运筹学习题解答(chap3 运输问题)
- 格式:doc
- 大小:161.50 KB
- 文档页数:5
P66: 8.某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售点出售,各工厂A 1, A 2,A 3的生产量、各销售点B 1,B 2,B 3,B 4的销售量(假定单位为t )以及各工厂到销售点的单位运价(元/t )示于下表中,问如何调运才能使总运费最小?表解:一、该运输问题的数学模型为:可以证明:约束矩阵的秩为r (A) = 6. 从而基变量的个数为 6.34333231242322213141141312116115893102114124min x x x x x x x x x x x x x c z i j ij ij +++++++++++==∑∑==⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥=++=++=++=++=+++=+++=+++4,3,2,1;3,2,1,01412148221016342414332313322212312111343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x ij 111213142122232431323334x x x x x x x x x x x x 712111111111111111111111111⨯⎛⎫ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭二、给出运输问题的初始可行解(初始调运方案)1. 最小元素法思想:优先满足运价(或运距)最小的供销业务。
其余(非基)变量全等于零。
此解满足所有约束条件,且基变量(非零变量)的个数为6(等于m+n-1=3+4-1=6).总运费为(目标函数值) ,1013=x ,821=x ,223=x ,1432=x ,834=x ,614=x ∑∑===3141i j ijij x c Z2. 伏格尔(Vogel)法伏格尔法的基本思想:运输表中各行各列的最小运价与次小运价之差值(罚数)应尽可能地小。
或者说:优先供应罚数最大行(或列)中最小运费的方格,以避免将运量分配到该行(或该列)次小运距的方格中。
第三章运输问题在生产实际中,经常需要将某种物资从一些产地运往一些销地,因而存在如何调运使总的运费最小的问题。
这类问题一般可用线性规划模型来描述,当然可以用单纯形法求解。
但由于其模型结构特殊,学者们提供了更为简便和直观的解法——表上作业法。
此外,有些线性规划问题从实际意义上看,并非运输问题,但其模型结构类似运输问题,也可以化作运输问题进行求解。
第一节运输问题及其数学模型首先来分析下面的问题。
例3.1农产品经销公司有三个棉花收购站,向三个纺织厂供应棉花。
三个收购站A 1、A2、A3的供应量分别为50kt、45kt和65kt,三个纺织厂B1、B2、B3的需求量分别为20kt、70kt和70kt。
已知各收购站到各纺织厂的单位运价如表3—1所示(单位:千元/kt),问如何安排运输方案,使得经销公司的总运费最少?设x ij表示从A i运往B j的棉花数量,则其运输量表如下表所示。
表3—2由于总供应量等于总需求量,因此,一方面从某收购站运往各纺织厂的总棉花数量等该收购站的供应量,即x11+x12+x13 = 50x21+x22+x23 = 45x31+x32+x33 = 65另一方面从各收购站运往某纺织厂的总棉花数量等该纺织厂的需要量,即 x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70因此有该问题的数学模型为min f= 4x 11+8x 12+5x 13+6x 21+3x 22+6x 23+2x 31+5x 32+7x 33 x 11+x 12+x 13 = 50 x 21+x 22+x 23 = 45 x 31+x 32+x 33 = 65 x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70x ij ≥0,i=1,2,3;j=1,2,3 生产实际中的一般的运输问题可用以下数学语言描述。
第三章运输问题3.1农产品经销公司有三个棉花收购站,向三个纺织厂供应棉花。
三个收购站A1、A2、A3的供应量分别为50kt、45kt和65kt,三个纺织厂B1、B2、B3的需求量分别为20kt、70kt和70kt。
已知各收购站到各纺织厂的单位运价如表3—1所示(单位:千元/kt),问如何安排运输方案,使得经销公司的总运费最少?(只建模型,不求解)设x ij表示从A i运往B j的棉花数量,则其运输量表如下表所示。
表3—2min f= 4x11+8x12+5x13+6x21+3x22+6x23+2x31+5x32+7x33x11+x12+x13 = 50x21+x22+x23 = 45x31+x32+x33 = 65x11+x21+x31 = 20x12+x22+x32 = 70x13+x23+x33 = 70x ij≥0,i=1,2,3;j=1,2,3例3.2设有某物资从A1,A2,A3处运往B1,B2,B3,B4四个地方,各处供应量、需求量及单位运价见下表。
问应如何安排运输方案,才能使总运费最少?解:先用最小元素法求解。
用位势法对基可行解进行最优性检验。
位势方程组为u1+v1=3 u1+v3=6 u1+v4=4u2+v1=2u3+v2=3u3+v3=8取u1=0,解上述方程组得u1=0u2=-1u3=2v1=3v2=1v3=6v4=4各非基变量的检验数为σ12 =c12-(u1+v2)=7-(0+1)= 4>0σ22 =c22-(u2+v2)=4-(-1+1)= 2>0σ23 =c23-(u2+v3)=3-(-1+6)= -2<0σ24 =c24-(u2+v4)=3-(-1+4)= 0σ31 =c31-(u3+v1)=8-(2+3)= 3>0σ34 =c34-(u3+v4)=9-(2+4)= 3>0由于σ23 =-2<0,故表中基可行解不是最优解。
由于σ该闭回路上,偶数顶点上的基变量最小值为5,以该调整量进行调整得到如表3—11的新的基可行解。
第三章运输问题
一、建立下列问题的数学模型
1、P119, 3.6
某厂按照合同规定须于当年每季度末分别提供10,15,25,20台同一规格的柴油机。
已知该厂各季度的生产能力及生产每台柴油机的成本如表所示。
又如果生产出来的柴油机当季不交货,每台每积压一个季度,存储维护费用0.15万元。
要求在完成合同的情况下,使得全年生产(存储)费用最小的决策。
将此问题归结为运输问题,试建立该问题的产销平衡及单位运价表。
解:以四个季度为产地和销地,建立产销平衡运输表如下:
2、P119, 3.7
上题中若允许某些季度末交货时发生短缺,但全部合同必须于Ⅳ季度末完成。
又缺货时,每台每晚交一个季度,罚款0.1万元。
为使总的生产、存储和缺货罚款损失费用最小,重新列出用运输问题求解时的产销平衡和单位运价表。
解:以四个季度为产地和销地,建立产销平衡运输表如下:
3、P119, 3.8
某造船厂在某年算起的连续三年的年末各提供三条规格相同的货轮,已知该厂今后三年的的生产能力及生产成本如下表所示。
已知加班生产时每条货轮成本比正常生产时高70万元,又知造出的货轮如当年不交货,每条每积压一年增加维护费用40万元。
在签订合同时,已有以前积压的两条,该厂希望在第三年末交货后多留一条备用。
问该厂应如何安排生产计划,满足上述要求,并使得总费用最小。
请列出产销平衡表和单位运价表。
解
4、P120, 3.9
为确保飞行的安全,飞机上的发动机每半年必须强迫更换进行大修。
某维修厂估计某种型号的战斗机从下一个半年起的今后三年内每半年需更换的发动机数量分别为:100,70,80,120,150,140(台)。
更换发动机时,可以换上新的,也可以用经过大修的旧的发动机。
已知每台新发动机的购置费是10万元,而旧发动机的维修方式有两种:快修,每台2万元,半年交货(本期拆下,下期即可用上,半年为一期);慢修,每台1万元,一年才能交货(本期拆下,下下期可用上)。
该厂新接手该项发动机的更换维修任务,又知三年后这种战斗机将退役,退役后这种发动机将报废。
问:今后三年的每半年内,该厂为满足需要,应新购、快修、慢修发动机各多少台,使总的维修费用最省?将此问题归结为运输问题,试建立该问题的产销平衡及单位运价表。
解:产销平衡及单位运价表如下:
某煤炭公司下属A,B,C三个煤矿,年生产能力分别是120,160,100万吨,公司同三个城市签订了下一年度的供货合同,城市1为110万吨,城市2为150万吨,城市3为70万吨,但城市3表示愿意购买剩余的全部煤炭。
另有城市4虽未签合同,但也表示只要公司有剩余煤炭,愿全部收购。
已知从各矿至4各城市的煤炭单位运价如下表(单位:元/吨)。
请列出该问题的产销平衡及单位运价表。
解:该问题的产销平衡及单位运价表如下
二、求解下列运输问题
解:这是一个产销平衡的运输问题,可用表上作业法求解。
(1)最小元素法得初始解:
单位运价;16----------。