双管正激同步整流变换器的研究
- 格式:pdf
- 大小:1.97 MB
- 文档页数:69
(19)中华人民共和国国家知识产权局(12)实用新型专利(10)授权公告号 (45)授权公告日 (21)申请号 202021512548.1(22)申请日 2020.07.27(73)专利权人 武汉海德博创科技有限公司地址 430000 湖北省武汉市东湖新技术开发区高新大道999号武汉新能源研究院大楼G2-1012(72)发明人 赵勇兵 段双意 夏华东 (74)专利代理机构 武汉经世知识产权代理事务所(普通合伙) 42254代理人 马君胜(51)Int.Cl.H02M 3/335(2006.01)H02M 7/217(2006.01)H02M 1/32(2007.01)(54)实用新型名称双管正激输出同步整流电路(57)摘要本实用新型涉及一种双管正激输出同步整流电路,包括:主变压器,所述主变压器包括:初级绕组和次级绕组;初级逆变单元,初级逆变单元包括:与初级绕组相连接的第一整流管和第二整流管、与第一整流管和第二整流管相连接的第一二极管和第二二极管;次级整流单元,次级整流单元包括:依次与次级绕组相连接的第三整流管、第四整流管和第五整流管、连接于所述第五整流管两端的调配电容,以及,第三二极管;以及,滤波单元。
由于肖特基二极管无恢复时间,所以在死区时间里第一整流管的寄生二极管导通不会造成主变压器的次级绕组短时短路,因此也不会产生电流、电压尖峰,拓扑的可靠性、自兼容性和电磁兼容性相比普通同步整流电路更佳。
权利要求书1页 说明书4页 附图1页CN 212392810 U 2021.01.22C N 212392810U1.一种双管正激输出同步整流电路,其特征在于,包括:主变压器,所述主变压器包括:初级绕组和次级绕组;与电压输入端相连接的初级逆变单元,所述初级逆变单元包括:与所述初级绕组相连接的第一整流管和第二整流管、与所述第一整流管和第二整流管相连接的第一二极管和第二二极管;与所述次级绕组相连接的次级整流单元,所述次级整流单元包括:依次与所述次级绕组相连接的第三整流管、第四整流管和第五整流管、连接于所述第五整流管两端的调配电容,以及,一端连接于所述第三整流管、另一端连接于所述第五整流管的第三二极管;以及,连接于所述第三二极管相连接的滤波单元。
一种基于SG3525控制的双管正激变换器
引言
双管正激变换器由于具有开关电压应力低,内在抗桥臂直通能力强,可靠性高等优点,被广泛应用于高输入电压的中、大功率等级的电源产品中。
在开关电源系统中脉宽调制器的设计是一个关键问题,本文所述系统采用的脉宽调制器是美国硅通用公司的第二代产品SG3525,这是一种性能优良,功能齐全,通用性强的单片集成PWM控制器。
由于它简单、可靠且使用方便灵活,大大简化了脉宽调制器的设计及调试。
1、双管正激变换器的特点
双管正激变换器的拓扑结构如图1所示。
其基本工作原理为:S1与S2同时导通,同时关断。
S1与S2导通时电源经变压器向负载输出功率并使C充电。
S1及S2关断时,输出电流经D4续流,同时变压器绕组的励磁电流经D1-VIN-D2向电源返回磁能。
由于D1和D2的导通使开关管S1和S2承受的电压仅为电源电压。
这种双管单端正激电路虽然多用了一个开关管,但其电压较单管的低了一半,同时变压器少了一个磁通复位绕组,所以适用于具有较高输入电压的场合。
图1 双管正激电路拓扑图。
t t(b) 磁柱1和3的电压和交变磁通波形 图1 采用磁性元件集成的双管正激电路1KW 磁集成双管正激变换器的初步研究摘要—为了减小传统的双管正激变换器中输出的电流脉动,本文将磁集成技术应用于该变换器,将电感和变压器进行集成。
通过合理的设计磁件的磁阻,不仅可以减小磁件的体积和重量,还可以减小输出电流的脉动。
文中详细分析了集成后变换器的工作原理,给出了设计依据,并以270V 输入、28.5V/1KW 输出的直流电源为例进行了初步的实验验证。
Abstract —The large output ripple current impaired the performance of Two Transistors Forward Converter (TTFC). By the ac flux positive coupling of the inductor and transformer, the output ripple current can be reduced. The improved TTFC with integrated magnetics is proposed in this paper. The design consideration for the integrated magnetics is discussed along with the effect on the ripple currents. Two 1000W TTFC prototype converters, with integrated magnetics and without, are built to verify the operation principle. 关键词—双管正激变换器,磁件集成技术,电流纹波最小化.1.简介双管正激变换器由于其结构简单,开关管电压应力低,可靠性高,在中大功率场合的应用非常广泛,许多文献对其进行研究[1-3]。
双管正激变换器
作者:时间:2007-12-11 来源:电子元器件网浏览评论推荐给好友我有问题个性化定制关键词:正激变换器电源
图1为双管正激变换器主电路,其变压器二次侧电路和单管正激变换器一样,但一次绕组与S1、S2(两个开关晶体管)串联,S1、S2在PWM脉冲作用下同时导通或关断,在每个晶体开关管和一次绕组之间,各并联一个续流二极管VD1、VD2,使得S1、S2关断时,变压器储能有一个释放通路,经过VD1、VD2回馈到直流输入电源。
因此双管正激变换器无需另加磁复位措施。
VD1、VD2还起钳位作用,将S1、S2承受的电压钳位于输入电压V i。
图1双管正激变换器
有的文献称这种电路为混合桥式(Hybrid bridge)电路,其中S1、VD2组成一个桥臂,VD1、S2组成另一个桥臂。
双管正激变换器可应用于较高电压输入(例如V i=800V或1000V)、较大功率输出场合(例如10KW)。
每个开关管承受的最大电压为V i。
和单管正激变换器相比,开关管承受的电压应力降低一半。
高效率双管正激变换器王慧宁;孟丽囡【摘要】当双管正激变换器需要输出大电流大、小电压时,会出现输出整流管因导通压降大,使得损耗过大,从而导致系统输出效率低的问题,为解决这一问题,采用同步整流技术,并计算相关器件的参数,仿真结果表明了使用该电路能够降低输出纹波值,效率得到大幅度提高.【期刊名称】《电子世界》【年(卷),期】2017(000)020【总页数】2页(P142,144)【关键词】DC-DC变换器;双管正激变换器;同步整流;MOSFET【作者】王慧宁;孟丽囡【作者单位】辽宁工业大学电子与信息工程学院;辽宁工业大学电子与信息工程学院【正文语种】中文双管正激变换器[1-2]典型的优点就是防止同一桥臂的两个开关管因死区时间设置不当而导致直接导通的问题,它的开关管承受的电压小、电路可靠性比较高等特点[3]。
在变换器要求输出低电压和大电流时,采用二极管整流仍然存在导通损耗太高,使得变换器输出效率大幅度降低。
本文采用低损耗的功率MOSFET管进行输出整流,因其导通压降小,使得整体损耗降低,系统效率得到优化。
本文针对整流二级管在双管正激变换器低压大电流输出时,因自身导通损耗大,造成整体输出效率不高的问题,本文输出整流采用导通损耗很小的功率MOSFET管进行,提高了系统的输出效率。
在工作过程中,整流部分的电压与其栅极的驱动电压需同步,并且当其源级和栅极电压同时为正时才能导通,所以被称为同步整流[4],图1就是使用MOSFET管进行整流的电路图。
针对本设计采用的电路结构存在变压器,直接将副边电压作为整流管的驱动信号,将两者的驱动信号分别接至变压器副边的正负端,正好在相位上形成互补,达到输出整流的目的。
本文应用上文中设计的双管正激电路设计了一种输出电压为5V,功率为200W的变换器,其中重要器件的参数设计如下:(1)同步整流管设计开关管可承受的电压的最大峰值为:同步整流管承受的最大峰值电压应满足如下公式:n为变压器的变比。
可提高双晶体管正激DC-DC电路效率的同步整流器控制芯片佚名
【期刊名称】《今日电子》
【年(卷),期】2002(000)006
【摘要】一个DC-DC变换器,如果其初级侧采用双晶体管正激拓扑,那么该变换器虽可接受高的输入电压,但却缺乏驱动次级侧电路的动态复位电路.要解决这个问题,可以使用一种自举型控制芯片来扩展和优化次级侧的栅极驱动能力,并由此获得高的转换效率.
【总页数】4页(P44-47)
【正文语种】中文
【中图分类】TN62
【相关文献】
1.正激式DC-DC同步控制双路输出变换器的研究 [J], 张婷;黄世奇;王祖良
2.桥臂互感型双正激式软开关电路 [J], 朱忠尼;亓迎川
3.推挽正激移相式双向DC-DC变换器研究 [J], 赵一佳; 王鹏飞; 赵一帆; 王素娟; 熊保良
4.一种新型的通用单/双正激型直流变换器电路仿真平均模型 [J], 潘尚智;钱照明;雷娜
5.开关型DC-DC控制芯片片上软启动电路设计 [J], 吕婧;吴晓波;赵梦恋
因版权原因,仅展示原文概要,查看原文内容请购买。
用二极管整流的正激变换器简介
用二极管整流的正激变换器
(1)、变压器复位选择
在讨论同步整流之前,看看用二极管整流的正激变换器是有意义的,正激拓扑基本的功率级示于图1。
这里有几种可能的复位方法示于图2。
这些技术都是要使变压器磁化电流在主开关Q1关断时复位。
方法及磁化电流幅度复位是不同的。
通过谐振电容的反向磁化电流幅度起始要等于Q1的Coss加上DF的结电容。
该负向值要等于峰峰磁化电流的一半。
R-C-D箝位与之非常相似,除非它是箝制电压,其能驱动变压器的反向磁化电流。
因此,在R-C-D箝制中,磁化电流将在正、负峰值之间循环,而不必让其磁化电流一半的峰-峰值相等。
传统的第三绕组复位技术,磁化电流首先由其复位到0,但在磁化电感及Q1的Coss之间的谐振将驱动磁化电流的反向,该反向的磁化电流将在同步整流工作于正激拓扑时起到重要作用。
在R-C-D箝位的正激变换器中,初级MOSFET Q1的源漏电压波形及变压器磁化电流波形示于图3。
图3 一次MOS漏源电压和变压器磁化电流波形
两个时段内的实际状态让我们感兴趣。
第一个时段从t1到t2,此刻变压器漏感与初级侧的电容谐振。
其次时段从t5到t0。
在t1初级MOSFET漏电压达到输入电压。
在此时,二次侧电流流过正向二极管DF,并且变压器初级及次级绕组两者都是0电压。
t1之后,回流DR。
本科毕业设计(论文)双管正激同步整流变换器***燕山大学2012年6月本科毕业设计(论文)双管正激同步整流变换器学院(系):里仁学院专业:08应电2班学生姓名:***学号:***指导教师:***答辩日期:2012/6/17燕山大学毕业设计(论文)任务书Abstract摘要随着电力电子变换器在通讯系统的广泛应用,低压大电流功率变换器成为一个重要的研究方向。
文章详细介绍了双管正激变换器的拓扑结构及工作原理,阐述了其拓扑结构的特点。
利用状态空间平均法推导出该变换器的小信号模型,以此为基础设计出电压控制模式的闭环设计思想,并指出了如何进行反馈补偿器的设计。
本文采用电压型控制,对该控制方案做了详细的分析和设计。
对于高频整流环节,由于传统的二极管整流电路正向压降大而导致损耗大,极大地影响整个变换器的工作效率,而无法满足低电压大电流开关电源高效率、小体积的需要。
新一代的功率MOSFET由于具有导通电阻极低的特点而成为低电压大限流功率变换器的首选整流器件。
本文介绍了利用功率MOSFET构成同步整流电路的工作原理、驱动方式,并对整流MOSFET的双向导电特性进行了说明。
关键词双管正激;电压型控制;同步整流II摘要With the power electronic converters in communication systems widely used, low-voltage high-current power converters to become an important research direction. The article describes in detail a two-transistor forward converter topology structure and working principle, the characteristics of its topology. State space averaging method to derive the small-signal model of the converter, as the basis for the closed-loop voltage control mode design ideas, and pointed out how the design of feedback compensators. In this paper, voltage control, the control program to do a detailed analysis and design.The link for the high-frequency rectifier, the forward voltage drop of the diode rectifier circuit big lead to loss, which greatly affect the efficiency of the converter, unable to meet the needs of low-voltage high-current switching power supply high efficiency, small volume. A new generation of power MOSFET with low-resistance characteristics to become the preferred deadline flow of low-voltage power converter rectifiers. This article describes the use of power MOSFET synchronous rectifier circuit works, drive way, two-way electrical properties and rectifier MOSFET are described.Keywords tow-transistor forward converter;V oltage mode controlSynchronous rectificationI目录摘要 (VII)Abstract ............................................................................................................. V III 第1章绪论.. (11)1.1开关电源的发展 (11)1.2低电压、大电流的开关电源的开发 (11)1.3本章小结 (13)第2章双管正激的拓扑结构及原理分析 (14)2.1主电路构成 (14)2.2工作原理 (14)2.3电容C的作用 (15)2.4正激变换器的小信号模型的推导与分析 (15)2.5电压型控制 (21)2.6开关电源的频域建模 (22)2.6.1 电气系统建模 (22)2.6.2 系统的稳定性和稳定裕度 (23)2.6.3电压型控制正激变换器 (24)2.6.4 普通误差放大补偿器的设计 (26)2.6.5 极点——零点补偿器 (26)2.7本章小结 (29)第3章同步整流管双向导电特性及整流损耗分析 (30)3.1同步整流技术介绍 (30)3.2肖特基整流管的损耗分析 (30)3.3同步整流的工作原理和特性 (31)3.3.1 同步整流的基本工作原理 (31)3.3.2同步整流管的主要参数 (33)3.4同步整流的驱动方式 (34)3.4.1 外驱动与自驱动同步整流 (34)3.4.2电压型自驱动同步整流 (35)3.4.3 电流型自驱动同步整流 (38)3.5SR的控制时序与同步整流电路 (39)3.6本章小结 (41)第4章主电路及控制电路参数的设计 (42)4.1主电路参数设计 (42)4.2控制电路参数设计 (44)4.3补偿网络(误差放大器) (48)4.4本章小结 (49)第5章实验结果及分析 (50)结论 (53)参考文献 (54)致谢 (55)附录1 (56)附录2 (59)附录3 (62)附录4 (69)附录5 (85)第1章绪论1.1 开关电源的发展按电力电子的习惯称谓,AC-AC称为整流,DC-DC称为逆变,AC-AC 称为交流-交流直接变频,DC-DC称为直流-直流变换器。