土力学-名词解释
- 格式:docx
- 大小:26.20 KB
- 文档页数:7
土力学的名词解释土力学是研究土体的力学性质及其力学行为的一门学科。
在工程领域中,土壤是广泛应用的一种材料,土力学的理论和实践应用对于土木工程和地基工程的设计和施工具有重要意义。
土力学研究的核心是土体的力学性质,其中包括土体的物理性质和力学性质。
物理性质主要包括土壤的颗粒组成、密实度、含水量等;力学性质则涉及到土壤的强度、变形、压缩性等。
土壤的物理性质对于土体的工程行为具有重要影响。
土壤的颗粒组成决定了其粒径分布和黏粒间的相互作用。
颗粒之间的相互作用力,如颗粒间、颗粒与水分之间的黏聚力和摩擦力,决定了土壤的强度和变形特性。
土壤的力学性质是指土壤对外界力的响应和变形行为。
土体的强度是指土壤承受力的能力,主要针对静力学和动力学两个方面进行研究。
在静力学中,常用的强度指标有摩擦角、内摩擦角和剪切强度等参数,通过这些参数可以评估土壤的稳定性以及抗底部滑动的能力。
在动力学中,土壤的动力特性主要是指土团的动态变形行为和抗震性能。
土壤的变形行为是指当土体受到外力作用时,其体积、形状和结构发生的改变。
土壤的变形主要包括弹性变形、塑性变形和液态变形等。
弹性变形是指土体在外力作用下发生的可逆变形,当外力消失时,土体可以恢复到原始状态;塑性变形是指土体在外力作用下发生的不可逆变形,即土体会永久性地改变其形状;液态变形是指土体在外力作用下失去抗剪强度,流体性质开始体现。
土壤的压缩性是指土壤在外力作用下发生的体积缩小。
土壤压缩性的研究对于工程设计和地基处理具有重要意义。
因为压缩性决定了土体的沉降特性,直接影响到结构的稳定性和使用安全性。
在实际工程中,土力学理论被广泛应用于地基工程、基础工程、土石坝工程等。
通过土力学的研究,可以确定土壤的强度和变形特性,评估土体的稳定性和承载能力,为工程的设计和施工提供科学依据。
总之,土力学的研究对于土体力学性质的解释和工程行为的预测具有重要意义。
通过深入了解土壤的物理性质和力学性质,可以更有效地进行工程设计和施工,确保工程的安全稳定。
土力学名词解释汇总土力学——研究土的物理、化学和力学性质及土体在外力、水流和温度的作用下的应力、变形和稳定性的学科。
土——矿物或岩石碎屑构成的松散物。
形成土的三种风化作用--- 物理、化学、生物。
土的矿物成分——原生矿物、次生矿物、有机质。
干土天然状态的土一般由固体,液体和气体三部分组成 .若土中的孔隙全部由气体填充时 ,称干土 .最大击实干容重——在实验室中得到的最密实状态下的干容重。
土中水——土中水分为结合水和自由水。
1、结合水又可分为:强结合水和弱结合水。
2、自由水分为重力水和毛细水。
饱和土——土体孔隙被水充满的土。
最大干密度——击实或压实试验所得的干密度与含水率关系曲线上峰值点对应的干密度。
饱和度——土体中孔隙水体积与孔隙体积之比值。
最优含水量——在一定功能的压实(或击实、或夯实)作用下 ,能使填土达到最大干密度(干容量)时相应的含水量。
液性指数IL ―― IL=(3- 3p)/(w-L p)。
液性指数<0坚硬;0<液性指数<0.25硬塑;0.25<液性指数<0.75可塑;0.75<液性指数< 1软塑;液性指数>1流塑。
塑性指数―― I p=3l -3p土的可塑性―― 土壤在一定含水量时,在外力作用下能成形,当外力去除后仍能保持塑形的性质。
湿化变形―― 因非饱和土浸水而使吸力减少,使土体产生较大的变形,土体软化,称为非饱和土湿化。
界限含水量-- 粘性土的状态随着含水量的变化而变化,当含水量不同时,粘性土可分别处于固态、半固态、可塑状态及流动状态,粘性土从一种状态转到另一种状态的分界含水量称为界限含水量。
砂土的相对密度―― Dr=(emax-e)/(emax-emin)孔隙比土体中空隙体积与固体颗粒体积之比值。
孔隙率―― 土体中空隙体积与土总体积之比,以百分率表示。
颗粒级配― ―反映构成土的颗粒粒径分布曲线形态的一种特征。
土粒级配―― 土中各粒组质量含量的百分比。
不均匀系数----反映土颗粒粒径分布均匀性的系数。
1、土粒级配:是指土中各粒组的相对百分含量,或土中中各粒组占总质量的百分数。
6、塑性指数:表示粘性土呈可塑状态的含水率的变化范围,其大小等于液限与塑限的差7、液性指数:表征了粘性土的天然含水率和界限含水率之间的相对关系,用来区分天然土所处的状态。
1、自重应力:由土体本身重量在地基中产生的应力。
2、附加应力:由外荷载(建筑荷载)作用在地基土体中引起的应力。
3、基底压力:建筑物上部结构荷载和基础自重通过基础传递给地基,作用于基础底面传至地基的单位面积压力。
3、渗透力:由渗透水流施加在单位土体上的拖曳力。
4、流土:渗流作用下,局部土体表面隆起,或某一范围内土粒群体同时发生移动的现象。
5、管涌:在渗流作用下,无粘性土中的细小颗粒通过较大颗粒的孔隙,发生移动并被带出的现象。
6、超固结比:先期固结压力pc与现时的土压力p0的比值。
7、前期固结压力:指土层在历史上曾经受过的最大有效固结压力。
8、最终沉降量:地基变形稳定后基础底面的沉降量。
9、固结:土体在压力作用下,压缩量随时间增长的过程。
1、土的抗剪强度:土体对外荷载产生剪应力的极限抵抗能力。
2、土的极限平衡状态:摩尔应力圆与抗剪强度线相切时的应力状态。
3、极限平衡条件:根据摩尔库仑破坏准则来研究土体单元处于极限平衡状态时的应力条件及大小主应力之间的关系,该关系称为土的极限平衡条件。
7、灵敏度:原状土的单轴抗压强度与重塑土的单轴抗压强度的比值。
1、土压力:指挡土墙后的填土因自重或外荷载作用对墙背产生的侧压力。
2、静止土压力:挡土墙在压力作用下不发生任何变形和位移,墙后填土处于弹性平衡状态时,作用在挡土墙背的土压力。
3、主动土压力:挡土墙背离土体方向移动时,当墙后土体达到主动极限平衡状态时,土压力降为最小值,作用在墙背的土压力。
4、被动土压力:挡土墙向着土体方向移动时,当墙后土体达到被动极限平衡状态时,土压力达到最大值,作用在墙背的土压力。
5、挡土墙:为了防止土体的滑坡或坍塌而修建的支挡结构物。
名词解释:绪论1、土力学:是利用力学的一般原理,研究土的物理、化学和力学性质及土体在荷载、水、温度等外界因素作用下工程性状的应用科学。
2、土:是矿物或岩石碎屑构成的松软集合体。
由固体、液体和气体所组成的混合物。
3、土的性质:结构性质——生成和组成结构和构造物理性质——三相比例指标无粘性土的密实度粘性土的水理性质土的渗透性力学性质——击实性压缩性抗剪性4、地基、基础:地基是直接承受建筑物荷载影响的那一部分地层。
基础是将建筑物承受的各种荷裁传递到地基上的下部结构。
5、岩土工程:是根据工程地质学、土力学及岩石力学理论、观点与方法,为了整治、利用和改造岩、土体,使其为实现某项工程目的服务而进行的系统工作。
第一章1、土的形成过程:地球表面的岩石经过风化、剥蚀、搬运、沉积作用形成的松散沉积物,称为“土”。
2、风化作用:风化作用主要包括物理风化和化学风化,物理风化是指由于温度变化、水的冻胀、波浪冲击、地震等引起的物理力使岩体崩解、碎裂的过程,这种作用使岩体逐渐变成细小的颗粒。
化学风化是指岩体与空气、水和各种水溶液相互作用过程,这种作用不仅使岩石颗粒变细,更重要的是使岩石成分发生变化,形成大量细微颗粒和可溶盐类。
3、搬运、沉积:4、土的组成:是由固相、液相、气相组成的三相分散体系。
5、土中三相:固相、液相、气相6、粒径、粒组:土粒的大小称为粒度,通常以粒径表示。
介于一定粒度范围内的土粒,称为力组。
7、级配指标:不均匀系数、曲率系数8、矿物成分:原生矿物、次生矿物、有机质、粘土矿物、无定形氧化物胶体、可溶盐9、粘土矿物:由原生矿物经化学风化后所形成的新矿物。
10、结合水:当土粒与水相互作用时,土粒会吸附一部分水分子,在土粒表面形成一定厚度的水膜,成为结合水。
11、自由水:自由水是存在于土粒表面电场影响范围以外的水。
12、土的结构:单粒结构、蜂窝结构、絮状结构13、土的结构性:14、粘性土灵敏度:是指粘性土的原状土的无侧限抗压强度与重塑土的无侧限抗压强度比值。
名词解释1. 基础:指墙、柱在地面下延伸扩大的部分,在地面+0.000以下也叫下部结构。
2. 地基:支撑基础的土体或岩土称为地基。
3. 持力层:埋置基础,直接支撑基础的土层。
4. 软弱下卧层:f f 软持软弱下卧层的强度远小于持力层的强度。
5. 浅基础:埋置深度不大,只需要经过挖槽、排水等普通施工程序就可以建造起来的基础叫做浅基础。
6. 深基础:需要借助于特殊的施工方法,施工机械建造的基础。
7. 桩基础:采用单桩或群桩的形式来承受和传递上部结构的荷载的基础叫桩基础。
8. 软弱地基:是指在持力层下,成层土地基受力层范围内,承载力显著低于持力层的高压缩性土层。
9. 地基处理:指为提高地基土的承载力,改善其变形性质或渗透性质而采取的人工方法。
10.复合地基:指天然地基和部分杂(素)填土地基在地基处理过程中部分土体得到增强或被置换,或在这些地基中设置加筋材料而形成增强体,有增强体于其周围地基土共同承担上部荷载并协调变形的人工地基。
11.土的三项指标:土的天然密度、土的含水量、土粒的相对密度。
12.土的物理性质指标:有九个物理性质指标,分别是土的天然密度、土的含水量w 、土粒相对密度s d 、土的干密度d ρ、土的饱和密度w ρ、土的有效密度(或浮密度)ρ′、土的孔隙比e (用小数表示)、土的孔隙率n 、土的饱和度r S (反映土潮湿程度的物理性质的指标)。
13.力学性质指标:土的力学性质有强度和变形。
力学性质指标有抗剪强度指标(强度)、压缩性指标(包括压缩性指标、压缩系数、压缩模量、变形模量)。
14.结合水:是指受电分子作用吸附于土粒表面成薄膜状的水,有强结合水和弱结合水两类。
15.渗透性:土孔隙中的自由水在重力作用下,只要有水头差,就会发生动。
水透过土孔隙流动的现象,称为渗流或渗透。
而水被水流透过的性质,称为土的渗流性。
16.临界水头梯度:当动力水D G 的数值等于土的浮重度γ'时,土体发生悬浮而随水流动,此时的水头梯度称为临界水头梯度,有cr i 表示。
知识归纳整理1、粘性土的界限含水率、液限、塑限、液性指数、塑性指数。
界限含水率(稠度界限):粘性土从一种状态进入到另外一种状态的分界含水率称为土的界限含水率。
液限:可塑状态与流动状态的界限含水率称为液限。
塑限:半固体状态与可塑状态的界限含水率。
液性指数:表征土的天然含水率与分界含水率之间相对关系的指标。
塑性指数:液限与塑限的差值(去掉百分数),称为塑性指数。
2、自重应力、基地压力、基地附加应力、基底反力及其形状。
自重应力:自重应力是土体受到重力作用而产生的应力基底压力:建造物荷载经过基础传递给地基的压力称基底压力基底附加应力:是指外荷载作用下地基中增加的应力基底反力及其形状:建造物荷载经过基础传递给地基的压力称基底压力称为基底反力;当基础为彻底柔性时,基底压力的分布与作用在基础上的荷载分布彻底一致。
当基础具有刚性或为绝对刚性时,如箱形基础或高炉基础,在外荷载作用下,基础底面保待平面,即基础各点的沉降几乎是相同的。
刚性基础在中心载荷作用下,地基反力呈马鞍形,随着外力的增大,其形状相应改变。
3、有效应力原理:用有效应力阐明在力系作用下土体的各种力学效应(如压缩、强度等)的原理。
4、固结度:所谓固结度,算是指在某一附加应力下,经某一时光t后,土体发生固结或孔隙水应力消散的程度。
5、静止土压力:当挡土墙静止不动,土体处于弹性平衡状态时,土对墙的压力称为静止土压力,普通用E0表示。
主动土压力:当挡土墙向离开土体方向偏移至土体达到极限平衡状态时,作用在墙上的土压力称为主动土压力,普通用Ea表示。
被动土压力:当挡土墙向土体方向偏移至土体达到极限平衡状态时,作用在挡土墙上的土压力称为被动土压力,用Ep表示。
6、库伦定律:土的抗剪强度是剪切面上的法向总应力σ的线性函数ϕστt a n=f最后,根据粘性土剪切试验得出cf+ =ϕστta n,该式称为库仑定律。
7、原生矿物:直接由岩石经物理风化作用而来的、性质未发生改变的矿物。
1.土力学:土力学是研究土体的一门力学。
它以力学和工程地质学为基础,研究土体的应力,变形,强度,渗流及长期稳定性的一门学科。
2地基:承受建筑物,构筑物全部荷载的那一部分天然的或部分人工改造地层。
3.地基设计时应满足的基本条件:强度,稳定性,安全度,变形。
4.土:土是由岩石经理物理,化学,生物风化作用以及剥蚀,搬运,沉积作用等交错复杂的自然环境中所生成的各类沉积物。
5.土粒:土中的固体颗粒经岩石风化后的碎屑物质,简称土粒。
6.土是由土粒(固相)“冻土” ,土中水(液相)和土中气(气相)所组成的三相物质。
Eg:是固体颗粒,液体水,冰,气四相体。
7.物理风化:由于温度变化,水的膨胀,波浪冲击,地震等引起的物理力使岩体崩解,碎裂的过程,这种作用使岩体逐渐变成细小的颗粒。
(只改变大小,不改变性质)8.化学风化:岩体(或岩块,岩屑)与空气,水和各种水溶液相互作用的过程,这种作用不仅使岩石颗粒变细,更重要的是使岩石成分发生变化,形成大量细微颗粒(黏粒)和可溶岩类(发生质的变化)。
9.残积土:指岩石经风化后未被搬运而残留于原地的碎屑堆积物。
它的基本特征是颗粒表面粗糙,多棱角,六分选,天层理,分布在宽广的分水岭地带,变形大,不稳定,属于不良地质。
10.坡积土:残积土受重力和暂时性流水(雨水,雪水)的作用,搬运到山坡或坡脚处沉积起来的土坡积颗粒随斜坡自上而下呈现由粗而细的分选性和局部层理。
分布在山脚或山腰平缓部位上部与残积物相连,厚度变化大。
矿物成分宇母岩不同,不稳定,属于不良地质。
11.洪积土:残积土和坡积土受洪水冲刷,搬运,在山沟出口处或山前平原沉积下来的土。
随离山由近及远有一定的分选性,近山区颗粒粗大,远山区颗粒细小,密实,颗粒有一定的磨圆度。
12.粒度:土粒的大小称为粒度,通常以粒径表示。
13.粒组:介于一定的粒度范围内的土粒,称为粒组。
14.颗粒级配:以土中各个粒组的相对含量(各个组粒占总量的百分比)表示土中颗粒大小及其组成情况。
知识归纳整理一名词解释:1、孔隙比:土的孔隙体积与土的颗粒体积之比称为土的孔隙比e。
142、可塑性指标:是指黏土受外力作用最初闪现裂纹时应力与应变的乘积。
用来描述土可塑性的物理指标。
143、渗流力:水流经过时必然对土颗粒施加一种渗流作用力,而单位体积土颗粒所受到的渗流作用力为渗流力。
144、变形模量:在部分侧限条件下,土的应力增量与相应的应变增量的比值。
145、应力路径:对加荷过程中的土体内某点,其应力状态的变化可在应力坐标图中以应力点的挪移轨迹表示,这种轨迹称为应力路径。
146、弱结合水:是指紧靠于强结合水的外围而形成的结合水膜,亦称薄膜水。
137、塑性指数:是指液限和塑限的差值(省去%符号),即土处在可塑状态的含水量变化范围。
138、有效应力:经过土粒接触点传递的粒间应力。
139、地基固结度:是指地基土层在某一压力作用下,记忆时光t所产生的固结变形量与最终固结变形量之比值,或土层中(超)孔隙水压力的消散程度。
1310、砂土液化:当饱和松砂受到动荷载作用,由于孔隙水来不及排出,孔隙水压力不断增加,就有可能使有效应力降到零,因而使砂土像流体那么彻底失去抗剪强度。
1311、土体抗剪强度:土体反抗剪切破坏的受剪强度。
1212、地基承载力:地基承担荷载的能力。
1213、主动土压力:当挡土墙离开土体方向偏移至土体达到极限平衡状态时,作用在墙上的土压力称为主动土压力。
1114、地基极限承载力:是指地基剪切破坏发展即将失稳时所能承受的极限荷载。
10表示。
1015、塑限:土由半固状态转到可塑状态的界限含水量称为塑限,用符号Wp16、毛细水:存在于地下水位以上,受到水与空气界面的表面张力作用的自由水。
0917、压缩系数:土体在侧限条件下孔隙比减小量与竖向有效压力增量的比值。
0818、弹性模量:土体在无侧限条件下瞬时压缩的应力应变模量。
0719、有效应力原理:饱和土中任意点的总应力总是等于有效应力加上孔隙水压力;或有效应力总是等于总应力减去孔隙水压力。
名词解释:1.土:岩石在长期风化作用下产生的大小不同的颗粒,经过各种地质作用形成的沉积物,是各种矿物的松散集合体。
2.基础:将建筑物荷载传递到与之接壤地层的建筑物部分3.地基:承受建筑物基础荷载的地层部分.4.土的结构:指土颗粒单元大小,形状,相互排列,相互联结及作用等因素构成的结构特征。
5.含水率:土中水的质量m w与土颗粒质量m s的比值.6.饱和度:土中水的体积v w与空隙体积v v的比值。
7.最优含水率:8.界限含水率:黏性土从一种主要状态向另一种主要状态转变时的含水率9.液限:由流塑状态转入可塑状态的界限含水率。
10.塑限:由可塑状态转入坚硬状态的界限含水率。
11.缩限:由坚硬状态转入坚固状态的界限含水率。
12.塑性指数:液限与塑限的差值。
(常用百分率表示)13.液性指数:I L=W-W P/W L-W P14.碎石土:粒径大于2mm的颗粒质量超过总质量50%的土。
15.砂土:指粒径大于2mm的颗粒质量不超过总质量50%,且粒径大于0.075mm的颗粒质量超过总质量50%的土。
16.粉土:指粒径大于0.075mm的颗粒质量不超过总质量50%,且塑性指数小于10的土。
17.粘性土:当塑性指数大于10时为粘性土,其中10<I P<17时为粉质粘土,I P>17为粘土。
18.渗流:水在土空隙通道中流动的现象。
19.渗透性:土可以被水透过的性质20.渗透力:土是具有黏滞度的液体,当在土中渗流时,对土颗粒有推动,摩擦和拖拽作用,这种作用所表现出来的力效应称为渗透力。
21.临界水力梯度:向上的渗透力已经使土颗粒处于失重或悬浮状态时的水力梯度。
I cr=γ‘/γw22.水力梯度:单位流程的水力损失。
23.流土:指水向上渗流时,在渗流出口处一定范围内,土颗粒或其集合体随之浮扬而向上移动或涌出的现象。
24.管涌:指在土的渗流作用下,细颗粒在粗颗粒的空隙中移动,或者在抗管涌稳定层之间的细粉砂夹层中细颗粒被压力水流带出的现象。
名词解释1.土的级配:土粒的大小及组成情况,通常以土中各个粒组的相对含量来表示。
称为土的颗粒级配2.基底附加压力:在荷载作用以前,地基土体中存在有初始应力,在荷载作用下,地基中应力发生改变,改变那部分称为附加应力。
3.压缩模量:土在完全侧限条件下,压力增量与相应的竖向应变增量的比值,是通过室内试验得到的,是判断土的压缩性和计算地基压缩变形模量的重要指标之一。
4.极限平衡条件:当土体发生剪切破坏时,该点应力摩尔圆与摩尔强度包线相切。
如图1所示。
土的抗剪强度指标为C和4,该点此时最大主应力@1,最小主应力@3.在摩尔园中,01B表示剪切面。
由图可知,剪切面方向与@1作用面方向角度为,如图2所示。
土体中某点发生剪切破坏,亦称该点处于极限状态。
处于极限平衡状态的应力条件称为极限平衡条件。
(补图)5.超固结土:当CIU试验中作用在土样上的固结压力小于制备土样时的固结压力称为超固结土。
当试验时固结压力等于制备土样时的固结压力称为正常固结土。
6.主动土压力:挡土结构在填土压力作用下,背离填土方向移动。
这时作用在结构上的土压力逐渐减小,当其后土体达到极限平衡,出现连续滑动使土体下滑。
滑动面上的剪应力等于土的抗剪强度。
这事土压力达到最小值,称为主动土压力。
7.土中的水:在自然条件下,土中的水可处于液态,固态,气态。
土中的细粒越多即土的分散度越大。
对土的性质影响也越大。
存在于土粒矿物晶体格架内部或参与矿物构造中的水称为矿物内部结合水,存在于土中的液态水可分为结合水和自由水。
8.压缩系数:不同的土具有不同的压缩性,因而就有形状不一的压缩曲线,这些曲线反映了土的孔隙比随压力的增大而减小的规律。
一种土的压缩曲线越陡意味着这种土随着压力的增加孔隙比的减小越显著,因而起压缩性越高。
故可以用e-p曲线的切线斜率来表征土的压缩性,该斜率就称为土的压缩系数。
(补图)9.临塑荷载:又称为比例极限荷载。
指基础边缘地基中刚开始出现塑性极限平衡区时基底单位面积上所承担的荷载。
名词解释:绪论1、土力学:是利用力学的一般原理,研究土的物理、化学和力学性质及土体在荷载、水、温度等外界因素作用下工程性状的应用科学。
2、土:是矿物或岩石碎屑构成的松软集合体。
由固体、液体和气体所组成的混合物。
3、土的性质:结构性质——生成和组成结构和构造物理性质——三相比例指标无粘性土的密实度粘性土的水理性质土的渗透性力学性质——击实性压缩性抗剪性4、地基、基础:地基是直接承受建筑物荷载影响的那一部分地层。
基础是将建筑物承受的各种荷裁传递到地基上的下部结构。
5、岩土工程:是根据工程地质学、土力学及岩石力学理论、观点与方法,为了整治、利用和改造岩、土体,使其为实现某项工程目的服务而进行的系统工作。
第一章1、土的形成过程:地球表面的岩石经过风化、剥蚀、搬运、沉积作用形成的松散沉积物,称为“土”。
2、风化作用:风化作用主要包括物理风化和化学风化,物理风化是指由于温度变化、水的冻胀、波浪冲击、地震等引起的物理力使岩体崩解、碎裂的过程,这种作用使岩体逐渐变成细小的颗粒。
化学风化是指岩体与空气、水和各种水溶液相互作用过程,这种作用不仅使岩石颗粒变细,更重要的是使岩石成分发生变化,形成大量细微颗粒和可溶盐类。
3、搬运、沉积:4、土的组成:是由固相、液相、气相组成的三相分散体系。
5、土中三相:固相、液相、气相6、粒径、粒组:土粒的大小称为粒度,通常以粒径表示。
介于一定粒度范围内的土粒,称为力组。
7、级配指标:不均匀系数、曲率系数8、矿物成分:原生矿物、次生矿物、有机质、粘土矿物、无定形氧化物胶体、可溶盐9、粘土矿物:由原生矿物经化学风化后所形成的新矿物。
10、结合水:当土粒与水相互作用时,土粒会吸附一部分水分子,在土粒表面形成一定厚度的水膜,成为结合水。
11、自由水:自由水是存在于土粒表面电场影响范围以外的水。
12、土的结构:单粒结构、蜂窝结构、絮状结构13、土的结构性:14、粘性土灵敏度:是指粘性土的原状土的无侧限抗压强度与重塑土的无侧限抗压强度比值。
15、土的触变性:土受到剪切时,稠度变小,停止剪切时,稠度又增加或受到剪切时,稠度变大,停止剪切时,稠度又变小的性质,即一触即变的性质。
16、土的构造:土的构造实际上是土层在空间的赋存状态,土的构造最主要特征就是成层性,即层理构造。
土的构造的另一特征是土的裂隙性。
第二章1、天然密度:土单位体积的质量称为土的(湿)密度含水量:土中水的质量与土粒质量之比。
土粒比重:(土颗粒相对密度)土颗粒的质量与同体积的4℃时的纯水质量之比(无量纲) 2、干密度:单位体积土样中土颗粒的质量饱和密度:单位体积土样在饱和状态下的质量有效密度(浮密度):地下水位以下,单位体积土颗粒的质量与同体积水的质量之差3、孔隙比:土中的孔隙体积与土颗粒体积之比孔隙率:土中孔隙体积占土样总体积的百分比饱和度:孔隙中水的体积占孔隙体积的百分比4、容重:单位容积内物体的重量5、稠度:粘性土在某一含水量下对外力引起的变形和破坏的抵抗能力。
6、液限:土由可塑状态转到流动状态的界限含水量称为液限。
7、塑限:土由可塑状态转为半固态的界限含水量称为塑限。
8、塑性指数:指液限和塑限的差值,即土处在可塑状态的含水量变化范围。
9、液性指数:指黏性土的天然含水量和塑限的差值与塑性指数之比。
10、相对密实度:11、标贯击数:63.5kg重锤,760mm落距下落,将标准贯入器击入土中,累计深度达300mm 时需要的锤击数,记做N 63.5第三章1、渗流:液体在土空隙或其他透水性介质中的流动问题。
2、渗透性:土体具有被液体透过的性质称为土的渗透性。
3、渗透试验:4、渗透定律:孔隙水层流速度与两点间水头差成正比,与两点间距离成反比。
5、渗流速度:单位时间内通过单位截面的水量6、水头:7、水头差:8、水头梯度:表示单位渗流长度上的水头损失9、初始渗透梯度:10、平均渗流速度:11、流土:在向上的渗流力作用下,粒间有效应力为零时,颗粒群发生悬浮、移动12、管涌:在渗流作用下,一定级配的无粘性土中的细小颗粒,通过较大颗粒所形成的孔隙发生移动,最终在土中形成与地表贯通的管道。
13、渗透力:单位体积土颗粒所受到的渗流作用力第四章1、应力:土体在自身重力、建筑物荷载、交通荷载或其他因素的作用下,产生的力。
按其起因分为自重应力和附加应力,按土骨架和土中空隙的分担作用分为有效应力和空隙应力。
2、基底压力:基础底面的接触压力。
建筑物荷载通过基础传递给地基,基础底面传递给地基表面的压力。
基底附加压力:由于建造建筑物,在地基土体内基础底面位置新增加的应力。
3、自重应力:指土体受到自身重力作用而存在的应力。
4、附加应力:建筑物荷重在土体中引起的附加于原有应力之上的应力。
5、饱和土有效应力原理:总应力、有效应力和孔隙压力三者之间的关系。
当土体承受力系时,作用于任一平面上的总应力是由土骨架所发挥的有效应力和孔隙中流体所承受的孔隙压力来共同承担。
第七章土的抗剪强度名词解释1、强度是指材料破坏时的应力状态。
2、破坏一种是应力保持恒定时,应变不断发展,称为塑性破坏;一种是材料不能再承受应力,称为脆性破坏。
3、土的抗剪性土是由固体颗粒组成的,土粒间的连结强度远远小于土粒本身的强度,故在外力作用下土粒之间发生相互错动,引起土中的一部分相对另一部分产生滑动。
土粒抵抗这种滑动的性能,称为土的抗剪性;4、抗剪强度抗剪强度指土体抵抗剪切破坏的极限能力(破坏时的应力状态)。
5、库伦强度理论土体破坏属于压剪破坏,破坏面上最大抗剪应力(即抗剪强度)与作用在该面上的法向应力成正比。
6、摩尔强度理论7、摩尔-库伦强度理论土体破坏属剪切破坏(包括压剪、拉剪破坏),抗剪强度是剪切破坏面上法向应力的函数。
未限定函数形式,适用范围扩大.8、极限平衡状态如果土体内某点的摩尔应力圆与抗剪强度线相切,则该点即处于极限平衡状态;该点土体将发生剪切破坏,剪切面即为摩尔应力圆与土体抗剪强度线的相切点对应的斜面。
9、极限平衡条件土体内某点处于极限平衡状态时,其应力分量、土的抗剪强度指标间应满足的关系。
10、直接剪切11、三轴剪切12、UU,CU,CD指标及用途UU指标排水不良或透水性差或厚度大的饱和粘性土地基,且建筑物快速施工。
一般用于进行施工期强度与稳定性验算。
CU指标排水条件较好或较薄的粘性土地基,且建筑物施工工期长,而投入使用后短期内荷载突增。
如:房屋加层改造、天然土坡堆载、上述地基上的仓储设施。
CD指标排水条件良好或较薄的粘性土地基,且建筑物施工进度缓慢。
且使用期无荷载突增现象。
13、孔压系数14、无侧限抗压强度15、残余强度16、应变软,变硬应变软化:应力~应变曲线有明显峰值、峰后应力下降应变硬化:应力~应变曲线无明显峰值。
17、剪胀,剪缩剪胀是由于密实土体(密实砂土、坚硬密实的粘性土)剪切过程中土颗粒错动,导致孔隙增加而造成的。
剪胀:剪切过程中土样(体)体积膨胀剪缩是由于松散土体(松散砂土及粘性土)剪切过程中土颗粒错动落入周围孔隙中,导致孔隙体积减小造成。
剪缩:剪切过程中土样(体)体积缩小18、临界孔隙比土样剪切过程中通常出现剪胀或减缩现象,当剪切过程中土样不再发生体积变化时对应的孔隙比即为临界孔隙比,记做e cr 。
19、应力路径土体一点的应力状态变化过程在应力坐标系中轨迹。
20、三轴应力路径问题1、为什么研究土的抗剪性?由于:1)土的抗剪性是土的重要力学性质之一,建筑物地基和路基的承裁力、挡土堵和地下结构的土压力、堤坝、基坑、路堑以及各类边坡的稳定性均与土的抗剪强度有关。
2)在土木工程建设工作中,对于土工数值计算分析而言,抗剪强度是其中最重要的计算参数。
能否正确测定土的抗剪强度,往往是设计质量和工程成败的关键。
因此:有必要学习和弄清土体的抗剪强度。
2、强度与破坏的关系?3、强度与强度理论的区别?4、影响强度的因素?5、强度中凝聚分量与摩擦分量的意义?6、摩尔圆的物理意义?7、直接剪切的优缺点?优点:简便缺点:人为限定破坏面;剪应力不均匀;剪切面积逐渐减小;无法精确控制排水;无法确定中间主应力。
8、三轴实验的优缺点?对比直接剪切试验的优点:获得未限定剪切破坏面;绘制摩尔圆包络线;可以严格控制排水;确定c、φ值。
可以测定孔隙水压力;进而确定有效应力。
9、固结和剪切过程中的排水条件对粘性土强度有何影响?10、研究极限平衡的意义?11、土体内摩擦角何时为0?12、破坏面的剪应力为何不是最大剪应力?13、土体为何会有剪胀现象?14、十字板试验适应条件?15、研究孔隙水压力系数有何意义?16、粘性土强度指标有何工程意义?17、应力路径有何意义?第八章土压力名词解释1、挡土墙1)指防止土体坍塌的构筑物。
~教材2)[1] 为稳定泥土自然坡面而设置的墙;[2] 一种为抵抗除风压以外的侧向压力而建造的墙;尤指一道防止滑坡的墙。
~高级汉语大词典3)A wall built to support or preventthe advance of a mass of earth orwater.护墙,挡土墙为支撑或防止泥土或水的向前移动而修建的墙。
~美国传统字典(双解)2、土压力指挡土墙后的填土因自重或外荷载作用对墙背产生的侧向压力。
因此,设计挡土墙时首先要确定土压力的大小、方向和作用点。
3、主动土压力挡土墙受墙后土体作用,产生远离土体位移或转动,当位移或转动达到一定程度时,墙后土体处于即将下滑的极限平衡状态,此时墙背所受土压力达到最小值,称主动土压力,记做E a 。
举例:道路边坡档土墙、梁式桥桥台,位移达到一定程度时,可认为土压力属于主动土压力。
4、被动土压力挡土墙受外力作用,发生挤向土体的位移或转动,当位移或转动达到一定程度时,墙后土体处于即将上滑的极限平衡状态,此时墙背所受土压力达到最大值,即被动土压力,记做E p 。
举例:拱桥桥台在桥身推力作用下挤压土体,当位移达到一定程度时可认为属于被动土压力。
5、静止土压力当挡土墙静止不动,土体处于弹性平衡状态时,土对墙的压力称为静止土压力E 0 。
举例:地下室墙壁、地下涵洞侧壁等受到的土压力。
6、郎肯土压力理论根据半空间体的应力状态和土的极限平衡理论得出的土压力计算理论。
7、库伦土压力理论根据墙后土体处于极限平衡状态并形成一滑动楔体时,从楔体的静力平衡条件得出的土压力计算理论。
问题1、为什么研究土压力?由于:1)挡土结构功能:水力、电力、港口、航道以及房屋建筑等工程常用挡土结构来“挡住”(平衡——约束变形、承受填土压力)填土(或其他材料);2)成本;3)潜在的事故或灾害。
因此:有必要学习和弄清土压力大小及其分布规律。
2、土压力类型?3、静止土压力的计算方法4、静止土压力墙后土体的应力状态?5、郎肯土压力理论的理论基础?6、郎肯主、被动土压力墙后土体的应力状态?7、郎肯主、被动土压力计算思路?8、粘性土临界深度的意义?9、库伦土压力的假设条件?10、库伦土压力的计算思路?11、库伦土压力的理论基础?第九章地基承载力名词解释1、地基承载力地基承受荷载的能力2、临塑荷载3、临界荷载4、极限承载力5、允许承载力6、地基承载力特征值问题1、为什么研究地基承载力?2、地基破坏的常见形式有哪些?3、地基承载力有哪些描述方法?4、地基承载力有哪些确定方法?第十章土坡与地基稳定分析名词解释1、土坡。