气相色谱法原理、特点以及注意事项
- 格式:docx
- 大小:10.94 KB
- 文档页数:4
气相色谱仪原理、结构及操作1、基本原理气相色谱GC是一种分离技术;实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析;混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离;待分析样品在汽化室汽化后被惰性气体即载气,一般是N2、He等带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡;但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出;当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图假设样品分离出三个组分,它包含了色谱的全部原始信息;在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线;2、气相色谱结构及维护进样隔垫进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃;正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”即不是样品本身的峰,从而影响分析;解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫;一般更换进样隔垫的周期以下面三个条件为准:1出现“鬼峰”;2保留时间和峰面积重现性差;3手动进样次数70次,或自动进样次数50次以后;玻璃衬管气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型;衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱;如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响;比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换;玻璃衬管清洗的原则和方法当以下现象:1出现“鬼峰”;2保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗;清洗的方法和步骤如下:1拆下玻璃衬管;2取出石英玻璃棉;3用浸过溶剂比如丙酮的纱布清洗衬管内壁; 玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm;要求填充均匀、平整;气体过滤器变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有机物的过滤器就不能用肉眼判断了,所以必须定期更换,一般3个月更换或再生一次;由于分流气路中的分子筛过滤器饱和或受污严重,就会出现基线漂移大的现象,这个时候就必须更换或再生过滤器了;再生的方法是:1卸下过滤器,反方向连接于原色谱柱位置;2再生条件:载气流速40~50ml/min,温度340℃,时间5h;检测器如果说色谱柱是色谱分离的心脏,那么,检测器就是色谱仪的眼睛;无论色谱分离的效果多么好,若没有好的检测器就会“看”不出分离效果;因此,高灵敏度、高选择性的检测器一直是色谱仪发展的关键技术;目前,GC所使用的检测器有多种,其中常用的检测器主要有火焰离子化检测器FID、火焰热离子检测器FTD、火焰光度检测器FPD、热导检测器TCD、电子俘获检测器ECD等;下面对检测器的日常维护作简单讨论:2.4.1火焰离子化检测器FID1 FID虽然是准通用型检测器,但有些物质在检测器上的响应值很小或无响应,这些物质包括永久气体、卤代硅烷、H2O、NH3、CO、CO2、CS2、CCl4,等等;所以检测这些物质时不应使用FID;2FID的灵敏度与氢气、空气、氮气的比例有直接关系,因此要注意优化,一般三者的比例应接近或等于1∶10∶1;3FID是用氢气在空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题;在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱;测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然;无论什么原因导致火焰熄灭时,应尽量关闭氢气阀门,直到排除了故障重新点火时,再打开氢气阀门;4为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度;检测器被污染的影响轻则灵敏度明显下降或噪音增大,重则点不着火;消除污染的办法是对喷嘴和气路管道的清洗;具体方法是:断开色谱柱,拔出信号收集极;用一细钢丝插入喷嘴进行疏通,并用丙酮、乙醇等溶剂浸泡;2.4.2 火焰热离子检测器FTDFTD使用注意事项:1 铷珠:避免样品中带水,使用寿命大约600~700h;2 载气:N2或He,要求纯度%;一般He的灵敏度高;3 空气:最好是选钢瓶空气,无油;4 氢气:要求纯度%;另外需要注意的是使用FTD时,不能使用含氰基固定液的色谱柱,比如OV-1701;2.4.3火焰光度检测器FPDFPD使用注意事项:1 FPD也是使用氢火焰,故安全问题与FID相同;2 顶部温度开关常开250℃;3 FPD的氢气、空气和尾吹气流量与FID不同,一般氢气为60~80ml/min,空气为100~120ml/min,而尾吹气和柱流量之和为20~25ml/min;分析强吸附性样品如农药等,中部温度应高于底部温度约20℃;4 更换滤光片或点火时,应先关闭光电倍增管电源;5 火焰检测器,包括FID、FPD,必须在温度升高后再点火;关闭时,应先熄火再降温;2.4.4热导检测器TCDTCD使用注意事项:1确保热丝不被烧断;在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝就可能被烧断,致使检测器报废;关机时一定要先关检测器电源,然后关载气;任何时候进行有可能切断通过TCD的载气流量的操作,都要关闭检测器电源;2载气中含有氧气时,热丝寿命会缩短,所以载气中必须彻底除氧;3用氢气作载气时,气体排至室外;4基线漂移大时,要考虑以下几个问题:双柱是否相同,双柱气体流速是否相同;是否漏气;更换色谱柱至检测器的石墨垫圈; 池体污染;清洗措施:正己烷浸泡冲洗;2.4.5 电子俘获检测器ECDECD使用注意事项:1 气路安装气体过滤器和氧气捕集器;氧气捕集器再生:2 使用填充柱时也需供给尾吹气2~3ml/min;3 操作温度为250~350℃;无论色谱柱温度多么低,ECD的温度均不应低于250℃, 否则检测器很难平衡;4 关闭载气和尾吹气后,用堵头封住ECD出口,避免空气进入;3、基本操作加热由于气相色谱仪的生产厂家和质量的不同.测定温度的方式也不相同对于用微机设数法或拨轮选择法给定温度.一般是直接设数或选择合适给定温度值加以升温.而如果是采用旋钮定位法.则有技巧可言3.1.1过温定位法将温控旋钮调至低于操作温度约30℃处给气相色谱仪升温当过温至约为操作温度时.配台温度指示和加热指示灯.再逐渐将温控旋钮调至台适位置3.1.2 分步递进定位法将温控旋钮朝升温方向转动一个角度.升温开始.指示灯亮:当温度基本稳定时再同向转动温控旋钮.开始继续升温:如此递进调节、直至恒温在工作温度上. 调池平衡调池平衡实际是调热导电桥平衡.使之有较为台适的输出讲调节技巧.其实是对具有池平衡、调零和记录调零等第一步.用池平衡或调零旋钮将记录仪指针调至台适位置;第二步.自衰减至l6倍左右.观察记录仪指针移动情况;第三步.用记录谓零旋钮将记录仪指针调回原处;第四步.退回衰减.观察记录仪指针移动情况;第五步.用调零或池平衡旋钮将记录仪指针调回原处点火氢焰气相色谱仪开机时需要点火.有时因各种原因致使熄火后.也需要点火然而.我们经常会遇到点火不着的情况下面介绍两种点火技巧.供同行们相试3.3.1 加大氢气流量法先加大氢气流量.点着火后.再缓慢调回工作状况此法通用3.3.2 减少尾吹气流量法先减少尾吹气流量.点着火后.再调回工作状况此法适用于用氢气怍载气.用空气作助燃气和尾畋气情况气比的调节氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气:l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢本人认为为各气旌以良好匹配.目的是既有高的检测器灵敏度又能有较好的分离效果.还不致于容易熄火;本着上述原则气比应按下法调节:1氮气流量的调节在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止2氢气和空气流量的调节氢气和空气流量的调节效果.可以用基流的大小来检验先调节氢气流量使之约等于氮气的流量.再调节空气流量在调节空气流量时.要观察基流的改变情况只要基流在增加.仍应相向调节.直至基流不再增加不止最后.再将氢气流量上调少许;进样技术在气相色谱分析中,一般是采用注射器或六通阀门进样在考虑进样技术的时候.主要是以注射器进样为对象3.5.1 进样量进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化.达到规定分离要求和线性响应的允许范围之内填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升.气体样品一般为0.1~ 10毫升在定量分析中.应注意进样量读数准确1排除注射器里所有的空气用微量注射器抽取液体样品时.只要重复地把液体抽凡注射器又迅速把其排回样品瓶.就可做到遗一点;还有一种更好的方法.可以排除注射器里所有的空气那就是用计划注射量的约2倍的样品置换注射器3~5次.每扶取到样品后,垂直拿起注射器.针尖朝上任何依然留在注射器里的空气都应当跑到针管顶部推进注射器塞子.空气就会被排掉;2保证进样量的准确用经畿换过的注射器取约计划进样量2倍左右的样品.垂直拿起注射器.针尖朝上.让针穿过一层纱布.这样可用纱布吸收从针尖排出的液体推进注射器塞子.直到读出所需要的数值用纱布擦干针尖至此准确的液体体积已经测得.需要再抽若干空气到注射器里.如果不慎推动柱塞.空气可以保护液体使之不被排走3.5.2 进样方法双手章注射器用一只手通常是左手把针插入垫片.洼射大体积样品即气体样品或输入压力极高时.要防止从气相色谱仪来的压力把柱塞弹出用右手的大拇指让针尖穿过垫片尽可能踩的进入进样口.压下柱塞停留1~ 2秒钟.然后尽可能快而稳地抽出针尖继续压住柱塞3.5.3 进样时间进样时间长短对柱效率影响很大,若进样时间过长.遇使色谱区域加宽而降低柱效率因此.对于冲洗法色谱而言.进样时间越短越好.一般必须小于1秒钟;。
气相色谱法基本原理1.相分离:在气相色谱法中,样品以气态或挥发性液态的形式被注入色谱柱,并与气相移动相进行交换。
色谱柱通常是非极性或中极性的聚合物或硅胶填充物,具有较高的表面活性。
色谱柱中的固定液体相被称为静止相,而与之相互作用的气体被称为移动相。
2.分配行为:样品分子在静止相和移动相之间的分配行为是气相色谱分离的基础。
分子在色谱柱中的分配取决于其性质,如分子量、极性、分子结构等。
当分子与静止相的相互作用力强于与移动相的相互作用力时,分子会在静止相中停留更久,从而分离出来。
分子在静止相和移动相之间分配的原理可由经验分配系数(K)来描述。
3.柱温控制:气相色谱柱的温度是一种重要的参数,通过控制柱温可以改变分析物质分离的速率和分离度。
一般来说,提高柱温可以加快分离速度,但可能会损害柱性能。
柱温过高可能导致色谱柱表面的覆盖物剥落,而柱温过低可能会引起热断裂。
因此,在选择适当的柱温时需要考虑样品的性质和色谱柱的限制。
4.检测器:气相色谱分离后的物质需要通过检测器进行定量和检测。
常用的检测器包括火焰离子检测器(FID)、热导率检测器(TCD)、电子捕获检测器(ECD)、氮磷检测器(NPD)等。
5.定性与定量分析:气相色谱法可以用于分析多种不同性质的样品,包括有机化合物、无机化合物、小分子量气体等。
定性分析通过比对样品特征峰的保留时间与已知标准物质进行比对,确定样品中的成分。
定量分析则通过峰的面积或高度与已知浓度标准曲线进行比对,从而确定样品中各组分的浓度。
在实际应用中,为了提高分离的效果和结果的准确性,可以采取一系列方法,如选择适当的静止相、优化进样量和柱温、使用适当的检测器等。
此外,GC还可以与其他技术如质谱联用,进一步提高分析的灵敏度和选择性。
总之,气相色谱法是一种高效、敏感、特异性好的分离与定量分析方法,广泛应用于化学、环境、食品、农药、制药等领域。
气相色谱法气相色谱法1、气相色谱法(gc)是以气体为流动相的色谱分析法。
2、气相色谱缺点要求样品气化,不适用于大部分沸点高和热不稳定的化合物,对于腐蚀性能和反应性能较强的物质更难于分析。
大约有15%-20%的有机物能用气相色谱法进行分析。
3、气相色谱仪的组成气路系统、进样系统、分离系统、检测系统、温控系统、记录系统。
4、气路系统包括气源、净化器和载气流速控制;常用的载气有:氢气、氮气、氦气:。
5、进样系统包括进样装置和气化室。
气体进样器(六通阀):试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱;液体进样器:不同规格的微量注射器,填充柱色谱常用10μl;毛细管色谱常用1μl;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。
6、进样方式分流进样:样品在汽化室内气化,蒸气大部分经分流管道放空,只有极小一部分被载气导入色谱柱;不分流进样:样品直接注入色谱的汽化室,经过挥发后全部引入色谱柱。
7、分离系统色谱柱:填充柱(2-6 mm直径,1-5 m长),毛细管柱(0.1-0.5 mm直径, 几十米长)。
8、温控系统的作用温度是色谱分离条件的重要选择参数,气化室、色谱柱恒温箱、检测器三部分在色谱仪操作时均需控制温度。
气化室:保证液体试样瞬间气化;检测器:保证被分离后的组分通过时不在此冷凝;色谱柱恒温箱:准确控制分离需要的温度。
9、检测系统作用:将色谱分离后的各组分的量转变成可测量的电信号。
指标:灵敏度、线性范围、响应速度、结构、通用性。
通用型——对所有物质均有响应;专属型——对特定物质有高灵敏响应。
检测器类型:浓度型检测器、热导检测器、电子捕获检测器、质量型检测器、氢火焰离子化检测器、火焰光度检测器。
10、热导检测器的主要特点结构简单,稳定性好;对无机物和有机物都有响应,不破坏样品;灵敏度不高。
11、氢火焰离子化检测器的特点优点:(1)典型的质量型检测器;(2)通用型检测器(测含c有机物);(3)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速、死体积小、线性范围宽等特点;(4)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1。
气相色谱法的基本原理
气相色谱法(Gas Chromatography),是一种广泛应用于化学分析的一
种技术,它利用流动的相乎作为柱剂,能够将混合物转变为单独的组分,供检测。
一、基本原理
1、样品的分离:分离效果取决于样品分子颗粒大小和组成。
它在柱中被分解为单独的化学物质,以便进行检测。
2、样品的流动:用活性气体作为流体,把样品溶解在体系中并实现样品的流动和甩掉。
3、色谱室的温度控制:传热器控制色谱室的温度,当分子被连续加热和充满时,不同分子的稳定性越差,分离效率越高。
4、测定:检测各分子的浓度,可以通过元素测定仪器,例如:热电偶、热电阻、IEF等,用来检测分离得到的组分,使样品进行定量分析。
5、解析:记录检测数据,通过相对密度、元素信息以及表明分离物分子量的柱面分离,获得加入到样品中所包含的物质。
二、工作原理
1、引入混合样品:通过用N2或H2等气体将混合样品在色谱柱中进
行渗透。
2、对样品的第一次划分:使混合样品分为两组,一组比另一组相对密度较低的小分子。
3、增加温度:将色谱室的温度陆续加热,让更小的分子从色谱柱的出口处流出。
4、多次环路:重复上面的三步,多次进行环路,最终实现混合物的分离。
5、检测:通过元素测定仪器(如:热电偶、热电阻、红外)测定每个分离得到的组分,对样品进行定量分析。
三、应用
气相色谱法有较高的分离效果和灵敏度,具有检测多组分精细物质的
能力,能够采用可调精度的测定方法。
常用于环境监测(毒气检测、
有害物质检测),气体分析(氧气含量分析),食品检测(风味检测)等各种实际工程中,为样品的安全分析提供快速准确的基础数据。
简要说明气相色谱法一、气相色谱原理气相色谱法是一种常用的分离和分析技术,其主要原理是利用物质在固定相和移动相之间的分配平衡,实现对不同物质的分离。
在气相色谱中,固定相是色谱柱中的填充物,而移动相则是载气,如氮气或氢气。
当样品中的物质随载气通过色谱柱时,它们会与固定相发生相互作用,产生不同的保留效果,从而实现物质的分离。
二、仪器配置气相色谱法的主要仪器包括:气相色谱仪、色谱柱、进样器、检测器和数据处理系统。
其中,气相色谱仪是核心部分,它包括载气系统、进样系统、分离系统、检测系统和记录系统。
色谱柱是实现物质分离的关键部件,进样器则负责将样品引入色谱柱,检测器则对色谱柱分离后的物质进行检测,数据处理系统则对检测数据进行处理和分析。
三、样品制备在进行气相色谱分析前,需要对样品进行适当的制备。
通常,样品需要经过萃取、浓缩、净化和分离等步骤。
萃取的目的是将目标物质从复杂的样品基质中提取出来,浓缩则是为了提高目标物质的浓度,净化则是去除杂质,而分离则是将目标物质从其他物质中分离开来。
四、实验条件优化在进行气相色谱分析时,需要对实验条件进行优化。
这包括选择合适的色谱柱、载气、温度、压力等参数。
例如,对于一些易挥发的物质,可以选择较低的进样温度和较高的载气流速,以避免这些物质在色谱柱上过度挥发。
对于一些难挥发的物质,可以选择较高的进样温度和较低的载气流速,以增强这些物质在色谱柱上的保留效果。
五、定性定量分析在优化实验条件的基础上,可以进行定性定量分析。
定性分析主要是根据色谱峰的保留时间和光谱图等信息,确定样品中存在的物质种类。
定量分析则是根据色谱峰的峰高或峰面积等信息,确定样品中各物质的具体含量。
在进行定量分析时,需要注意控制进样量、选择合适的标准品和使用内标等方法,以减小误差和提高精度。
六、应用范围气相色谱法在多个领域都有广泛的应用,如环境监测、食品检测、药物分析、化学合成等。
例如,在环境监测中,可以使用气相色谱法对空气中的有害气体、挥发性有机物等进行检测;在食品检测中,可以使用气相色谱法对食品中的农药残留、添加剂等进行检测;在药物分析中,可以使用气相色谱法对药物的有效成分、杂质等进行检测;在化学合成中,可以使用气相色谱法对反应产物进行分离和纯化。
气相色谱小常识!气相色谱常识一、气相色谱法有哪些特点?答:气相色谱是色谱中的一种,就是用气体做为流动相的色谱法,在分离分析方面,具有如下一些特点:1、高灵敏度:可检出10-10克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。
2、高选择性:可有效地分离性质极为相近的各种同分异构体和各种同位素。
3、高效能:可把组分复杂的样品分离成单组分。
4、速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。
5、应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的限制。
6、所需试样量少:一般气体样用几毫升,液体样用几微升或几十微升。
7、设备和操作比较简单仪器价格便宜。
二、气相色谱的分离原理为何?答:气相色谱是一种物理的分离方法。
利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。
三、何谓气相色谱?它分几类?答:凡是以气相作为流动相的色谱技术,通称为气相色谱。
一般可按以下几方面分类:1、按固定相聚集态分类:(1)气固色谱:固定相是固体吸附剂,(2)气液色谱:固定相是涂在担体表面的液体。
2、按过程物理化学原理分类:(1)吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。
(2)分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。
(3)其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱;利用温度变化发展而来的热色谱等等。
3、按固定相类型分类:(1)柱色谱:固定相装于色谱柱内,填充柱、空心柱、毛细管柱均属此类。
(2)纸色谱:以滤纸为载体,(3)薄膜色谱:固定相为粉末压成的薄漠。
4、按动力学过程原理分类:可分为冲洗法,取代法及迎头法三种。
四、气相色谱法简单分析装置流程是什么?答:气相色谱法简单分析装置流程基本由四个部份组成:1、气源部分,2、进样装置,3、色谱柱,4、鉴定器和记录器.五、气相色谱法的一些常用术语及基本概念解释?答:1、相、固定相和流动相:一个体系中的某一均匀部分称为相;在色谱分离过程中,固定不动的一相称为固定相;通过或沿着固定相移动的流体称为流动相。
气相色谱法的注意事项与常见问题解答气相色谱法(GC)是一种广泛应用于化学分析中的分离和检测技术。
它通过样品中化合物之间的不同挥发性和亲和力来分离它们,然后利用检测器进行定量分析。
虽然GC在实验室工作中非常常见,但对于初学者而言,使用GC仍然可能存在一些注意事项和常见问题。
在本文中,我将介绍一些值得注意的事项,并解答一些常见的问题。
首先,注意样品的准备是非常重要的。
在进行气相色谱分析之前,样品必须被适当地制备成气相可溶性的形式。
此外,样品的浓度也要适中,过高或过低的浓度都可能导致分析结果的失真。
此外,样品中的杂质也可能影响分析结果,因此必要时应进行样品预处理,例如使用固相萃取技术或其他净化方法。
其次,正确选择适当的柱是至关重要的。
柱是GC中的核心组件,它承担着分离化合物的任务。
不同类型的柱有不同的分离机理和性能,因此需要根据分析目标来选择合适的柱。
常见的柱类型有非极性柱、极性柱和选择性柱等。
了解样品的性质以及目标化合物与静态相之间的亲和力是选择适当柱的关键所在。
此外,柱温和程序也需要仔细控制。
柱温是影响分离效果和保证分析结果准确性的重要因素之一。
在GC分析过程中,样品中的化合物在柱上会发生吸附和解吸过程。
因此,控制柱温温度程序,使样品中的化合物以适当的速率通过柱,并尽可能减少吸附和解吸的影响,是确保分析结果准确的关键。
另外,对于GC仪器的操作也需要一些注意事项。
首先是进样方式的选择。
进样方式是指将样品引入进色谱柱之前的步骤,常见的进样方式有气相进样和液相进样等。
选择适当的进样方式可以提高分析效率和灵敏度。
此外,注射体积和进样速度也需要控制在适当范围内,以避免柱塞压力过高或过低,影响分析结果。
最后,常见的问题解答。
在进行GC分析时,常常会遇到一些问题,例如峰形不良、峰尖不对称、峰裂分离不完全等。
对于这些问题,可能的原因有样品残留、柱污染、进样器积累等。
解决这些问题的方法包括更换柱、调整进样体积和进样速度,或者进行柱清洗等。
气相色谱法的工作原理
气相色谱法(Gas Chromatography, GC)是一种常用的分离和
分析技术,常用于分离和定量分析气体或挥发性液体的混合物。
其工作原理如下:
1. 采样:待分析的气体或挥发性液体样品通过一个小采样口或注射器进入色谱仪系统。
2. 色谱柱:样品进入后将通过一根柱状填充物(色谱柱)。
色谱柱通常是由不同材料制成的,如硅胶、聚酯、聚酰胺等。
填充物的特性取决于待分离的样品性质。
3. 载气:在色谱柱中,载气(也称为移动相)将样品推动通过填充物。
常用的载气有氮气、氦气等惰性气体。
4. 分离:样品组分在色谱柱中通过分散、吸附和蒸发等作用进行分离。
分离是基于组分分子与填充物之间的相互作用不同导致的。
不同组分由于与填充物的亲和力不同,会以不同速度通过色谱柱。
5. 检测器:待分离的组分通过色谱柱后,将进入检测器。
常见的检测器包括热导检测器(Thermal Conductivity Detector, TCD)、火焰光度检测器(Flame Ionization Detector, FID)、
质谱检测器等。
6. 数据处理:检测器将所得的信号转化成电信号送至数据采集系统,并进行数据处理与分析。
通过以上步骤,气相色谱法可以实现对混合物中挥发性物质的分离和定量分析。
该方法广泛应用于环境监测、食品安全、化学分析等领域。
气相色谱法原理、特点以及注意
事项
气相色谱的工作原理是样品中各组分在气相和固定液相之间的分配系数不同。
当蒸发的样品被载气带入色谱柱时,组分在两相之间反复分配。
由于固定相中各组分的吸附或溶解能力不同,色谱柱中各组分的运行速度也不同。
经过一定的柱长后,它们相互分离并离开色谱柱,以便进入检测器。
产生的离子流信号被放大并记录在记录器上。
一、气相色谱的简要介绍
气相色谱法是二十世纪五十年代出现的一项重大科学技术成就。
这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。
气相色谱可分为气固色谱和气液色谱。
气固色谱的“气”字指流动相是气体,“固”字指固定相是固体物质。
例如活性炭、硅胶等。
气液色谱的“气”字指流动相是气体,“液”字指固定相是液体。
例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。
二、气相色谱法的特点
气相色谱法是指以气体为流动相的色谱法。
由于样品在气相中的传输速度很快,样品组分可以在流动相和固定相之间瞬间达到平衡。
另外,可以用作固定相的物质很多,所以气相色谱法是一种分析速度快、分离效率高的分离分析方法。
近年来,采用了高灵敏度的选择性检测器,使其具有分析灵敏度高、应用范围广的优点。
三、气相色谱法的应用
在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可和来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙舴中可用来自动监测飞船密封仓内的气体等等。
气相色谱专业知识
1 气相色谱
气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。
2 气相色谱原理
气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。
当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。
吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。
如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。
3 气相色谱流程
载气从高压钢瓶流出,经减压阀减压至所需压力,经净化干燥管净化后,经过稳压阀和旋转流量计,以稳定的压力和恒定的速度流过气化室,与气化后的样品混合,样气进入色谱柱进行分离。
分离出的组分随载气相继流入检测器,然后载气被排出。
检测器将物质浓度或质量的变化转化为一定的电信号,经放大后记录在记录仪上,得到色谱流出曲线。
根据色谱流出曲线上得到的各峰的保留时间可以进行定性分析,根据峰面积或峰高可以进行定量分析。
4 气相色谱仪
它由以下五个系统组成:气路系统、取样系统、分离系统、温度控制系统和检测记录系统。
组分能否分开,关键在于色谱柱;分离后组分能否鉴定出来则在于检测器,所以分离系统和检测系统是仪器的核心。
气相色谱仪使用说明
适用范围
气相色谱仪是分离和测定低沸点混合组分的重要仪器,可用于化工、工业、食品专业的仪器分析实验,也可用于科学研究和常规分析。
操作规程
1打开稳压电源;
2打开氮气阀,打开净化器上的载气开关阀,然后检查是否漏气,保证气密性良好;
3调节总流量为适当值(根据刻度的流量表测得);
4调节分流阀使分流流量为实验所需的流量(用皂膜流量计在气路系统面板上实际测量),柱流量即为总流量减去分流量;
5打开空气、氢气开关阀,调节空气、氢气流量为适当值;
6根据实验需要设置柱温、进样口温度和FID检测器温度;
7打开计算机与工作站;
8FID检测器温度达到150oC以上,按FIRE键点燃FID检测器火焰;
9设置FID检测器灵敏度和输出信号衰减;
10待所设参数达到设置时,即可进样分析;
11实验结束后,关闭氢气和空气,用氮气将色谱柱吹干净后关闭。
注意事项
(必须经严格的培训和考核合格后方可使用该仪器,未经允许不得使用)
1氢气发生器液位不得过高或过低;
2空气源每次使用后必须进行放水操作;
3进样操作要迅速,每次操作要保持一致;
4使用后,应在笔记本上记录使用情况。