可靠性相关概念
- 格式:doc
- 大小:34.50 KB
- 文档页数:6
系统工程可靠性分析考点梳理第一节概述一、可靠性的必要性可靠性是一种综合性技术,可靠性工作贯穿从系统的规划、设计、制造直至使用和维修的整个过程。
在设计阶段要分析系统或设备所具有的可靠性水平,应从成本、性能、政策、社会、需要等各方面综合来考虑决定,然后确定可靠性目标进行比较,作为以后修订方案的依据。
最后还要进一步对组成系统的各种单元进行可靠度分配.二、可靠性的特征量和数学表示(一)可靠性的定义及特征量1.可靠性的定义可靠性是指产品、系统在规定条件下和规定时间内完成规定功能的能力。
对于可以进行维修的产品和系统来说,不仅有可靠性问题,而且还有发生故障后的复原能力及复原速度问题。
与可靠性相对应的叫做维修性。
其含义是可修复的产品、系统在规定条件下和规定时间内的修复能力。
因此对不发生故障的可靠性与排除故障的维修性,两者结合考虑,可称为广义的可靠性。
2.可靠性的特征量能够对系统可靠性的相应能力作出数量表示的量,称为可靠性的特征量。
其主要特征量有:可靠度、失效率、平均失效间隔时间、故障平均修复时间、维修度、有效度等。
(1)可靠度R(t)可靠度是指产品、系统在规定条件下和规定时间内完成规定功能的概率。
所谓规定条件就是指系统所处的环境条件、使用条件和维护条件等,这些条件对系统可靠性有很大的影响。
所谓规定时间,根据具体情况可以是长期的若干年,短期的时间或一次性动作。
所谓规定功能就是指系统应具有的技术指标。
(2)失效率(或故障率)入(t) 失效率是指设备、系统工作时刻后,单位时间内发生失效或故障的概率。
所谓失效是指系统丧失了规定的功能。
对可修复的系统,失效也称为故障。
失效过程大体分为三个阶段:①早期失效期:②偶然失效期:③耗损失效期:(3)平均失效间隔时间(MTBF) 又称平均故障间隔时间,是指设备或系统在两相邻故障间隔内正常工作时的平均时间。
(4)平均故障修复时间(MTTR)又是指设备出现故障后到恢复正常工作时所需要的时间。
可靠性分析报告在当今复杂多变的社会和经济环境中,产品和服务的可靠性成为了企业竞争的关键因素之一。
可靠性不仅关乎用户的满意度和忠诚度,还直接影响着企业的声誉和经济效益。
本报告将对可靠性的相关概念、重要性、影响因素以及评估方法进行详细的分析,并通过实际案例探讨如何提高可靠性。
一、可靠性的定义与内涵可靠性是指产品或系统在规定的条件下和规定的时间内,完成规定功能的能力。
它是一个综合性的指标,涵盖了产品的稳定性、耐久性、可维护性等多个方面。
简单来说,就是产品或系统在使用过程中不出现故障或失效的概率。
例如,一辆汽车的可靠性可以通过其在一定行驶里程内不发生重大故障的概率来衡量;一个软件系统的可靠性可以通过其在连续运行一定时间内不出现崩溃或错误的概率来评估。
二、可靠性的重要性1、满足用户需求用户在购买产品或使用服务时,期望其能够稳定、可靠地运行。
如果产品频繁出现故障,会给用户带来极大的不便和困扰,甚至可能造成安全隐患。
高可靠性的产品能够提升用户的满意度和信任度,从而增强企业的市场竞争力。
2、降低成本频繁的故障维修和更换零部件会增加企业的生产成本和售后服务成本。
而可靠的产品可以减少维修次数和维修费用,提高生产效率,降低总成本。
3、提升企业声誉一个以可靠性著称的企业往往能够在市场上树立良好的品牌形象,吸引更多的客户和合作伙伴。
相反,产品可靠性差的企业可能会面临声誉受损、市场份额下降等问题。
三、影响可靠性的因素1、设计因素产品或系统的设计方案直接决定了其可靠性的基础。
合理的设计应考虑到零部件的选型、结构的合理性、工作环境的适应性等方面。
如果在设计阶段存在缺陷,后续很难通过其他手段完全弥补。
2、制造工艺制造过程中的工艺水平、质量控制等因素会影响产品的一致性和稳定性。
粗糙的制造工艺可能导致零部件的精度不足、装配不良等问题,从而降低产品的可靠性。
3、原材料质量原材料的质量直接关系到产品的性能和寿命。
使用低质量的原材料容易导致产品在使用过程中过早失效。
可靠性【摘要】本文以产品可靠性为研究对象,探讨了产品可靠性的作用和意义,并深入研究了保证和提高产品可靠性的方法步骤。
通过建立可靠性模型,自下而上的进行可靠性预计预测系统可靠性,并与期望可靠性进行对比,利用可靠性分配确立每个单元的可靠性指标,通过可靠性试验来提高可靠性。
关键词:模型、预计、分配、试验1 可靠性基本概念1.1可靠性定义及相关概念可靠性是指产品在规定条件下和规定时间内,完成规定功能的能力。
可靠性定义包含的五要素:产品、规定条件、规定时间、规定功能、能力。
产品:是指研究对象,可以是硬件,一个系统,一个零部件,也可以是软件。
规定条件:是指产品在使用所处的环境条件(温度、湿度、压力)、工作条件(负荷条件、冲击振动情况等)、维修条件和操作方式等。
规定时间:是指产品完成规定任务和功能所需要的时间。
可以用运行时间、走行公里或循环次数等单位来表示。
规定功能:通常是指产品在技术文件中所规定的工作能力。
能力:常用概率来度量这一“能力”,称为可靠度。
定义的相关理解:可靠性是一种概率;可靠性是衡量故障发生难易程度的尺寸;可靠性反映寿命程度。
1.2可靠性分类从产品可靠性的形成过程来看,可以将可靠性划分为固有可靠性和运用可靠性。
通过设计、制造形成的可靠性称为固有可靠性,而铲平在使用条件(包括保管、运输、操作等)下,保证固有可靠性发挥的程度称为运用可靠性。
固有可靠性所关心的中心问题是产品由于设计、制造所形成的可靠性,不包括使用、维修中所形成的可靠性,因此它是属于狭义可靠性问题。
而运用可靠性所考虑的主要问题是固有可靠性内容外,还有运用维修中所形成的的可靠性问题,属于广义可靠性。
2 可靠性设计与分析2.1相关概述可靠性设计的主要内容:1)建立系统可靠性模型,表示出各单元之间的功能逻辑关系;2)对系统进行可靠性预计,确定产品的可靠性指标;3)对系统进行可靠性分配,确定其零部件的可靠性指标;4)对系统进行故障模、影响及危害分析FMECA 和故障树分析FTA ,找出系统的薄弱环节,采取预防措施;5)制定可靠性准则,对零部件进行可靠性设计;2.1.1可靠性模型基本概念可靠性模型是指可靠性框图及其数学模型。
可靠性的基本概念知识一、可靠性产品在规定的条件下和规定的时间内,完成规定功能的能力称为可靠性。
可靠性的概率度量称为可靠度。
这里的产品指的是新版ISO)9000中定义的硬件和流程性材料等有形产品以及软件等无形产品。
它可以大到一个系统或设备,也可以小至一个零件。
产品终止规定功能就称为失效,也称为故障。
产品按从发生失效后是否可以通过维修恢复到规定功能状态,可分为可修复产品和不可修复产品。
如汽车属于可修复产品,日光灯管属不可修复产品。
习惯上,终止规定功能,对可修复产品称为故障,对不可修复产品称为失效。
可靠性定义中的“三个规定”是理解可靠性概念的核心。
“规定条件”包括使用时的环境条件和工作条件。
产品的可靠性和它所处的条件关系极为密切,同一产品在不同条件下工作表现出不同的可靠性水平。
一辆汽车在水泥路面上行驶和在砂石路上行驶同样里程,显然后者故障会多于前者,也就是说使用环境条件越恶劣,产品可靠性越低。
“规定时间”和产品可靠性关系也极为密切。
可靠性定义中的时间是广义的,除时间外,还可以是里程、次数等。
同一辆汽车行驶1万公里时发生故障的可能性肯定比行驶1千公里时发生故障的可能性大。
也就是说,工作时间越长,可靠性越低,产品的可靠性和时间的关系呈递减函数关系。
“规定的功能”指的是产品规格书中给出的正常工作的性能指标。
衡量一个产品可靠性水平时一定要给出故障(失效)判据,比如电视机图像的清晰度低于多少线就判为故障要明确定义,否则会引起争议。
因此,在规定产品可靠性指标要求时一定要对规定条件、规定时间和规定功能给予详细具体的说明。
如果这些规定不明确,仅给出产品可靠度要求是无法验证的。
产品的可靠性可分为固有可靠性和使用可靠性。
固有可靠性是产品在设计、制造中赋予的,是产品的一种固有特性,也是产品的开发者可以控制的。
而使用可靠性则是产品在实际使用过程中表现出的一种性能的保持能力的特性,它除了考虑固有可靠性的影响因素之外,还要考虑产品安装、操作使用和维修保障等方面因素的影响。
可靠性相关概念
一、什么是可靠性?
可靠性的定义是产品在规定的条件下和规定的时间内,完成规定功能的能力。
“三个规定”是理解可靠性概念的核心。
二、可靠性的分类
固有可靠性:产品在设制造中赋予的可靠性。
使用可靠性:产品在使用中表现出的一种能力特性,它与固有可靠性、安装、操作、维修等有关。
基本可靠性:产品在规定条件下无故障的持续时间或概率。
任务可靠性:产品在规定的任务剖面内完成规定功能的能力。
三、与可靠性有关的因素
故障:产品不能或将不能完成规定功能的事件或状态称为故障。
故障分类:按故障规律分:偶然故障和耗损故障。
按故障后果分:致命性故障和非致命性故障;按故障统计规律分:独立故障和从属故障。
维修性:产品在规定条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复规定状态的能力。
可用性:产品在规定的条件下和规定时间内,处于可执行规定功能状态的能力。
可靠性是从延长其政常工作时间来提高产品可用性,而维修性是从缩短其停机时间来提高可用性。
平均无故障工作时间(MTBF);是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。
它仅适用于可维修产品。
同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。
四、可靠性与产品质量的关系
产品质量是产品的一组固有特性满足顾客和其他相关方要求的能力。
顾客购买产品时对产品一组固有特性的要求是多方面的,其中包括性能特性、专门特性、时间性、适应性等。
性能特性用性能指标表示,时间性指的是产品的开发和供应者能否及时提供给顾客需要的产品,也就是产品的交货期,这也是顾客能直观地做出决策的。
产品适应性也是顾客可以直观得出结论的。
在质量特性中唯独是顾客最关心,但也是顾客难于直观判断的。
所谓专门特性包括可靠性、维修性和保障性等。
总之,产品可靠性是产品性能随时间的保持能力,换名话说,要长时间的保持性能就是不要出故障,不出故障或出了故障能很快维修是产品很重要的质量特性。
失效率(故障率):是指某产品(零部件)工作到时间之后,在单位时间内发生失效的概率。
失效率曲线(浴盘曲线):产品的失效率随工作时间的变化具有不同的特点,根据长期以来的理论研究和数据统计,发现多数设备失效率曲线形同浴盘的剖面,它明
显地分为三段,分别对元器件的三个不同阶段或时期。
第一阶段是早期失效期;表明器件在开始使用时,失效率很高,但随着产品工作时间的增加,失效率迅速降低,这一阶段失效的原因大多是由于设计、原材料和制造过程中的缺陷造成的。
为了缩短这一阶段的时间,产品应在投入运行前进行试运转,以便及早发现、修正和排除故障;或通过试验进行筛选,剔除不合格品。
第二阶段是偶然失效期,也称随机失效期;这一阶段的特点是失效率较低,且较稳定,往往可近似看作常数,产品可靠性指标所描述的就是这个时期,这一时期是产品的良好使用阶段。
第三阶段是耗损失效期;该阶段的失效率随时间的延长而急速增加,主要原因是器件的损失己非常的严重,寿命快到尽头了,可适当的维修或直接更换了。
五、什么是系统可靠性?
随着科学技术的发展,现代化的机器、技术装备、交通工具和探索工具越来越复杂。
这些机器和设备等的可靠性受到了人们的广泛重视,我们把这种可靠性称为系统可靠性。
系统愈复杂,若可靠性达不到较高的指标要求,则系统出故障的可能性愈大、造成的损失也愈大。
这些损失可能是经济上的、信誉上的,甚至是造成生命安全或更严重的灾难性后果。
譬如电源系统的不可靠或工作失误可导致整个系统瘫痪,后果是不可想象的。
现代化管理可以大大提高工作效率和质量,当然也应包括可靠性。
但是如果处
理不当,系统可靠性没有得到足够保证,那么它也会带来严重的影响。
因此,愈是走向现代化,愈要注意可靠性。
因此,人们在走向现代化的过程,必须在各个方面提高和改善系统可靠性。
没有可靠性作基础的系统只能是空中楼阁。
提高系统的可靠性,一方面要提高构成系统的各元件本身的可靠性,而且要从系统的设计着手。
要使系统的元器件工作在正常状态下,没有过载超负荷等现象的发生,并且要有一定的裕度。
也可以采用冗余贮备,使系统即使有个别元器件或设备出现故障仍能正常工作,譬如大型客机拥有四个发动机,中型客机拥有两个发动机。
也就是说有一个设备出现故障,有另一个设备顶替它工作。
当然冗余设备有可能增加系统的复杂性和成本,但是如果设计得合理,在成本增加不多的情况下,使系统的可靠性有很大的提高,是完全值得的。
六、什么是可靠性设计?
“可靠性”指的是“可信赖的”或“可信任的”。
一台仪器设备,当人们要求它工作时,它就能工作,则说它是可靠的;而当人们要求它工作时,它有时工作,有时不工作,则称它是不可靠的。
根据国家标准的规定,产品的可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。
对产品而言,可靠性越高就越好。
可靠性高的产品,可以长时间正常工作(这正是所有消费者需要得到的);从专业术语上来说,就是产品的可靠性越高,产品可以无故障工作的时间就越长。
七、研究可靠性的意义
可靠性工程是为了保证产品在设计、生产及使用过程中达到预定的可靠性指标,应该采取的技术及组织管理措施。
这是介于技术和管理科学之间的一门边缘学科,可靠性作为一门工程学科,它有自己的体系、方法和技术。
1)可靠性管理:完善可靠性组织结构,规划出可靠性组工作的目标制定出相应的流程,规范可靠性工作,监督可靠性工作的实施培训可靠性知识,增强质量意识,规避设计风险。
2)可靠性设计:通过设计奠定产品的可靠性基础。
研究在设计阶段如何预测和预防各种可能发生的故障和隐患。
3)可靠性试验及分析:通过试验测定和验证产品的可靠性,研究在有限的样本、时间和使用费用下,如何获得合理的评定结果,找出薄弱环节,并研究导致薄弱环节的内因和外因,研究导致薄弱环节的机理,找出规律,提出改进措施提出以提高产品的可靠性。
4)制造阶段的可靠性:研究制造偏差的控制、缺陷的处理和早期故障的排除,保证设计目标的实现。
可靠性设计是保证机械及其零部件满足给定的可靠性指标的一种机械设计方法。
包括对产品的可靠性进行预计、分配、技术设计、评定等工作。
可靠性是指产品在规定的时间内和给定的条件下,完成规定功能的能力。
它不但直接反映产品各组成部件的质量,而且还影响到整个产品质量性能的优劣。
对于一个复杂的产品来说,为了提高整体系统的性能,都是采用提高组成产品
的每个零部件的制造精度来达到;这样就使得产品的造价昂贵,有时甚至难以实现(例如对于由几万甚至几十万个零部件组成的很复杂的产品)。
事实上可靠性设计所要解决的问题就是如何从设计中入手来解决产品的可靠性,以改善对各个零部件可靠度(表示可靠性的概率)的要求。
可靠度的分配是可靠性设计的核心。
可靠性设计准则是一种设计规范,从系统可靠性角度出发,设计人员必须遵守的设计要求,是已有的、相似产品的工程经验的总结,并系统化、科学化、规范化而成。