) 的值域为的值域, ∴,.由条件可知∴.的定义域是, ,∴.令, 则即点(3,1) 在的图象上.又∵与g(x) 互为反函数,的对称点(1,3) 必在g(x)的图象上.∴(3,1) 关于∴3=1+ , .故 .判断是否存在反函数例3、给出下列函数:(1) ;(2) ;(3) ;(4) ;(5) .其中不存在反函数的是__________________.分析:判断一个函数是否有反函数, 从概念上讲即看对函数值域内任意一个,依照这函数的对应法则, 自变量总有唯一确定的值与之对应, 由于这种判断难度较大, 故通常对给出的函数的图象进行观察, 断定是否具有反函数.解: (1) ,(2)都没有问题, 对于(3)当.对于(4)时,和时, 和,且.对于(5)当时, 和 .故(3),(4),(5)均不存在反函数.小结:从图象上观察, 只要看在相应的区间内是否单调即可.求复合函数的反函数例4、已知函数分析: 由于已知是找到解:令,由得. 于是有,再由,则,所求是求出, ,求的反函数.的反函数,因此应首先由的表达式, 再求反函数., ,.,由于,又,的反函数是. 的值域是, .小结:此题涉及对抽象函数符号的认识与理解, 特别是在换元过程中, 相应变量的取值范围也要随之发生改变, 这一点是学生经常忽略的问题.原来的函数与反函数解析式相同求系数例5、已知函数试指出与其反函数是同一个一次函数,的所有取值可能.的反函数的解析式,与分析:此题可以有两种求解思路:一是求解比较, 让对应系数相等, 列出关于的方程, 二是利用两个函数图象的对称性, 找对称点, 利用点的坐标满足解析式来列方程. 解:由上, 于是又于是知点在图象上, 则点定在的图象(1) 过点(2),则点也在的图象上,由(1)得当或,当.时, 代入(2),此时(2)恒成立即;代入(2)解得综上, 的所有取值可能有或 .小结:此题是反函数概念与方程思想的综合. 在这个题目中特殊点的选取一般是考虑计算简单方便, 而且这种取特殊点列方程的方法在其他地方也有应用, 故对此种方法要引起重视. 另外此题在最后作答时, 要求写出的所有取值可能即要把的取值与的取值搭配在一起, 所以解方程组时要特别小心这一点. 选题角度:反函数图象关系、将反函数问题转化为原函数、利用性质求解析式、两函数互为反函数,确定两函数的解析式判断是否存在反函数、求出反函数解析式解关于反函数的不等式、求复合函数的反函数、由原来函数运算关系证明反函数运算。
2.4 反函数·例题解析[例1]求下列函数的反函数:(1)y (x )(2)y x 2x 3x (0]2=≠-.=-+,∈-∞,.352112x x -+(3)y (x 0)(4)y x +1(1x 0) (0x 1)=≤.=-≤≤-<≤112x x +⎧⎨⎪⎩⎪ 解 (1)y (x )y y (2y 3)x y 5x y (x )∵=≠-,∴≠,由=得-=--,∴=所求反函数为=≠.35211232352153253232x x x x y y y y -+-++-+- 解(2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞),由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵=≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11111122x x y y x x++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤,得值域≤≤,反函数=-≤≤.由=-<≤,x x +-1得值域-≤<,反函数=-≤<,故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-⎧⎨⎪⎩⎪x[例2]求出下列函数的反函数,并画出原函数和其反函数的图像.(1)y 1(2)y 3x 2(x 0)2=-=--≤x -1解(1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1,由=-,得反函数=++≥-.函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11解(2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23它们的图像如图2.4-2所示.【例3】已知函数=≠-,≠.f(x)(x a a )3113x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值.解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠,31x x a ++若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313-----ay y ax x (2)f(x)f (x)x 1若=,即=对定义域内一切的值恒成立,-++--3113x x a ax x 令x =0,∴a =-3.或解由f(x)=f -1(x),那么函数f(x)与f -1(x)的定义域和值域一样,定义域是{x|x ≠a ,x ∈R },值域y ∈{y|y ≠3,y ∈R },∴-a =3即a =-3. 【例4】已知函数==中,、、、均不为零,y f(x)a b c d ax b cx d++ 试求a 、b 、c 、d 满足什么条件时,它的反函数仍是自身.解 f(x)bc ad 0f (x)x 1=+,∵常数函数没有反函数,∴-≠.又=,要使=,对定义域内一切值恒成立,a c bc ad c cx d dx b cx adx b cx a ax b cx d-+-+--+-++-()令x =0,得-a =d ,即a +d =0.事实上,当a +d =0时,必有f -1(x)=f(x),因此所求的条件是bc -ad ≠0,且a +d =0.[例5]设点M(1,2)既在函数f(x)=ax 2+b(x ≥0)的图像上,又在它的反函数图像上,(1)求f -1(x),(2)证明f -1(x)在其定义域内是减函数.解证(1)2a b 14a b a b f(x)x (x 0)(2)y x (x 0)f (x)(x )221由=+=+得=-=,∴=-+≥由=-+≥得反函数=≤.⎧⎨⎩⎧⎨⎪⎪⎩⎪⎪--1373137313737373x 设<≤,∴->-≥,∴>,即>,故在-∞,上是减函数.x x 73x 73x 0f (x )f (x )f (x)(]121211121737337312-----x x x【例6】解法一若函数=,求的值.先求函数=的反函数=,于是==--.f(x)f (2)()f(x)f (x)f (2)532x x x x x x-+-++-+----121212112212111 解法(二) 由函数y =f(x)与其反函数y =f -1(x)之间的一一对应关 系,求的值,就是求=时对应的的值,∴令=,得=--,即=--.f (2)f(x)2x 2x 532f (2)53211---+x x 12 【例7】已知∈,且≠,≠.设函数=∈且≠,证明=的图像关于直线=对称.a a 0a 1f(x)(x x )y f(x)y x R R x ax a --111证 y a 0a 1(ay 1)x y 1ay 10y a 1a 1由=,≠,≠,得-=-,如果-=,则=,∴=得=,这与已知≠矛盾,x ax aa x ax ----111111∴-≠,故=,∴=,即证得=的反函数就是它本身.ay 10x f (x)f(x)1y ay x ax x ax -------111111因为原函数的图像与其反函数的图像关于直线y =x 对称, ∴函数y =f(x)的图像关于直线y =x 对称.。
单调性奇偶性反函数典型例题总结一:单调性类型一:函数单调性的证明。
例1:证明函数上的单调性.证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0则∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0∴上递减.【变式1】用定义证明函数上是减函数.思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径.证明:设x1,x2是区间上的任意实数,且x1<x2,则∵0<x1<x2≤1 ∴x1-x2<0,0<x1x2<1∵0<x1x2<1故,即f(x1)-f(x2)>0∴x 1<x 2时有f(x 1)>f(x 2)上是减函数.例2:解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2.当a >0时,f(x)在(-1,1)上是减函数. 当a <0时,f(x)在(-1,1)上是增函数.总结:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.类型二:求函数的单调区间例1.判断下列函数的单调区间; (1)y=x 2-3|x|+2; (2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∵-=∵-<<<,+>,->,-<,-<.∴>f(x )f(x )1x x 1x x 10x x 0x 10x 10012121221a x x x x x x x x x x x x ()()()()()()()()12211222121212211222111111+---+---判断函数 =≠ 在区间 - , 上的单调性. f(x) (a 0) ( 1 1) axx 2 1-∴f(x)在上递增.例2:(1)y=|x2+2x-3| (2)(2)(1)令f(x)=x2+2x-3=(x+1)2-4.先作出f(x)的图像,保留其在x轴及x轴上方部分,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示.由图像易得:递增区间是[-3,-1],[1,+∞)递减区间是(-∞,-3],[-1,1](2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;总结升华:[1]数形结合利用图象判断函数单调区间;[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三:单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)例1:已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a ≤2,∴-2a ≥-4 ∴f(2)=-2a+11≥-4+11=7.例2:函数f(x)=ax 2-(3a -1)x +a 2在[-1,+∞]上是增函数,求实数a 的取值范围.解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数.若a <0时,无解. ∴a 的取值范围是0≤a ≤1.例3已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小:(1)f(6)与f(4)解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4)时为减函数.类型四:分段函数的单调性:分段函数的单调性,首先应该判断各段函数的单调性,若每一段函数单调性一致,再判断分界点处函数值的关系,符合单调性定义,则该函数在整个定义域上单调递增或递减,不符合,则必须分开说明单调性.例1:例1 若f (x )=⎩⎪⎨⎪⎧a x(x >1),()4-a2x +2(x ≤1)是R 上的单调递增..函数,则实数a 的取值范围为________. [4,8) 【解析】 因为f (x )是定义在R 上的增函数,故y =a x 和y =()4-a2x +2均为增函数,所以a >1且4-a2>0,即1<a <8.又画出该分段函数图象,由图象可得,该函数还必须满足:a 1≥()4-a2×1+2,即a ≥4. 综上,a 的取值范围为4≤a <8.当≠时,对称轴=,若>时,由>≤,得<≤.a 0x a 0a 0 3a 10a 131212a aa--⎧⎨⎪⎩⎪(2)f(2)f(15)与(2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而<<,函数在≥15∴>,即>.f(15)f(4)f(15)f(2)二:奇偶性类型一、判断函数的奇偶性例1:判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3(4)f(x)=|x+3|-|x-3| (5)(6)(7)思路点拨:根据函数的奇偶性的定义进行判断.解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.举一反三:【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x)G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x)∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.类型二、函数奇偶性的应用(求值,求解析式,与单调性结合)例1:已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:.解:,又为奇函数,所以.例2: f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图例3:.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a 的取值范围. 解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|) 而|a-1|,|a|∈[0,3].类型三:分段函数的奇偶性例1.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.类型四:应用奇偶性求函数解析式。
如何求反函数例题
求反函数的一般步骤如下:
1. 假设原函数为f(x),求出其反函数的记号为f⁻¹(x)。
2. 将f(x) = y 转化为x = f⁻¹(y)。
3. 交换x 和y 的位置,得到f⁻¹(y) = x。
4. 将等式中的y 替换为x,将x 替换为y,得到f⁻¹(x) = y,即反函数。
以下是一个求反函数的例题:
假设有原函数f(x) = 2x + 3,求其反函数。
步骤如下:
1. 假设反函数为f⁻¹(x)。
2. 将f(x) = y 转化为x = f⁻¹(y)。
3. 交换x 和y 的位置,得到f⁻¹(y) = x。
4. 将等式中的y 替换为x,将x 替换为y,得到f⁻¹(x) = y,即反函数。
对于原函数f(x) = 2x + 3,将x 替换为y,并求解等式:x = 2y + 3。
解方程得到y = (x - 3)/2。
因此,反函数f⁻¹(x) = (x - 3)/2。
需要注意的是,求反函数时有一些限制条件,比如原函数必须是可逆的、单射的等。
在一些复杂的函数中,求反函数可能需要使用更高级的数学技巧和方法。
1 例析反函数的几种题型及解法一般地,如果x 与y 关于某种对应关系f (x )相对应,y=f (x ),则y=f (x )的反函数为y=f -(x)。
存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。
y=f -(x) 的定义域、值域分别是函数y=f(x)的值域、定义域原函数和反函数的图象关于直线 y = x 对称运用:如果原函数或反函数的图象经过点(a,b )那么,如果点(m,n )是点(a,b )关于直线 y = x 对称点,则它的反函数或原函数的图象必经过点(m,n )。
一. 反函数存在的充要条件类型例1. (2004年北京高考)函数f x x ax ()=--223在区间[]12,上存在反函数的充要条件是( ) A. (]a ∈-∞,1 B. [)a ∈+∞2, C. (][)a ∈-∞+∞,,12 D. []a ∈12,二. 反函数的求法类型 例2. (2005年全国卷)函数yx x =-≤2310()的反函数是( ) A.y x x =+≥-()()113 B. y x x =-+≥-()()113 C. y x x =+≥()()103 D. y x x =-+≥()()1032.2 求y x x x =--≤-2231()的反函数。
三. 求反函数定义域、值域类型例3. (2004年北京春季)若f x -1()为函数f x x ()lg()=+1的反函数,则f -1(x )的值域为_________。
四. 反函数的奇偶性、单调性类型例4. 函数y e e x x=--2的反函数是( )A. 奇函数,在(0,+∞)上是减函数B. 偶函数,在(0,+∞)上是减函数C. 奇函数,在(0,+∞)上是增函数D. 偶函数,在(0,+∞)上是增函数五. 反函数求值类型例 5. (2005年湖南省高考)设函数f (x )的图象关于点(1,2)对称,且存在反函数f x f -=140()(),,则f -=14()___________。
反函数题型及解析1.求下列函数的反函数,找出它们的定义域和值域(1)y=2+lg(x+1);(2)y=3+;(3)y=.2.求函数的反函数(1)y=(2)y=(3)y=lnx+1 (4)y=3x+23.求下列函数的反函数的定义域(1)y=(2)(3)4.求下列函数的反函数,并指出该函数和它的反函数的定义域(1)y=;(2)y=;(3)y=e x﹣15.求下列函数的反函数(1)y=;(2)y=(e x﹣e﹣x);(3)y=1+ln(x﹣1)6.求下列函数的反函数.(1)y=log(1﹣x)+2(x<0);(2)y=2﹣(﹣2≤x≤0);(3)y=(﹣1≤x≤0);(4)y=x|x|+2x.反函数题型解析1.分析:(1)由对数式的真数大于0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,化对数式为指数式,再把x,y互换求出原函数的反函数,得到反函数的定义域和值域;(2)由根式内部的代数式大于等于0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,求出x,再把x,y互换求出原函数的反函数,得到反函数的定义域和值域;(3)由分式的分母不为0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,求出x,再把x,y 互换求出原函数的反函数,得到反函数的定义域和值域.解:(1)y=2+lg(x+1),由x+1>0,可得x>﹣1,∴原函数的定义域为(﹣1,+∞),值域为R.由y=2+lg(x+1),得lg(x+1)=y﹣2,化为指数式得,x+1=10y﹣2,x,y互换得:y=10x﹣2﹣1,此反函数的定义域为R,值域为(﹣1,+∞);(2)y=3+,由x≥0,可得原函数的定义域为[0,+∞),值域为[3,+∞).由y=3+,得,x=(y ﹣3)2,x,y互换得:y=(x﹣3)2,此反函数的定义域为[3,+∞),再由为[0,+∞);(3)y=,由x+1≠0,得x≠﹣1,∴原函数的定义域为{x|x≠﹣1},由y==,∴原函数的值域为{y|y≠1}.由y=,得yx+y=x﹣1,即(1﹣y)x=1+y,∴x=,x与y互换得:,此反函数的定义域为{x|x≠1},值域为{y|y≠﹣1}.2. 分析:由已知的解析式求出x的表达式,再把x换成y、y换成x,并注明反函数的定义域.解:由y=的得,xy+4y=x﹣4,解得(y≠1),所以(x≠1),则函数y=的反函数是(x≠1).(2)函数y=可得:2x=2x y+y.可得2x(1﹣y)=y,2x=,可得x=,函数y=的反函数为y=.(3)由y=lnx+1解得x=e y﹣1,即:y=e x﹣1,∵x>0,∴y∈R所以函数f(x)=lnx+1(x>0)反函数为y=e x﹣1(x∈R);(4)∵y=3x+2,∴3x=y﹣2,又3x>0,故y>2,∴x=log3(y﹣2)(y>2),∴函数y=3x+2的反函数是y=log3(x﹣2)(x>2)3.分析:欲求反函数的定义域,可以通过求原函数的值域获得,所以只要求出函数的值域即可,反函数的定义域即为原函数的值域求解即可解:(1)∵y=,∴ye x+y=e x,∴(y﹣1)e x=﹣y,∴,∴x=ln,x,y互换,得函数y=的反函数为:,,解得反函数的定义域为:{x|0<x<1}(2)反函数的定义域即为原函数的值域,由,x>0,所以,所以,则y<0,反函数的定义域为(﹣∞,0)(3)由得,e x=.∵e x>0,∴>0,∴﹣1<y<1,∴反函数的定义域是(﹣1,1)4.解:(1)由y=,即2xy﹣y=x,x(2y﹣1)=y,解得x=,x,y互换得y=,其定义域为{x|x ≠}(2)由(2)y=可得y2=2x﹣3,即x=(y2+3),x,y互换得y=(x2+3),因为原函数的值域为[0,+∞),则反函数的定义域为[0,+∞)(3)由y=e x﹣1则x﹣1=lny,即x=1+lny,x,y互换得y=1+lnx,则其定义域为(0,+∞)5.分析:由已知解析式,用y表示出x,然后把x与y互换,即得反函数,应注意定义域与值域的互换.解:(1)由y=得到x=,把x与y互换可得:y=,(x∈R);(2)由y=(e x﹣e﹣x)得到:e x=y±,∵e x>0,∴e x=y+,由此得:x=ln(y+)∴函数y=(e x﹣e﹣x)的反函数是y=ln(x+)(x∈R);(3)∵y=1+ln(x﹣1)∴x=e y﹣1+1(y∈R),∴函数y=1+ln(x﹣1)的反函数为y=e x﹣1+1(x∈R);6.分析:首先确定函数的值域,即反函数的定义域,然后看作方程解出x,从而将x与y互换即可.解:(1)∵y=log(1﹣x)+2(x<0);∴y<2,∴y=﹣log2(1﹣x)+2,∴x=1﹣22﹣y,即y=1﹣22﹣x,(x<2);(2)∵y=2﹣(﹣2≤x≤0)的值域为[0,2],∴x=﹣,即y=﹣,(x∈[0,2]);(3)∵y=(﹣1≤x≤0)的值域为[,1],∴x2=1+log3y,∴x=﹣,故y=﹣,(≤x≤1);(4)y=x|x|+2x的值域为R,当x≥0时,y=x2+2x,故x=,当x<0时,y=﹣x2+2x,x=1﹣;故y=.。
反函数练习(含详细解析)反函数练习一.填空题1.若f(x)=(x﹣1)2(x≤1),则其反函数f﹣1(x)=.2.定义在R上的函数f(x)=2x﹣1的反函数为y=f﹣1(x),则f﹣1(3)=3.若函数f(x)=x a的反函数的图象经过点(,),则a=.4.已知函数f(x)=2x﹣1的反函数是f﹣1(x),则f﹣1(5)=.5.函数y=x2+2(﹣1≤x≤0)的反函数是f﹣1(x)=.6.已知函数f(x)=2x+m,其反函数y=f﹣1(x)图象经过点(3,1),则实数m 的值为.7.设f﹣1(x)为的反函数,则f﹣1(1)=.8.函数f(x)=x2,(x<﹣2)的反函数是.9.函数的反函数是.10.函数y=x2+3(x≤0)的反函数是.11.设函数f(x)=3x,若g(x)为函数f(x)的反函数,则g (1)=.12.设函数y=f(x)存在反函数y=f﹣1(x),且函数y=x ﹣f(x)的图象经过点(2,5),则函数y=f﹣1(x)+3的图象一定过点.13.函数(x≤0)的反函数是.14.已知函数,则=.15.函数的反函数为f﹣1(x)=.16.函数的反函数的值域是.17.函数f(x)=x2﹣2(x<0)的反函数f﹣1(x)=.18.设f(x)=4x﹣2x+1(x≥0),则f﹣1(0)=.19.若函数y=ax+8与y=﹣x+b的图象关于直线y=x对称,则a+b=.20.已知函数f(x)=log2(x2+1)(x≤0),则f﹣1(2)=.参考答案一.填空题(共20小题)1.1﹣(x≥0);2.2;3.;4.3;5.,x∈[2,3];6.1;7.1;8.;9.f﹣1(x)=(x﹣1)2(x≥1);10.y=﹣(x ≥3);11.0;12.(﹣3,5);13.(x≥﹣1);14.﹣2;15.,(x∈(0,1));16.;17.(x>﹣2);18.1;19.2;20.﹣;。
2.4 反函数·例题解析【例1】求下列函数的反函数:(1)y (x )(2)y x 2x 3x (0]2=≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0)(0x 1)=≤.=-≤≤-<≤112x x +⎧⎨⎪⎩⎪ 解 (1)y (x )y y (2y 3)x y 5x y (x )∵=≠-,∴≠,由=得-=--,∴=所求反函数为=≠.35211232352153253232x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞),由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵=≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11111122x x yy xx++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤,得值域≤≤,反函数=-≤≤.由=-<≤,x x +-1 得值域-≤<,反函数=-≤<,故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1)x(1x 0)1222-⎧⎨⎪⎩⎪x【例2】求出下列函数的反函数,并画出原函数和其反函数的图像.(1)y 1(2)y 3x 2(x 0)2=-=--≤x -1解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1,由=-,得反函数=++≥-.函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2,反函数=-≤-.f (x)(x 2)1--+x 23它们的图像如图2.4-2所示.【例3】已知函数=≠-,≠.f(x)(x a a )3113x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值.解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠,31x x a ++若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313-----ay y ax x(2)f(x)f (x)x 1若=,即=对定义域内一切的值恒成立,-++--3113x x a axx 令x =0,∴a =-3.或解 由f(x)=f -1(x),那么函数f(x)与f -1(x)的定义域和值域相同,定义域是{x|x ≠a ,x ∈R },值域y ∈{y|y ≠3,y ∈R },∴-a =3即a =-3.【例4】已知函数==中,、、、均不为零,y f(x)a b c d ax bcx d++试求a 、b 、c 、d 满足什么条件时,它的反函数仍是自身.解 f(x)bc ad 0f (x)x 1=+,∵常数函数没有反函数,∴-≠.又=,要使=,对定义域内一切值恒成立,a c bc adc cxd dx bcx adx b cx a ax b cx d-+-+--+-++-()令x =0,得-a =d ,即a +d =0.事实上,当a +d =0时,必有f -1(x)=f(x), 因此所求的条件是bc -ad ≠0,且a +d =0.【例5】设点M(1,2)既在函数f(x)=ax 2+b(x ≥0)的图像上,又在它的反函数图像上,(1)求f -1(x),(2)证明f -1(x)在其定义域内是减函数.解证(1)2a b 14a b a b f(x)x (x 0)(2)y x (x 0)f (x)(x )221由=+=+得=-=,∴=-+≥由=-+≥得反函数=≤.⎧⎨⎩⎧⎨⎪⎪⎩⎪⎪--1373137313737373x设<≤,∴->-≥,∴>,即>,故在-∞,上是减函数.x x 73x 73x 0f (x )f (x )f (x)(]121211121737337312-----x x x【例6】解法一若函数=,求的值.先求函数=的反函数=,于是==--.f(x)f (2)()f(x)f (x)f (2)532x x x x xx-+-++-+----121212112212111解法(二) 由函数y =f(x)与其反函数y =f -1(x)之间的一一对应关系,求的值,就是求=时对应的的值,∴令=,得=--,即=--.f (2)f(x)2x 2x 532f (2)53211---+x x 12【例7】已知∈,且≠,≠.设函数=∈且≠,证明=的图像关于直线=对称.a a 0a 1f(x)(x x )y f(x)y x R R x ax a --111证 y a 0a 1(ay 1)x y 1ay 10y a 1a 1由=,≠,≠,得-=-,如果-=,则=,∴=得=,这与已知≠矛盾,x ax aa x ax ----111111∴-≠,故=,∴=,即证得=的反函数就是它本身.ay 10x f (x)f(x)1y ay x ax x ax -------111111因为原函数的图像与其反函数的图像关于直线y =x 对称, ∴函数y =f(x)的图像关于直线y =x 对称.。
反函数 一些结论:()1定义域上的单调函数必有反函数;()2奇函数若存在反函数,则其反函数也是奇函数; ()3定义域为非单元素集的偶函数不存在反函数. ()4周期函数在整个定义域内不存在反函数.(5)互为反函数的两个函数具有相同的单调性.考点一。
反函数图象1.已知函数的反函数是,则的图象是( )解:由题意知则所以的图象可由的图象向右平移1个单位而得到。
故选(C )。
考点二。
求反函数定义域,值域2.(1)若为函数的反函数,则的值域为_________。
解:利用反函数的值域就是原函数的定义域,立即得的值域为。
(2)已知p 为xe 2y =上一点,Q 为2ln ln y -=x 上一点,求PQ 最小值。
解:由题,两函数互为反函数,当PQ 与y=x 垂直,且P,Q 分别为两曲线切点时,PQ 最小。
2ln ln y -=x ,则1x 1y ==',即x=1,切点为(1,-ln2),故22ln 1d +=。
由对称性,PQ 最小值=)2ln 12+(。
(3)已知y=a 与y=2(x+1),y=x+lnx 交于A ,B 两点,求AB 最小值。
解:0x11y >+=',单调递增,y=2(x+1)单增且k=2,画图像得:要使AB 最小,只需B 到y=2(x+1)距离d 最小又5535212d =+-=,故AB min=d 25=23。
考点三。
求反函数3.(1)函数的反函数是( )A. B. C. D. 解:由可得,故从解得因所以即其反函数是故选(B )。
(2)求下列函数的反函数: (1)2()(1)f x x x x =+≤-; (2)221(01)(){(10)x x f x x x -≤≤=-≤<.解:(1)由2(1)y x x x =+≤-得2211()(1)24y x x =+-≤-,∴211(0)24x y y +=-+≥,∴所求函数的反函数为211(0)24y x x =--+≥. (2)当01x ≤≤时,得1(10)x y y =+-≤≤,当10x -≤<时,得(01)x y y =-<≤,∴所求函数的反函数为1(10)(01)x x y x x ⎧+-≤≤⎪=⎨-<≤⎪⎩.(3)f(x)图像与g(x)图像关于直线x+y=0对称,则f(x)反函数为( ) A.y=g(x) B.y=g(-x) C.y=-g(x) D.y=-g(-x)解:f(x)图像与g(x)图像关于直线x+y=0对称,∴-x=f(-y),即-y=)(f 1x --,则y=-)(f 1x --,)()(f 1x g x -=-∴-,故)(-g (f 1x x -=-),选D. 考点四。
高考反函数问题常见类型解析反函数是高中数学中的重要概念之一,也是学生学习的难点之一。
在历年高考中占有一定的比例。
为了更好地掌握反函数相关的内容,本文重点分析关于反函数的几种题型及其解法。
一. 条件存在型例1.函数f x x ax ()=--223在区间[]12,上存在反函数的充要条件是( )A. (]a ∈-∞,1B. [)a ∈+∞2,C. (][)a ∈-∞+∞,,12D. []a ∈12,解析:因为二次函数f x x ax ()=--223不是定义域内的单调函数,但在其定义域的子区间(]-∞,a 或[)a ,+∞上是单调函数。
而已知函数f x ()在区间[1,2]上存在反函数,所以[](]12,,⊆-∞a 或者[][)12,,⊆+∞a ,即a ≤1或a ≥2。
故选(C )点评:函数y f x =()在某一区间上存在反函数的充要条件是该函数在这一区间上是一一映射。
特别地:如果二次函数y f x =()在定义域内的单调函数,那么函数f (x )必存在反函数;如果函数f (x )不是定义域内的单调函数,但在其定义域的某个子区间上是单调函数,那么函数f (x )在这个子区间上必存在反函数。
二. 式子求解型 例2.函数y x x =-≤2310()的反函数是( )A. y x x =+≥-()()113B. y x x =-+≥-()()113C. y x x =+≥()()103 D. y x x =-+≥()()103解析:由x ≤0可得x 230≥,故y ≥-1,从y x =-231解得x y =±+()13因x ≤0,所以x y =-+()13即其反函数是y x x =-+≥-()()113故选(B )。
点评:反函数的定义域即为原函数的值域,所以求反函数时应先求出原函数的值域,不应该直接求反函数的定义域。
三.求定义域值域型 例3.若fx -1()为函数f x x ()lg()=+1的反函数,则f -1(x )的值域为_________。
反函数例子反函数是函数学中的重要概念之一,它是指在一个函数的定义域内,通过交换该函数的自变量和因变量的位置得到的新函数。
本文将通过几个简单的例子来讲解反函数的概念和应用。
例子1:线性函数的反函数考虑一个线性函数y = kx + b,其中k和b为常数。
为了求出它的反函数,我们需要将自变量x和因变量y互换位置。
即我们需要解方程x = ky + b,将y作为方程的自变量,x作为方程的因变量。
通过解这个方程,我们可以得到线性函数的反函数。
例如,如果我们有一个线性函数y = 2x + 3,那么它的反函数就是x = 2y + 3。
通过解这个方程,我们可以得到反函数为y = (x - 3) / 2。
例子2:平方函数的反函数考虑一个平方函数y = x^2,我们需要将自变量x和因变量y互换位置来求出它的反函数。
即我们需要解方程x = y^2,将y作为方程的自变量,x作为方程的因变量。
通过解这个方程,我们可以得到平方函数的反函数。
例如,如果我们有一个平方函数y = x^2,那么它的反函数就是x = y^2。
通过解这个方程,我们可以得到反函数为y = sqrt(x)。
例子3:三角函数的反函数三角函数也有反函数的概念,常见的三角函数包括正弦函数、余弦函数和正切函数。
以正弦函数为例,正弦函数的定义域为实数集,值域为[-1, 1]。
为了求出正弦函数的反函数,我们需要将自变量和因变量互换位置。
即我们需要解方程x = sin(y),将y作为方程的自变量,x作为方程的因变量。
通过解这个方程,我们可以得到正弦函数的反函数。
同理,对于余弦函数和正切函数也可以进行类似的求解。
总结:通过以上几个例子,我们可以看到反函数的求解过程与原函数的求解过程相似,只是将自变量和因变量的位置互换。
反函数在数学和物理等领域有着重要的应用,例如在解方程、求导数等方面。
熟练掌握反函数的概念和求解方法,有助于我们更好地理解和应用函数学中的知识。
通过本文的讲解,相信大家对反函数的概念和应用有了更深入的了解。
《反函数_典型例题精析》反函数是指在函数关系中,将自变量和因变量的角色互换,从而得到一个新的函数关系。
它是函数关系的逆运算,用于解决一些特定的问题。
下面将通过几个典型的例题来对反函数进行精析。
例题1:已知函数y = 2x + 3,求它的反函数。
解析:要求反函数,需要将自变量和因变量的角色互换。
首先将原函数中的自变量x换成y,因变量y换成x:x = 2y + 3。
然后解方程,将y表示出来:y = (x - 3) / 2。
所以,原函数的反函数为f^(-1)(x) = (x - 3) / 2。
例题2:已知函数f(x) = x^2,求它的反函数。
解析:同样地,需要将自变量和因变量的角色互换。
将原函数中的自变量x换成y,因变量y换成x:x = y^2。
然后解方程,将y表示出来。
但是,由于原函数f(x) = x^2不是一一对应的函数,即存在多个x对应同一个y的情况,所以它没有反函数。
例题3:已知函数f(x) = e^x,求它的反函数。
解析:同样地,需要将自变量和因变量的角色互换。
将原函数中的自变量x换成y,因变量y换成x:x = e^y。
然后解方程,将y表示出来:y = ln(x)。
所以,原函数的反函数为f^(-1)(x) = ln(x)。
通过以上例题的分析可以看出,反函数的求解过程主要是将原函数中的自变量和因变量互换,然后解方程将因变量表示出来。
需要注意的是,反函数存在的条件是原函数必须是一一对应的函数,即每个自变量对应唯一的因变量。
如果原函数不是一一对应的函数,则不存在反函数。
反函数在实际问题中有着重要的应用,例如在金融领域中,可以利用反函数来解决利率计算、贷款计算等问题;在物理学中,可以利用反函数来解决速度、加速度等问题。
因此,熟练掌握反函数的求解方法对于解决实际问题具有重要意义。
总结起来,反函数是函数关系的逆运算,通过将自变量和因变量的角色互换,得到一个新的函数关系。
反函数的求解过程主要是将原函数中的自变量和因变量互换,然后解方程将因变量表示出来。
第13讲 反函数的概念题型与解题策略一、知识与方法1.反函数的定义对于函数()y f x =,设它的定义域为D ,值域为A ,对应法则为f ,若对于每一个y ∈A ,都有唯一的x D ∈满足()f x y =.则这样的对应也构成一个函数,称为原来函数y =()f x 的反函数,记作1()x f y -=.习惯上,自变量常用x 表示,因变量常用y 表示,所以我们对调反函数式1()x f y -=中的,x y ,把它改写成1(),y f x x A -=∈.2.求函数()y f x =的反函数的基本步骤(1)由()y f x =解出x ,得1()x f y -=;(2)将,x y 互换得1()y f x -=;(3)由原函数的值域写出反函数1()y f x -=的定义域.若()f x 与1()f x -互为反函数,则①()f x 的定义域和值域分别为1()f x -的值域和定义域;②()f x 和1()f x -的对应法则互递;③()f x 和1()f x -的图像关于直线y x =对称.3.原函数与反函数的“交叉关系”原函数与反函数有两个“交叉关系”:自变量与因变量互换、定义域与值域互换,应特别注意以下两点.(1)()111()(),(),(())f a b f b a f f x x f f x x ---=⇔===,但()1()f f x -≠1(())f f x -(2)函数()(0)y f x a a =+≠的反函数是1()y f x a -=-,而不是1()y f x a -=+.4.对反函数概念的进一步阐述(1)不是每个函数都有反函数,由定义可知,对每个y A ∈都能从()f x y =中解出唯一的x D ∈(与之对应),这样的函数存在反函数;(2)单调函数具有反函数,且可以证明其反函数的单调性与原来函数的单调性一致.二、典型例题【例1】(1)若121(),()()21x x f x g x f x --==+,则35g ⎛⎫= ⎪⎝⎭________.(2)函数11,1ax y x x ax a -⎛⎫=≠-∈ ⎪+⎝⎭R 的图像关于y x =对称,则a 的值为________.(3)设1()f x -是函数()1()(1)2x x f x a a a -=->的反函数,则1()1f x ->成立的x 的取值范围是________.(4)2()f x a x b =++与()13c g x x =-+-互为反函数,则a b c ,,的值依次为________.【例2】(1)已知函数3(0)3x x f x x +⎛⎫=≠ ⎪⎝⎭,求13x f -⎛⎫ ⎪⎝⎭; (2)已知函数1()(0,1)x f x a b b b -=+>≠的图像经过点(1,3),函数1()f x a -+(0)x >的图像经过点(4,2),试求函数1()f x -的表达式;(3)已知函数13()12x f x x+=-与函数()g x 的图像关于直线y x =对称,又函数()h x 与(2)g x +互为反函数,求(4)h 的值;(4)判断函数2,0,2,0x x x y x x ⎧-=⎨->⎩是否有反函数,如果有,求出反函数,否则说明理由.【例3】为研究“原函数图像与其反函数图像的交点是否在定直线y x =上”这一课题,可以分3步进行研究:(1)首先选取如下函数:221,,1x y x y y x =+==+图像的交点坐标:21y x =+与其反函数12x y -=的交点坐标为(1,1)--. 21x y x =+与其反函数2x y x=-的交点坐标为(0,0),(1,1).y =21(0)y x x =-的交点坐标为⎝⎭,(1,0),(0,1)--(2)观察分析上述结果得到研究结论.(3)对得到的结论进行证明,现在请完成(2)和(3).三、易错警示【例】已知23()1xf xx+=-,若函数()g x的图像与1(1)y f x-=+的图像关于直线y x=对称,求g(3)的值.四、难题攻略【例】已知函数210()(10)10x f x x x -⎛⎫=> ⎪+⎝⎭. (1)求的反函数;(2)如果不等式对于上的每一个的值都成立,求实数的取值范围;(3)设,求函数的最小值及相应的的值.()fx 1(1()(f x m m ->11,94⎡⎤⎢⎥⎣⎦xm 11()()g x f x -=()y g x =x五、强化训练1.在上的递减函数满足:当且仅当时,函数值的集合为,且,又对中的任意,都有. (1)判断和是否都是中的元素,并说明理由. (2)若表示在上的反函数,则是否具有这样的性质:并说明理由.(3)不等式是否有解?如有,求出解集;如没有解,说明理由.R ()f x x M +∈⊆R ()f x [0,2]112f ⎛⎫= ⎪⎝⎭M 12,x x ()()()1212f x x f x f x =+1418M 1()f x -()f x M 1()f x -()()()1111212f x f x f x x ---=+()1211(2)([0,2])4f x x f x x --++∈2.设. (1)试判断函数的单调性,并用函数单调性的定义,给出证明;(2)若的反函数为,证明:对任意的自然数都有; (3)若的反函数为,证明:方程有唯一解.211()log ,()()12x f x F x f x x x+==+--()F x ()f x 1()f x -(3)n 1()1n f n n ->+()F x 1()F x -1()0F x -=第13讲 反函数的概念题型与解题策略一、知识与方法1.反函数的定义对于函数()y f x =,设它的定义域为D ,值域为A ,对应法则为f ,若对于每一个y ∈A ,都有唯一的x D ∈满足()f x y =.则这样的对应也构成一个函数,称为原来函数y =()f x 的反函数,记作1()x f y -=.习惯上,自变量常用x 表示,因变量常用y 表示,所以我们对调反函数式1()x f y -=中的,x y ,把它改写成1(),y f x x A -=∈.2.求函数()y f x =的反函数的基本步骤(1)由()y f x =解出x ,得1()x f y -=;(2)将,x y 互换得1()y f x -=;(3)由原函数的值域写出反函数1()y f x -=的定义域.若()f x 与1()f x -互为反函数,则①()f x 的定义域和值域分别为1()f x -的值域和定义域;②()f x 和1()f x -的对应法则互递;③()f x 和1()f x -的图像关于直线y x =对称.3.原函数与反函数的“交叉关系”原函数与反函数有两个“交叉关系”:自变量与因变量互换、定义域与值域互换,应特别注意以下两点.(1)()111()(),(),(())f a b f b a f f x x f f x x ---=⇔===,但()1()f f x -≠1(())f f x -(2)函数()(0)y f x a a =+≠的反函数是1()y f x a -=-,而不是1()y f x a -=+.4.对反函数概念的进一步阐述(1)不是每个函数都有反函数,由定义可知,对每个y A ∈都能从()f x y =中解出唯一的x D ∈(与之对应),这样的函数存在反函数;(2)单调函数具有反函数,且可以证明其反函数的单调性与原来函数的单调性一致.二、典型例题【例1】(1)若121(),()()21x x f x g x f x --==+,则35g ⎛⎫= ⎪⎝⎭________. (2)函数11,1ax y x x ax a -⎛⎫=≠-∈ ⎪+⎝⎭R 的图像关于y x =对称,则a 的值为________. (3)设1()f x -是函数()1()(1)2x x f x a a a -=->的反函数,则1()1f x ->成立的x 的取值范围是________.(4)2()f x a x b =++与()13c g x x =-+-互为反函数,则a b c ,,的值依次为________. 【分析】 解决反函数问题要特别注意利用原函数和反函数之问的关系.概念清晰非常重要,可以大大减少解题时的运算量.【解析】(1)设13355g f t -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则3()5f t =,即213,2215t t t -=∴=+.即325g ⎛⎫= ⎪⎝⎭. (2)一个函数的图像关于直线y x =对称,则这个函数的反函数就是原函数,利用待定系数法可求出a 的值. 由11,1ax y x x ax a -⎛⎫=≠-∈ ⎪+⎝⎭R 得1(1)(1)y x y a y -=≠-+. 设11()(1)(1)x f x x a x --=≠-+. 由题知:1()()f x f x -=,即11,1(1)1x ax a a x ax --=∴=++. (3)【解法一】 由()12x x y a a -=-得()2210x x a ya --=.∴x a y =(负值舍去),∴(log a x y =+,即(1()log a f x x -=+.由(log 1a x +>得x a >,解得212a x a ->. 【解法二】∵1,()a f x >∴为增函数且值域为R ,∴()1()(1)f f x f ->,即(1)x f >.即211122a x a a a -⎛⎫>-= ⎪⎝⎭. (4)∵3()f x a x b =++的定义域为x b ≠-,值域为y a ≠,()13c g x x =-+-的定义域为3x ≠,值域1y ≠-,∴21,3,()31b a f x x -=-=∴=++. 在()f x 上取一点(0,5),则点(5,0)在()g x 上,∴(5)1053c g =-+=-.解方程得2c =,故a b c ,,的值分别为3,1,2.【例2】(1)已知函数3(0)3x x f x x +⎛⎫=≠ ⎪⎝⎭,求13x f -⎛⎫ ⎪⎝⎭;(2)已知函数1()(0,1)x f x a b b b -=+>≠的图像经过点(1,3),函数1()f x a -+(0)x >的图像经过点(4,2),试求函数1()f x -的表达式; (3)已知函数13()12xf x x+=-与函数()g x 的图像关于直线y x =对称,又函数()h x 与(2)g x +互为反函数,求(4)h 的值;(4)判断函数2,0,2,0x x x y x x ⎧-=⎨->⎩是否有反函数,如果有,求出反函数,否则说明理由.【分析】本题的解题要诀:按部就班,不要“跳跃”,吃透概念,循序渐进,读出“几何条件”背后的“代数信息”. 【解析】 (1)设3x t =,则33113,().().13t t x x t f t y f x yx x t t x+++===∴==∴=+.∴1(1)1,1x y x y -=∴=-,得11()1f x x -=-.可得1133313x f x x -⎛⎫== ⎪-⎝⎭-,得1333x f x -⎛⎫= ⎪-⎝⎭. (2)10,1,()x b b y f x a b ->≠==+,则1,1log ()x b b y a x y a -=--=-.∴1()log ()1()b f x x a x a -=-+>,可得1()log 1b f x a x -+=+.1()x f x a b -=+的图像经过点(1,3),可得2a =.1()(0)f x a x -+>的图像经过点(4,2),可得4b =.∴14()log (2)1(2)f x x x -=-+> (3)设(4)h t =,则点(4,)t 在函数()y h x =的图像上.又函数()h x 与(2)g x +互为反函数,∴点(,4)t 在(2)y g x =+的图像上,即(2)4g t +=,即点(2,4)t +在函数()y g x =的图像上. 又函数13()12xf x x+=-与函数()g x 的图像关于直线y x =对称, ∴点(4,2)t +在13()12x f x x +=-的图像上.∴13272,77t t =+∴=--. (4)由反函数的概念判断所给的函数存在反函数.①当0x 时,221124y x x x ⎛⎫=-=-- ⎪⎝⎭,由二次函数的性质可知[0,y ∈+)∞.反解,得102x y =-. ②当0x >时,2y x =-,由一次函数的性质可知(,0)y ∈-∞.反解,得12x y =-,0y <.由①,②得10,21,0.2y x y y ⎧⎪⎪=⎨⎪-<⎪⎩互换,x y得所求的反函数为1021,0.2x y x x ⎧⎪⎪=⎨⎪-<⎪⎩.【例3】为研究“原函数图像与其反函数图像的交点是否在定直线y x =上”这一课题,可以分3步进行研究:(1)首先选取如下函数:221,,1xy x y y x =+==+图像的交点坐标:21y x =+与其反函数12x y -=的交点坐标为(1,1)--. 21x y x =+与其反函数2xy x=-的交点坐标为(0,0),(1,1).y =21(0)y x x =-的交点坐标为⎝⎭,(1,0),(0,1)--(2)观察分析上述结果得到研究结论.(3)对得到的结论进行证明,现在请完成(2)和(3). 【分析】本例研究函数()f x 与其反函数1()f x -的交点有什么特点,是一个很好的研究性课题,一是交点的个数,二是交点的位置,这些疑点,本例均可以破解.21y x =+与其反函数12x y -=只有1个交点,且在y x =上;21x y x =+与其反函数2xy x=-的交点有2个,且都在y x =上;y =21(0)y x x =-的交点有3个,不都在y x =上,故第三例是一个很好的研究点.21),1(0)y x y x x ⎧=-⎪⎨=-⎪⎩⇒21x -,两边平方解42424222121200(1)x x x x x x x x x x x x +=-+⇒--=⇒---=⇒+(1)(1)0x x x --+=⇒()2(1)100x x x x x +--=⇒=或1x =-或x =,由于[1,0],x x ∈-∴=舍去,∴1,0,0,1,x x y y =-=⎧⎧⎨⎨==-⎩⎩x y ⎧=⎪⎪⎨⎪=⎪⎩故有3个交点,(0,1)-不在y x =上,⎝⎭在y x =上.又比如函数1y x=-的反函数就是其本身,图像不与直线y x =相交,但与直线y x =对称,图像上每一点都是它与反函数的交点,故可以说有无穷多个交点且与直线y x =对称.再举一例我们探究方程1161log 16xx ⎛⎫= ⎪⎝⎭的解的个数,实质就是互为反函数的116xy ⎛⎫= ⎪⎝⎭与116log y x =图像交点的个数,有3个交点,其中1111,,,2442⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭两个交点也不在直线y x=上.根据上面的分析可以得出如下结论:()y f x =与1()y f x -=的交点可能在y x =上,也可能不在直线y x =上.若不在y x =上,则必关于y x =对称.交点的个数可以有1个,2个,3个或无穷多个. 【解析】 (1)略.(2)原函数图像与其反函数图像的交点不一定在直线y x =上.(3)证明:设点(,)a b 是()f x 的图像与其反函数图像的任一交点,由于原函数与其反函数的图像关于直线y x =对称,则点(,)b a 也是()f x 的图像与其反函数图像的交点,且有(),()b f a a f b ==.若a b =,则交点显然在直线y x =上;若a b <且()f x 是增函数时,有()()f b f a <,从而有b a <,前后矛盾;若b a <且()f x 是增函数时,有()()f a f b <,从而有a b <,前后矛盾;若a b <且()f x 是减函数时,有()()f b f a <,从而有a b <成立,此时交点不在直线y x =上.同理,若b a <且()f x 是减函数时,交点也不在直线y x =上.综上所述,如果函数()f x 是增函数,并且()f x 的图像与其反函数的图像有交点,则交点一定在直线y x =上;如果函数()f x 是减函数,并且()f x 的图像与其反函数的图像有交点,则交点不一定在直线y x =上.三、易错警示【例】已知23()1x f x x +=-,若函数()g x 的图像与1(1)y f x -=+的图像关于直线y x =对称,求g (3)的值. 【错解】(若对反函数的概念不够清晰,则易出现如下的错解)由题意知,()g x 是1(y f x -=1+)的反函数,而1(1)y f x -=+的反函数是(1)y f x =+, ∴2(1)325()(1)(1)1x x g x f x x x +++=+==+-,于是23511(3)33g ⨯+==.【分析】事实上,()y f x =的反函数为1()y f x -=,因此1()y f x -=是函数1()y f x -=当x 取1x +时所得的函数值.另一方面,(1)y f x =+的反函数是这样求出的:由(1)y f x =+得11()x f y -+=.即1()1x f y -=-,互换,x y ,得1()1y f x -=-, ∴(1)y f x =+的反函数是1()1y f x -=-,而不是1(1)y f x -=+. 【解析】 【正解一】∵1233(),()12x x f x f x x x -++=∴=--.则14(1)1x f x x -++=-,令1(1)y f x -=+41x x +=-,则41y x y +=-,互换x y 、得1(1)y f x -=+的反函数为()y g x ==4347,(3)1312x g x ++∴==--.【正解二】设(3)g x =,则1()3g x -=.()y g x =的图像与1(1)y f x -=+的图像关于直线y x =对称. ∴()y g x =与1(1)y f x -=+互为反函数.因此有11()(1)3g x f x --=+=.因此2339(3)1312f x ⨯+=+==-. 于是97(3)122g x ==-=. 四、难题攻略【例】已知函数210()(10)10x f x x x -⎛⎫=> ⎪+⎝⎭.(1)求的反函数;(2)如果不等式对于上的每一个的值都成立,求实数的取值范围;(3)设,求函数的最小值及相应的的值. 【分析】本例是一道涉及函数与反函数、含参数无理不等式恒成立,以及求函数最值等众多数学知识的综合题,包含的信息很多.如何处理这些信息,使问题的解决一步步获得进展并最后加以攻克呢?数学教育家·波利亚为我们提供了这样一条路线:(1)为了解答一道题目,我们必须具备关于题目的一些知识,此外还必须在我们已经存在的,但原本潜伏着的知识中挑选和收集相关的内容……从我们的记忆中萃取这样的相关元素可以称之为‘动员’.(2)然而,要解答一道题目,仅仅回忆起一些孤立的事实是不够的,我们必须把它们组织起来,而且它们的组合必须能很好地适用于我们手头的题目.(3)动员和组织绝不可能真正分开.(4)工作取得进展的另一个方面,是我们概念转换的模式.(5)当我们在向最终目标前进时,就可以越来越清楚地看到它,当我们看得更清楚一些时,就可以判断,我们离它更近了一些.(6)什么是趋向解答的进展?我们可以以不易觉察的小脚步稳步前进,但又不时跳跃腾飞,()fx 1(1()(f x m m ->11,94⎡⎤⎢⎥⎣⎦xm 11()()g x f x -=()y g x =x G取得突破性的进展.解综合题的过程实质就是汇聚相关知识,恰到好处地加以运用,一步步使之深入并完美地获得最终结果的过程,这里既有知识的再现、思维的不断深化、解题策略的实施,也是解题能力的展示.本例第(2)问可转化为含参数一次不等式在区问上恒成立,求参数的取值范围,且必须分类讨论.第(3)问的解题关键是有效变形后运用基本不等式求最小值. 【解析】(1)得. .(2)要使对于上的每一个的值都成立.即,也即在,则. 设,①当,即时,要使恒成立,只要即可.∴. 又.②当,即时,.③当,即时,要使恒成立,只要即可.∴,即,解得.又.. (3). 210(10)10x y x x -⎛⎫=>⎪+⎝⎭1)x y =<<1()1)f x x -∴=<<1(1()(f x m m ->11,94⎡⎤⎢⎥⎣⎦x (1(m m >-10(1(m m >11,94⎡⎤⎢⎥⎣⎦t =211,(10)10032t m t m ++->2()(10)10M t m t m =++-100m +>10m >-()0M t >103M ⎛⎫> ⎪⎝⎭2210100,34003m m m m ++->--<m <10,m >-m <<100m +=10m =-()900.10M t m =-<∴≠-100m +<10m <-()0m t >102M ⎛⎫> ⎪⎝⎭2101002m m ++->22300m m --<m <<10,m m <-∴∈∅m <<111()2()10f x f x -⎤=+=⎥⎦111122101010⎛==⨯+⨯ ⎝5=等号成立的条件为(舍去,∴.∴当时,.五、强化训练1.在上的递减函数满足:当且仅当时,函数值的集合为,且,又对中的任意,都有.(1)判断和是否都是中的元素,并说明理由.(2)若表示在上的反函数,则是否具有这样的性质:并说明理由.(3)不等式是否有解?如有,求出解集;如没有解,说明理由.【解析】(1)∵[]1110,2.22f M⎛⎫=∈∴∈⎪⎝⎭于是111112[0,2]42222f f f f⎛⎫⎛⎫⎛⎫⎛⎫=⨯=+=∈⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.1.4M∴∈又1111111.213[0.2]..8248248f f f M⎛⎫⎛⎫⎛⎫=⨯∴=+=+=∉∴∉⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)∵()f x是R上的减函数,而,()M f x∴R是M上的减函数.故()f x在M上的反函数必然存在,且1()f x-的定义域为()f x的值域[0,2].对于任意的12,[0,2]x x∈,记()()111122,y f x y f x--==.则()()()112212,,x f y x f y y y M==∈.故()()()()11212121212.x x f y f y f y y y y f x x-+=+=∴=+.而()()()()()1111112121212.y y f x f x f x f x f x x-----=∴=+.故1()f x-具有性质()()()2111112=.+f x f x f x x---(3)∵()f x在M上是减函数,,∴1()f x-在[0,2]上也是减函数.由()1211(2)4f x x f x--++,得()1211(2)(2)f x x f x f---+⋅+.11=-1-3x=-3x=-()g xR()f x x M+∈⊆R()f x[0,2]112f⎛⎫=⎪⎝⎭M12,x x()()()1212f x x f x f x=+1418M1()f x-()f x M1()f x-()()()1111212f x f x f x x---=+()1211(2)([0,2])4f x x f x x--++∈即()()121121(2)2(2)fxx f x f x x x f ----++=+++.∴{}2202022,0,0.222x x x x x x ⎧+⎪+=∴⎨⎪++⎩即不等式的解集是2.设. (1)试判断函数的单调性,并用函数单调性的定义,给出证明;(2)若的反函数为,证明:对任意的自然数都有; (3)若的反函数为,证明:方程有唯一解.【解析】211(1)()log ,(1,1),21x F x x x x +=+∈---函数12y x=-在(1,1)-上单调递增,且函数y =21log 1x x +-可写成22log (1)1y x =---,在(-1,1)上单调递增.211()log 21xF x x x+∴=+--在(-1,1)上单调递增。
反函数常用知识点总结一、函数的定义及性质回顾1. 函数的定义:设A、B是非空集合,如果按照某种确定的对应关系f,对于集合A的每一个元素x,都有唯一确定的元素y与之对应,则称f是从A到B的一个函数,记作f:A→B。
2. 反函数的定义:设f:A→B是一个函数,如果对于每个y∈B,都存在唯一的x∈A,使得f(x)=y,那么就称f的反函数。
二、反函数的求解方法1. 基本方法:设f(x) = y,则反函数为x = f^(-1)(y)。
2. 对称法则:交换x和y,即将f(x) = y改写为f^(-1)(y) = x。
三、反函数的性质1. 定理1:若f是从A到B的一对一函数,则它的反函数存在且也是从B到A的一对一函数。
证明:由f是一对一函数,对于每个y∈B,恰有一个x∈A使得f(x)=y。
令x=f^(-1)(y),则有f(x)=y,由此可知f^(-1)(y)=x。
因此,f^(-1)(y)是从B到A的一对一函数。
2. 定理2:若f是从A到B的一个函数,并且f^(-1)是从B到A的一对一函数,则f是一个一对一函数。
证明:设f(x₁)=f(x₂),则有f^(-1)(f(x₁))=f^(-1)(f(x₂)),即x₁=x₂。
因此,f是一个一对一函数。
3. 定理3:若f是从A到B的一个函数,并且f^(-1)是从B到A的一个一对一函数,则f^(-1)是从B到A的满射。
证明:设y∈B,由f^(-1)是一对一函数可知,存在一个唯一的x∈A使得f^(-1)(y)=x。
因此,f^(-1)是从B到A的满射。
四、反函数的图像及定义域、值域的关系1. 反函数的图像:反函数f^(-1)的图像是由函数f的图像关于直线y=x作镜像而成的。
2. 定义域和值域的关系:设f:A→B是一个函数,则f的定义域是A,值域是f(A)。
而f的反函数f^(-1)的定义域是B,值域是f^(-1)(B)。
五、反函数与反比例函数的关系1. 反比例函数的性质:反比例函数y=k/x的反函数是y=k/x。
反函数·例题解析【例1】求下列函数的反函数:(1)y (x )(2)y x 2x 3x (0]2=≠-.=-+,∈-∞,.352112x x -+(3)y (x 0)(4)y x +1(1x 0) (0x 1)=≤.=-≤≤-<≤112x x +⎧⎨⎪⎩⎪ 解 (1)y (x )y y (2y 3)x y 5x y (x )∵=≠-,∴≠,由=得-=--,∴=所求反函数为=≠.35211232352153253232x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞),由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵=≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11111122x x y y x x++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤,得值域≤≤,反函数=-≤≤.由=-<≤,x x +-1得值域-≤<,反函数=-≤<,故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-⎧⎨⎪⎩⎪x【例2】求出下列函数的反函数,并画出原函数和其反函数的图像.(1)y 1(2)y 3x 2(x 0)2=-=--≤x -1解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1,由=-,得反函数=++≥-.函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23它们的图像如图2.4-2所示.【例3】已知函数=≠-,≠.f(x)(x a a )3113x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值.解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠,31x x a ++若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313-----ay y ax x(2)f(x)f (x)x 1若=,即=对定义域内一切的值恒成立,-++--3113x x a ax x 令x =0,∴a =-3.或解 由f(x)=f -1(x),那么函数f(x)与f -1(x)的定义域和值域相同,定义域是{x|x ≠a ,x ∈R },值域y ∈{y|y ≠3,y ∈R },∴-a =3即a =-3.【例4】已知函数==中,、、、均不为零,y f(x)a b c d ax b cx d++ 试求a 、b 、c 、d 满足什么条件时,它的反函数仍是自身.解 f(x)bc ad 0f (x)x 1=+,∵常数函数没有反函数,∴-≠.又=,要使=,对定义域内一切值恒成立,a c bc ad c cx d dx b cx adx b cx a ax b cx d-+-+--+-++-()令x =0,得-a =d ,即a +d =0.事实上,当a +d =0时,必有f -1(x)=f(x),因此所求的条件是bc -ad ≠0,且a +d =0.【例5】设点M(1,2)既在函数f(x)=ax 2+b(x ≥0)的图像上,又在它的反函数图像上,(1)求f -1(x),(2)证明f -1(x)在其定义域内是减函数.解证(1)2a b 14a b a b f(x)x (x 0)(2)y x (x 0)f (x)(x )221由=+=+得=-=,∴=-+≥由=-+≥得反函数=≤.⎧⎨⎩⎧⎨⎪⎪⎩⎪⎪--1373137313737373x 设<≤,∴->-≥,∴>,即>,故在-∞,上是减函数.x x 73x 73x 0f (x )f (x )f (x)(]121211121737337312-----x x x【例6】解法一若函数=,求的值.先求函数=的反函数=,于是==--.f(x)f (2)()f(x)f (x)f (2)532x x x x x x-+-++-+----121212112212111 解法(二) 由函数y =f(x)与其反函数y =f -1(x)之间的一一对应关系,求的值,就是求=时对应的的值,∴令=,得=--,即=--.f (2)f(x)2x 2x 532f (2)53211---+x x 12【例7】已知∈,且≠,≠.设函数=∈且≠,证明=的图像关于直线=对称.a a 0a 1f(x)(x x )y f(x)y x R R x ax a --111证 y a 0a 1(ay 1)x y 1ay 10y a 1a 1由=,≠,≠,得-=-,如果-=,则=,∴=得=,这与已知≠矛盾,x ax aa x ax ----111111 ∴-≠,故=,∴=,即证得=的反函数就是它本身.ay 10x f (x)f(x)1y ay x ax x ax -------111111因为原函数的图像与其反函数的图像关于直线y =x 对称,∴函数y =f(x)的图像关于直线y =x 对称.。
2.4 反函数·例题解析【例1】求以下函数的反函数:(1)y (x )(2)y x 2x 3x (0]2=≠-.=-+,∈-∞,.352112x x -+(3)y (x 0)(4)y x +1(1x 0)(0x 1)=≤.=-≤≤-<≤112x x +⎧⎨⎪⎩⎪ 解 (1)y (x )y y (2y 3)x y 5x y (x )∵=≠-,∴≠,由=得-=--,∴=所求反函数为=≠.35211232352153253232x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞),由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵=≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11111122x x yy xx++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤,得值域≤≤,反函数=-≤≤.由=-<≤,x x +-1 得值域-≤<,反函数=-≤<,故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1)x (1x 0)1222-⎧⎨⎪⎩⎪x【例2】求出以下函数的反函数,并画出原函数和其反函数的图像.(1)y 1(2)y 3x 2(x 0)2=-=--≤x -1解 (1)∵函数的定义域是x ≥1,∴值域为y ≥-1,由=-,得反函数=++≥-.函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2,反函数=-≤-.f (x)(x 2)1--+x 23它们的图像如图2.4-2所示.【例3】已知函数=≠-,≠.f(x)(x a a )3113x x a ++(1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值.解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠,31x x a ++若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313-----ay y ax x(2)f(x)f (x)x 1若=,即=对定义域内一切的值恒成立,-++--3113x x a ax x令x =0,∴a =-3.或者解 由f(x)=f -1(x),那么函数f(x)与f -1(x)的定义域和值域一样,定义域是{x|x ≠a ,x ∈R },值域y ∈{y|y ≠3,y ∈R },∴-a =3即a =-3.【例4】已知函数==中,、、、均不为零,y f(x)a b c d ax bcx d++试求a 、b 、c 、d 满足什么条件时,它的反函数仍是自身.解 f(x)bc ad 0f (x)x 1=+,∵常数函数没有反函数,∴-≠.又=,要使=,对定义域内一切值恒成立,a c bc adc cxd dx bcx adx b cx a ax b cx d-+-+--+-++-()令x =0,得-a =d ,即a +d =0. 事实上,当a +d =0时,必有f -1(x)=f(x), 因此所求的条件是bc -ad ≠0,且a +d =0.【例5】设点M(1,2)既在函数f(x)=ax 2+b(x ≥0)的图像上,又在它的反函数图像上,(1)求f -1(x),(2)证明f -1(x)在其定义域内是减函数.解证(1)2a b 14a b a b f(x)x (x 0)(2)y x (x 0)f (x)(x )221由=+=+得=-=,∴=-+≥由=-+≥得反函数=≤.⎧⎨⎩⎧⎨⎪⎪⎩⎪⎪--1373137313737373x 设<≤,∴->-≥,∴>,即>,故在-∞,上是减函数.x x 73x 73x 0f (x )f (x )f (x)(]121211121737337312-----x x x 【例6】解法一若函数=,求的值.先求函数=的反函数=,于是==--.f(x)f (2)()f(x)f (x)f (2)532x x x x xx-+-++-+----121212112212111解法(二) 由函数y =f(x)与其反函数y =f -1(x)之间的一一对应关系,求的值,就是求=时对应的的值,∴令=,得=--,即=--.f (2)f(x)2x 2x 532f (2)53211---+x x 12【例7】已知∈,且≠,≠.设函数=∈且≠,证明=的图像关于直线=对称.a a 0a 1f(x)(x x )y f(x)y x R R x ax a--111证 y a 0a 1(ay 1)x y 1ay 10y a 1a 1由=,≠,≠,得-=-,如果-=,则=,∴=得=,这与已知≠矛盾,x ax aa x ax ----111111∴-≠,故=,∴=,即证得=的反函数就是它本身.ay 10x f (x)f(x)1y ay x ax x ax -------111111因为原函数的图像与其反函数的图像关于直线y =x 对称, ∴函数y =f(x)的图像关于直线y =x 对称.励志赠言经典语录精选句;挥动**,放飞梦想。
例析反函数的几种题型及解法反函数是高中数学中的重要概念之一,也是学生学习的难点之一。
在历年高考中也占有一定的比例。
为了更好地掌握反函数相关的内容,本文重点分析关于反函数的几种题型及其解法。
一. 反函数存在的充要条件类型例1. (2004年北京高考)函数f x x ax ()=--223在区间[]12,上存在反函数的充要条件是( )A. (]a ∈-∞,1B. [)a ∈+∞2,C. (][)a ∈-∞+∞,,12D. []a ∈12,解析:因为二次函数f x x ax ()=--223不是定义域内的单调函数,但在其定义域的子区间(]-∞,a 或[)a ,+∞上是单调函数。
而已知函数f x ()在区间[1,2]上存在反函数 所以[](]12,,⊆-∞a 或者[][)12,,⊆+∞a 即a ≤1或a ≥2 故选(C )评注:函数y f x =()在某一区间上存在反函数的充要条件是该函数在这一区间上是一一映射。
特别地:如果二次函数y f x =()在定义域内的单调函数,那么函数f (x )必存在反函数;如果函数f (x )不是定义域内的单调函数,但在其定义域的某个子区间上是单调函数,那么函数f (x )在这个子区间上必存在反函数。
二. 反函数的求法类型例2. (2005年全国卷)函数y x x =-≤2310()的反函数是( )A. y x x =+≥-()()113B. y x x =-+≥-()()113C. y x x =+≥()()103D. y x x =-+≥()()103解析:由x ≤0可得x 230≥,故y ≥-1从y x =-231解得x y =±+()13因x ≤0所以x y =-+()13即其反函数是y x x =-+≥-()()113 故选(B )。
评注:这种类型题目在历年高考中比较常见。
在求反函数的过程中必须注意三个问题: (1)反函数存在的充要条件是该函数在某一区间上是一一映射;(2)求反函数的步骤:①求原函数的值域,②反表示,即把x 用y 来表示,③改写,即把x 与y 交换,并标上定义域。
其中例3在反表示后存在正负两种情况,由反函数存在的充要条件可知,只能根据函数的定义域(x ≤0)来确定x y =-+()13,再结合原函数的值域即可得出正确结论。
另外,根据反函数的定义域即为原函数的值域,所以求反函数时应先求出原函数的值域,不应该直接求反函数的定义域。
例如:求y x x x =--≤-2231()的反函数。
由x ≤-1可得{}y y |≥0 反表示解出x y -=±+14 由x ≤-1应取x y -=-+14 即x y =-+14所以y x x =-+≥140()为其反函数。
(3)f (x )与fx -1()互为反函数,对于函数y f x =+()1来说,其反函数不是y f x =+-11(),而是y f x =--11()。
同理y f x =+-11()的反函数也不是y f x =+()1,而是y f x =-()1。
三. 求反函数定义域、值域类型 例3. (2004年北京春季)若f x -1()为函数f x x ()lg()=+1的反函数,则f -1(x )的值域为_________。
解析:通法是先求出f (x )的反函数f x x -=-1101(),可求得f -1(x )的值域为()-+∞1,,而利用反函数的值域就是原函数的定义域这条性质,立即得f -1(x )的值域为()-+∞1,。
评注:这种类型题目可直接利用原函数的定义域、值域分别是反函数的值域和定义域这一性质求解。
四. 反函数的奇偶性、单调性类型例4. 函数y e e x x=--2的反函数是( )A. 奇函数,在(0,+∞)上是减函数B. 偶函数,在(0,+∞)上是减函数C. 奇函数,在(0,+∞)上是增函数D. 偶函数,在(0,+∞)上是增函数解析:因为e x 在(0,+∞)上是增函数,e x -在(0,+∞)上是减函数所以y e e x x=--2在(0,+∞)上是增函数易知y e e x x=--2为奇函数利用函数y f x =()与f -1(x )具有相同的单调性,奇函数的反函数也为奇函数这两条性质,立即选(C )。
五. 反函数求值类型例5. (2005年湖南省高考)设函数f (x )的图象关于点(1,2)对称,且存在反函数f x f -=140()(),,则f -=14()___________。
解析:由f ()40=,可知函数f (x )的图象过点(4,0)。
而点(4,0)关于点(1,2)的对称点为(-2,4)。
由题意知点(-2,4)也在函数f (x )的图象上,即有f ()-=24,所以f-=-142()。
评注:此题是关于反函数求值的问题,但又综合了函数图象关于点的对称问题。
在反函数求值时经常要用到这条性质:当函数f (x )存在反函数时,若a f b =(),则b fa =-1()。
如(2004年湖南省高考)设f-1(x )是函数f x x ()log ()=+21的反函数,若[][]11811++=--fa fb ()(),则f a b ()+的值为( )A. 1B. 2C. 3D. log 23分析:直接利用:若a f b =(),则b f a =-1()。
选(B )。
六. 反函数方程类型例6. (2004年上海市高考)已知函数f x x ()log =+⎛⎝ ⎫⎭⎪342,则方程f -1(x )=4的解x=_____________。
解析:当函数f (x )存在反函数时,若a f b =(),则b fa =-1()。
所以只需求出f ()4的值即为f -1(x )=4中的x 的值。
易知f ()41=,所以x =1即为所求的值。
评注:此题除了这种方法外,也可以用常规方法去求。
即先求出反函数f -1(x )的解析式,再解方程f -1(x )=4,也可得x =1。
七. 反函数不等式类型例7. (2005年天津市高考)设f -1(x )是函数f x a a a x x()()=->-21的反函数,则f -1(x )>1成立时x 的取值范围是( )A. a a 212-+∞⎛⎝ ⎫⎭⎪,B. -∞-⎛⎝⎫⎭⎪,a a 212C. a a a 212-⎛⎝ ⎫⎭⎪,D. ()a ,+∞解析:由a >1,知函数f (x )在R 上为增函数,所以f -1(x )在R 上也为增函数。
故由f -1(x )>1,有x f >()1而f a a a a()1121122=-⎛⎝ ⎫⎭⎪=-可得x a a>-212故选(A )。
评注:此题除了这种方法外,也可以用常规方法去求,但比较繁琐。
而下面的题目选用常规方法解则更为简便。
如(2004年湖南省高考)设f -1(x )是函数f x x ()=的反函数,则下列不等式中恒成立的是( )A. f x x -≥-121()B. f x x -≥+121()C. fx x -≤-121()D. fx x -≤+121()分析:依题意知f x x x -=≥120()()。
画出略图,故选(A )。
八. 反函数的图象类型例8. (2004年福建省高考)已知函数y x =log 2的反函数是y fx =-1(),则y f x =--11()的图象是( )解析:由题意知f x x -=12()则fx xx x ------===⎛⎝ ⎫⎭⎪111112212()()所以y f x =--11()的图象可由y x=⎛⎝ ⎫⎭⎪12的图象向右平移1个单位而得到。
故选(C )。
评注:解反函数的图象问题,通常方法有:平移法,对称法等。
对称法是指根据原、反函数的图象关于直线y x =对称来求解;特殊地,若一个函数的反函数是它本身,则它的图象关于直线y=x 对称,这种函数称为自反函数。
九. 与反函数有关的综合性类型例9. (2003年黄冈市模考)设x R ∈,f (x )是奇函数,且f x a a x x ()24412=-+-·。
(1)试求f (x )的反函数f -1(x )的解析式及f -1(x )的定义域;(2)设g x x k ()log =+21,若x ∈⎡⎣⎢⎤⎦⎥1223,时,f x g x -≤1()()恒成立,求实数k 的取值范围。
解析:(1)因为f (x )是奇函数,且x R ∈ 所以f a a ()00102=-=,即 得a =1所以f x x x ()=-+2121可求得f x ()()∈-11,令y x x =-+2121,反解出211112x y y x yy=+-=+-,log从而fx xx x -=+-∈-121111()log (),, (2)因为x ∈⎡⎣⎢⎤⎦⎥1223,,所以k >0由fx g x -≤1()()得log log log 22221111+-≤+=+⎛⎝ ⎫⎭⎪x x x k x k所以1112+-≤+⎛⎝ ⎫⎭⎪x x x k即k x 221≤-对x ∈⎡⎣⎢⎤⎦⎥1223,恒成立令h x x ()=-12其在1223,⎡⎣⎢⎤⎦⎥上为单调递减函数则h x h ()min =⎛⎝ ⎫⎭⎪=2359所以k h x 259≤=()min 又k >0,故实数k 的取值范围是053<≤k 评注:本题综合了反函数与函数的奇偶性,换元法求函数的解析式,对数不等式的解法以及含参不等式在定区间上恒成立等知识,是一道综合性较强的好题。