电解质溶液及电化学系统
- 格式:doc
- 大小:356.50 KB
- 文档页数:12
化学电化学反应与电解质溶液化学电化学反应是指在外加电压的作用下,电能转化为化学能的过程。
这种反应需要在电解质溶液中进行,电解质溶液由带电离子的溶质和溶剂组成。
在化学电化学反应中,电解质溶液将起到至关重要的作用,它不仅提供了导电的媒介,还参与了电极反应的过程。
1. 电解质溶液的分类电解质溶液按照离子能不能导电可以分为强电解质溶液和弱电解质溶液。
强电解质溶液中的溶质完全电离,形成大量的离子,能够有效地导电。
而弱电解质溶液中的溶质只有一部分电离,形成的离子相对较少,导电性较差。
根据电解质的性质,我们可以选择适当的溶剂来制备电解质溶液。
2. 电化学反应的基本原理在电解质溶液中,电极反应发生在电解质溶液与电极之间的界面上。
根据电极的不同,电解质溶液可以发生氧化反应和还原反应。
在氧化反应中,溶液中的离子失去电子,形成带正电荷的离子;而在还原反应中,溶液中的离子获得电子,形成带负电荷的离子。
这些离子在电解质溶液中的移动起到了传递电荷的作用。
3. 电解质溶液的电导性电解质溶液的电导性取决于其中的离子浓度和离子迁移率。
离子浓度越高,电导性越好;离子迁移率越大,电导性也越好。
电解质溶液的电导性会随着溶液浓度的变化而发生改变,这也是我们平时所说的稀溶液和浓溶液的概念。
4. 电解质溶液的pH值电解质溶液的pH值是衡量其中酸碱性质的指标。
pH值是一个负对数值,它的大小反映了溶液中氢离子的浓度,从而表征了电解质溶液的酸碱性质。
在电解质溶液中,酸性溶液的pH值小于7,碱性溶液的pH值大于7,而中性溶液的pH值等于7。
5. 电解质溶液的应用电解质溶液在生活和工业中有着广泛的应用。
例如,电解质溶液可用于蓄电池中,通过化学电化学反应将电能转化为化学能,实现能量的储存和释放。
此外,电解质溶液还可以用于电镀、电泳等工艺中,将金属离子沉积在物体表面,起到防腐和装饰的作用。
总结:化学电化学反应与电解质溶液密切相关,电解质溶液为电化学反应提供了重要的条件和参与物质。
电化学与电解质溶液电化学是研究电荷在化学反应中的转移和利用的科学分支,而电解质溶液是电化学研究中的一个重要对象。
本文将从电化学的基本原理开始介绍,深入探讨电解质溶液的相关概念、性质以及应用。
一、电化学基本原理电化学研究的基础是电荷的转移和利用。
电荷通过离子在电解质溶液中传递,从一个电极转移到另一个电极,形成电流。
电池、电解池等电化学系统中的化学反应都是通过电荷的转移来实现的。
电化学反应中,正电荷的转移称为氧化,负电荷的转移称为还原。
氧化还原反应是电化学反应的核心。
当氧化反应和还原反应同时发生并互相制约时,就形成了一个可持续的电池系统。
二、电解质溶液的概念与性质电解质溶液是由可溶于水或其他溶剂的电解质物质所组成的溶液。
电解质是在溶液中能够形成离子的物质,可以分为强电解质和弱电解质两种。
强电解质在溶液中完全或几乎完全离解成离子,具有较高的电导率。
常见的强电解质有盐酸、硫酸、氢氧化钠等。
弱电解质在溶液中只部分离解成离子,电导率较低。
例如,乙酸、醋酸等。
电解质溶液的导电性与其中的离子浓度有关。
离子浓度越高,导电性越好。
在电解质溶液中,离子能够在外加电场的作用下自由移动,形成离子运动导致的电流。
三、电解质溶液的应用1. 电池电池是电解质溶液的重要应用之一。
电池是一种将化学能转化为电能的装置。
一般由正极、负极和电解质溶液构成。
电解质溶液中的离子流动使得电荷在电池中产生电流,从而实现电能的转换。
目前使用最广泛的一种电池是锂离子电池。
锂离子电池利用锂离子在正负极之间的转移来实现电荷的传递。
它具有高能量密度、长寿命等优点,广泛应用于移动电子设备、电动车辆等领域。
2. 电解过程电解质溶液的电解过程是电化学研究中的另一个重要应用。
在电解过程中,外加电流通过电解质溶液,导致其中的化学反应发生。
例如,电解水可以将水分解为氢和氧气。
在这个过程中,正极释放氢离子,负极释放氧离子,从而导致水的分解反应。
电解过程在化学合成、电镀、电解冶金等领域都有广泛的应用。
•电化学体系三电极介绍所有电化学体系至少含有浸在电解质溶液中或紧密附于电解质上的两个电极,而且在许多情况下有必要采用隔膜将两电极分隔开。
我们将分别介绍电极、隔膜、电解质溶液及电解池的设计与安装。
电极(electrode)是与电解质溶液或电解质接触的电子导体或半导体,为多相体系。
电化学体系借助于电极实现电能的输入或输出,电极是实施电极反应的场所。
一般电化学体系分为二电极体系和三电极体系,用的较多的是三电极体系。
相应的三个电极为工作电极、参比电极和辅助电极。
工作电极: 又称研究电极,是指所研究的反应在该电极上发生。
一般来讲,对工作电极的基本要求是:工作电极可以是固体,也可以是液体,各式各样的能导电的固体材料均能用作电极。
(1) 所研究的电化学反应不会因电极自身所发生的反应而受到影响,并且能够在较大的电位区域中进行测定; (2) 电极必须不与溶剂或电解液组分发生反应; (3) 电极面积不宜太大,电极表面最好应是均一平滑的,且能够通过简单的方法进行表面净化等等。
工作电极的选择:通常根据研究的性质来预先确定电极材料,但最普通的“惰性”固体电极材料是玻碳(铂、金、银、铅和导电玻璃)等。
采用固体电极时,为了保证实验的重现性,必须注意建立合适的电极预处理步骤,以保证氧化还原、表面形貌和不存在吸附杂质的可重现状态。
在液体电极中,汞和汞齐是最常用的工作电极,它们都是液体,都有可重现的均相表面,制备和保持清洁都较容易,同时电极上高的氢析出超电势提高了在负电位下的工作窗口记被广泛用于电化学分析中。
辅助电极:又称对电极,辅助电极和工作电极组成回路,使工作电极上电流畅通,以保证所研究的反应在工作电极上发生,但必须无任何方式限制电池观测的响应。
由于工作电极发生氧化或还原反应时,辅助电极上可以安排为气体的析出反应或工作电极反应的逆反应,以使电解液组分不变,即辅助电极的性能一般不显著影响研究电极上的反应。
但减少辅助电极上的反应对工作电极干扰的最好办法可能是用烧结玻璃、多孔陶瓷或离子交换膜等来隔离两电极区的溶液。
电化学系统组成
电化学系统是由电解质溶液、电极和外部电源组成的。
它是一种将化学能转化为电能或将电能转化为化学能的系统。
电化学系统广泛应用于电池、电解、电镀等领域。
电解质溶液:电解质是指在溶液中可以形成离子的物质。
电解质溶液是指将电解质物质溶解在水或其他溶剂中形成的溶液。
电解质溶液中的离子在电场的作用下可以运动和发生化学反应。
常见的电解质有酸、碱和盐等。
其中,酸和碱是通过水溶液中的水解反应形成的离子,而盐则是由金属和非金属元素组成的离子化合物。
电极:电极是电化学系统中发生氧化还原反应的场所。
它可以分为两种:阳极和阴极。
阳极是氧化反应发生的位置,它由金属或其他导电材料制成。
在氧化反应中,阳极释放出电子给外部电路,同时失去离子,使得阳极处于正离子空穴状态。
阴极则是还原反应发生的位置,它通常由金属或半导体材料制成。
在还原反应中,阴极接收来自外部电路的电子,在获得电子的同时,还原成新的物质,使得阴极处于负离子空穴状态。
外部电源:外部电源是为电化学反应提供能源的设备。
它可以是直流电源或交流电源。
在电化学系统中,外部电源可以通过施加电势或电流的方式,引起电极上的氧化还原反应,从而改变物质的化学状态。
电化学系统组成简单,但是在使用过程中需要严格控制操作条件,才能得到良好的反应效果。
因为反应速率、位置以及方向均受到操作条件的影响。
在电化学过程中,需要准确测量氧化还原电位、电流、电荷等参数,以保证反应的可控性和稳定性。
电化学与电解质溶液电化学是研究电能与化学能相互转换的学科,它对于现代科学和技术的发展起着重要的作用。
在电化学中,电解质溶液起着关键性的作用,它们在电解过程中发挥着媒介和传输离子的功能。
1. 电解质溶液的定义和特性电解质溶液是在水或其他溶剂中含有可导电离子的溶液。
根据电解质的性质,电解质溶液可以分为强电解质溶液和弱电解质溶液。
强电解质溶液指的是能完全电离并产生大量游离离子的溶液,如盐酸(HCl)溶液和氯化钠(NaCl)溶液。
强电解质溶液的电导率较高,可以形成电流。
弱电解质溶液指的是只有少数分子电离成离子的溶液,如乙酸(CH3COOH)溶液。
弱电解质溶液的电导率较低,离子浓度较小。
2. 电解质溶液的离子传输机制在电解质溶液中,正负离子会在电场的作用下迁移。
这是由于正离子向阴极迁移,负离子向阳极迁移,形成了电流。
离子在溶液中的传输机制可以通过电动迁移和扩散两个过程来描述。
电动迁移是由于电场作用下离子的迁移,其速度与电场强度成正比。
而扩散是指离子由高浓度区向低浓度区的传输,其速度与浓度差成正比。
3. 电解质溶液中的电解过程电解质溶液在外加电场的作用下,会发生电解过程。
电解过程可以分为阳极反应和阴极反应两个部分。
在阳极处,负离子接受电子并发生氧化反应,从而失去电荷并生成中性物质或分子。
在阴极处,正离子失去电子并发生还原反应,从而获得电荷并生成中性物质或分子。
整个电解过程正负离子的迁移和氧化还原反应相互结合,在电解质溶液中形成电流。
4. 应用领域与意义电化学和电解质溶液在许多领域具有重要的应用价值。
在能源领域,电解质溶液用于电池、超级电容器等能量储存装置的设计和研发。
在材料研究中,电解质溶液被用于金属腐蚀、电镀、阳极氧化等工艺的实施。
在环境保护和污水处理方面,电化学技术可以利用电解质溶液中的电解过程来去除废水中的重金属离子和有机物。
此外,电化学还在生物学、医学和分析化学等领域得到广泛应用,如电化学生物传感器和电化学分析方法等。
电化学与电解质溶液电化学是研究电和化学之间相互关系的学科。
而电解质溶液是电化学中一个重要的概念,它指的是能够导电的溶液,其中溶解了能够产生离子的化合物。
本文将介绍电化学与电解质溶液的相关内容,包括它们的定义、性质和应用等方面。
一、电化学的基本概念和原理电化学是研究电流和化学反应之间相互关系的学科。
在电化学中,电解质溶液起着至关重要的作用。
电解质溶液是指溶解了能够产生离子的化合物的溶液,如酸、碱、盐等。
当电解质溶液中施加电压时,正负电离子将会在电场的作用下迁移,形成电流,从而引发化学反应。
电化学的基本原理可以通过电池的工作过程来解释。
电池是一个将化学能转化为电能的装置。
在电池中,有一个正极和一个负极,它们之间由电解质溶液连接。
正极发生氧化反应,负极发生还原反应,从而产生电流。
这个过程是由电解质溶液中的离子迁移引起的。
二、电解质溶液的性质和分类电解质溶液具有一系列的性质,这些性质对于理解电化学过程和应用具有重要的意义。
1. 导电性:电解质溶液能够导电是因为其中溶解了能够产生离子的化合物。
离子在电场的作用下能够迁移,形成电流。
2. pH值:电解质溶液的酸碱性可以通过pH值来描述。
pH值越小,溶液越酸;pH值越大,溶液越碱;pH值为7时,溶液为中性。
3. 浓度:电解质溶液中溶质的浓度对于其电导率和反应速率都有影响。
浓度越高,溶液的电导率越大,反应速率越快。
根据电解质溶液中离子的产生方式,可以将电解质溶液分为强电解质溶液和弱电解质溶液。
强电解质溶液是指能够完全解离产生离子的溶液,如盐酸、氢氧化钠等。
在强电解质溶液中,离子的浓度非常高,溶液具有很强的导电性。
弱电解质溶液是指只有一小部分溶解物能够解离产生离子的溶液,如乙酸、醋酸等。
在弱电解质溶液中,电离的程度很低,溶液的导电性较弱。
三、电化学与实际应用电化学在许多领域都有广泛的应用,下面主要介绍几个典型的应用。
1. 电镀:电镀是利用电化学原理将金属溶液中的金属离子通过电流的作用沉积到导体上的过程。
电解质溶液的电化学行为和应用电解质溶液是指在水溶液中能够分离成离子的物质,包括弱电解质和强电解质。
它们的电化学行为不同,对于电池和化学反应有着不同的应用。
弱电解质的电化学行为弱电解质是指分子在水中只有一小部分离解成离子,如甲酸、水杨酸等。
在电解质溶液中,弱电解质的离解度很小,其电离反应表达式可以简化为:HA ↔ H+ + A-其中HA为未离子化的弱酸,H+和A-为离子化的质子和相应的负离子。
在这个平衡过程中,溶液中存在着平衡常数K,即为弱电解质的离解常数。
离子浓度不是很高,因此电导率较低。
而弱电解质的离解常数的大小,决定了其是否可以在电化学反应中起到催化或阻碍的作用。
强电解质的电化学行为与弱电解质相比,强电解质可以完全离解成电离子,如NaCl、HCl、H2SO4等。
在其电解质溶液中,离子浓度较高,电导率也相应提高。
在电化学反应中,强电解质离子的数量多,被更广泛地应用于电化学电池、电解、腐蚀和金属电沉积等领域中。
应用1. 电池当两个半电池连接起来形成全电池时,电解质扮演了很重要的角色。
正极与负极之间电荷的移动成为电流,而电解质的离子载流体系为电荷的移动提供了必要条件。
如,铅蓄电池中的电解质是硫酸,锂离子电池中的电解质是含锂盐的有机溶液。
2. 化学反应电解质的离子在化学反应中也起到了催化或阻碍的作用。
如在酸碱中,弱酸或弱碱的离解常数比较小,因此难以催化或阻碍化学反应的进行。
而强酸和强碱的离解常数较大,容易催化化学反应,如NaOH和HCl的酸碱反应。
3. 电解和腐蚀电解质的离子在电解质溶液中的扮演还体现在电解和腐蚀的过程中。
在电解中,电解质的离子在电场发生作用下自发移动,并在极板上发生化学变化,如电镀;而在腐蚀中,金属表面的离子遇到氧气、水、酸的作用,发生了氧化和还原反应形成腐蚀产物。
总之,电解质溶液中的离子具有许多优异的电化学性能和应用性,对于现代的电池、化学反应和制备、电镀和腐蚀等领域,都有着极为广泛的用途和意义。
第八章电解质溶液及电化学系统主要内容1.电解质溶液及电化学系统研究的内容和方法2.电解质溶液的热力学性质3.电解质溶液的导电性质4.电化学系统的热力学重点1.重点掌握了解电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念;2.重点掌握离子氛的概念和德拜—休克尔极限定律;3.重点掌握理解原电池电动势与热力学函数的关系;掌握能斯特方程及其计算;难点1.电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念;2.离子氛的概念和德拜—休克尔极限定律;3.原电池电动势与热力学函数的关系;能斯特方程及其计算教学方式1. 采用CAI课件与黑板讲授相结合的教学方式。
2. 合理运用问题教学或项目教学的教学方法。
教学过程第8.1节电解质溶液及电化学系统研究的内容和方法一、电解质溶液及电化学系统研究的内容1、电解质溶液①电解质溶液的热力学性质电解质由于存在电离,正负离子之间的静电作用力使其偏离理想稀薄溶液所遵从的热力学规律,所以引入了离子平均活度和离子平均活度因子等概念。
思考:理想稀薄溶液所遵从的热力学规律是什么?②电解质溶液的导电性质高中阶段就学过电解质溶液的导电性质,为了表征电解质溶液的导电能力,则引入了电导、电导率、摩尔电导率等概念。
2、电化学系统在两相或数相间存在电势差的系统称为电化学系统。
①电化学系统的热力学性质电化学系统的热力学主要研究电化学系统中没有电流通过时系统的性质,即有关电化学平衡的规律。
②电化学系统的动力学电化学系统的动力学主要研究电化学系统中有电流通过时系统的性质,即有关电化学反应速率的规律。
二、电化学研究的对象第8.2节电解质溶液的热力学性质一、电解质的类型1、电解质的分类电解质的定义:解离:电解质在溶剂中解离成正、负离子的现象。
强电解质:弱电解质:强弱电解质的分类除与电解质本身性质有关外,还取决于溶剂的性质。
如CH 3COOH 在水中属弱电解质,而在液NH 3中全部解离,是强电解质。
真正电解质:以离子键结合的电解质属于真正电解质。
潜在电解质:以共价键结合的电解质属于潜在电解质。
2、电解质的价型(看书讲解)设电解质S 在溶液中解离成z X +和z Y -z z S v X v Y +-+-→+二、离子的平均活度因子 1、电解质和离子的化学势前面我们讲过化学势的定义,,(,)()B T P n C C B BGn μ≠∂=∂,即:化学势就是偏摩尔Gibbs 自由能。
电解质溶液中的溶质B 和溶剂A 的化学也可定义为:,,()A B T p n B G n μ∂=∂ ,,()B A T p n AG n μ∂=∂ 同样,电解质溶液中的正、负离子的化学势:,,()T p n G n μ-++∂=∂ ,,()T p n G n μ+--∂=∂正、负离子的化学势只是形式上的定义,而无实验意义,因为不可能只改变某一种离子的物质的量。
所以与B μ联系起来。
B v v μμμ++--=+2、电解质和离子的活度及活度因子电解质由于存在电离,正、负离子之间的静电作用力使其偏离理想稀薄溶液所遵从的热力学规律,所以引入了离子平均活度和离子平均活度因子等概念。
理想稀薄溶液中溶质的化学势:ln BB B RT θμμχ=+电解质溶液中电解质:ln B B B RT a θμμ=+正离子:ln RT a θμμ+++=+ 负离子:ln RT a θμμ---=+其中B a 、a +、a -分别为电解质和正、负离子活度。
v v B a a a +-+-=正、负离子的活度因子定义为:/a b b θγ+++=/a b b θγ---=例1:质量摩尔浓度为3mol/KgNa 2SO 4的水溶液,其b +和b -分别为多少?23/6/b mol Kg mol Kg +=⨯= 13/3/b m o l K g m o l K g -=⨯= 所以若电解质完全解离,则:b v b ++= b v b--= 3、离子的平均活度和平均活度因子由于只能由实验测得其平均值,所以引入平均活度和平均活度因子。
平均活度:1/()v v v a a a +-±+-=平均活度因子:1/()v v v γγγ+-±+-=例2:用b 及γ±表示完全解离的电解质的离子平均活度a ±。
1/1/()/v v v v B a a v v b b θγ+-±±+-==分别应用到1-1型和2-2型、1-2型和2-1型、1-3型和3-1型。
例8-1离子的平均活度因子γ±的大小反映了电解质溶液的性质偏离理想稀薄溶液的程度,其值可由实验测得。
三、电解质溶液的离子强度 1、离子强度的定义从表8-1可以看出在稀溶液范围内,离子价数高的,离子的平均活度因子γ±越小,同价数时,浓度增大,γ±越小,为了体现这两个因素对γ±的综合影响,提出了离子强度这一物理量:212B B I b z =∑ B b 为离子的质量摩尔浓度,B z 为离子的电价例8-22、计算离子平均活度因子的经验公式路易斯根据实验总结出如下公式:ln γ±=-0.01/I mol Kg <四、电解质溶液的互吸理论 1、离子氛模型德拜—休克尔假定:电解质溶液对理想稀薄溶液的偏离主要来源于离子间相互作用,而离子间相互作用又以库仑力为主。
2、德拜—休克尔极限定律1/2ln c z z I γ±+--=第8.3节 电解质溶液的导电性质一、电导及电导率和摩尔电导率 1、电导及电导率复习1:下列溶液的离子强度是多少?(A )0.1/mol Kg 的NaCl 溶液; (B )0.1/mol Kg 的Na 2C 2O 4溶液;(C )0.1/mol Kg 的CuSO 4溶液;(D )0.1/mol Kg 的BaCl 2溶液和0.1/mol Kg 的KCl 溶液; 解:由212B B I b z =∑得: (A )221(0.110.11)0.1/2I mol Kg =⨯+⨯= (B )221(20.110.12)0.3/2I mol Kg =⨯⨯+⨯=(C )221(0.120.12)0.4/2I mol Kg =⨯+⨯=(D )22221(0.1220.110.110.11)0.4/2I mol Kg =⨯+⨯⨯+⨯+⨯= 复习2:下列电解质溶液,离子平均活度系数最小的是哪一个(设浓度都为0.01/mol Kg )? DA ZnSO 4B CaCl 2C KClD LaCl 3 解:因为I 越大,γ±越小。
物体导电能力的大小可以用两个物理量来表示,电阻R 和电导。
电导:衡量电解质溶液导电能力的物理量,电导是电阻的倒数.1AG k R l== 单位:西门子S ,111S -=Ω 式中k 为电导率,单位为:1S m -⋅,是电阻率的倒数。
A 是导体的截面积,l 是导体的长度。
电导池常数:(/)l A lK A= 同一电导池有相同的电导池常数 2、摩尔电导率从表8-2可以看出,电解质溶液的电导率随浓度的改变而变,为了对不同浓度或不同类型的电解质的导电能力进行比较,定义了摩尔电导率。
m kcΛ= 单位:21S m mol -⋅⋅例:用同一电导池分别测定浓度为30.01/mol dm 和30.1/mol dm 的1-1型电解质溶液,其电阻分别为1000Ω和600Ω,则它们的摩尔电导率之比 6/1 。
解:由m k c Λ=得,1m k c RcΛ==,1,2112211116:::10000.016000.11m m R c R c ΛΛ===⨯⨯ 注意在表示电解质的摩尔电导率时,应标明物质的基本单元,如:2124()0.02485m K SO S m mol -Λ=⋅⋅ 则:21241()0.012432m K SO S m mol -Λ=⋅⋅例8-43、电导率及摩尔电导率与电解质的物质的量浓度的关系 ①电导率与电解质的物质的量浓度的关系见图8-2②摩尔电导率与电解质的物质的量浓度的关系见图8-3例:设某浓度时,CuSO 4的摩尔电导率为21211.410m mol ---⨯Ω⋅⋅,若在该溶液中加入1m3纯水,这时CuSO 4的摩尔电导率将 BA 降低B 增高C 不变D 无法确定 解:m Λ随c 的下降而增高。
二、离子在电场中的运动速率与电导 1、离子的电迁移率离子的电迁移率B u :单位电场强度下离子的漂移速率。
漂移速率B v :离子在溶液中以恒定的速率运动时的速率。
B B v u E=B v 的单位:1m s -⋅ E 的单位:1V m -⋅ B u 的单位是:211m V s --⋅⋅2、离子的独立运动定律科尔劳施发现:具有同一阴离子或同一阳离子的盐类,它们的无限稀释的摩尔电导率m ∞Λ之差值在同一温度下为一定值,而与另一阳离子或阴离子的存在无关,见表8-3。
离子的独立运动定律:,,m m m v v ∞∞∞++--Λ=Λ+Λ根据离子独立运动定律,可以应用强电解质无限稀释的摩尔电导率计算弱电解质无限稀释的摩尔电导率。
例8-5例:已知298K 时,NH 4Cl ,NaOH ,NaCl 的无限稀释的摩尔电导率m ∞Λ分别为:21.49910-⨯、22.48710-⨯、21.26510-⨯21S m mol -⋅⋅,则32NH H O ⋅无限稀释的摩尔电导率32()m NH H O ∞Λ⋅为 22.72110-⨯ 21m mol -⋅⋅。
解:3244()()()()()()m m m m m m NH H O NH OH NH Cl NaOH NaCl ∞∞+∞-∞∞∞Λ⋅=Λ+Λ=Λ+Λ-Λ22221.49910 2.48710 1.26510 2.72110----=⨯+⨯-⨯=⨯三、离子迁移数通电后,正、负离子分别向阴、阳两极移动,形成电流,为了表示各种离子传递电量的比例关系,提出了离子迁移数的概念。
离子迁移数t:每种离子所运载的电流的分数(百分数)。
正离子:t + 负离子:t-I t I++=I t I--=第8.3节 电化学系统的热力学电化学:主要研究电能和化学能之间的相互转化及转化过程中有关规律的科学。
电化学的用途:1电解:精炼和冶炼有色金属和稀有金属;电解法制备化工原料; 电镀法保护和美化金属;还有氧化着色等。
2电池:汽车、宇宙飞船、照明、通讯、生化和医学等方面都要用不同类型的化学电源。
3电分析4生物电化学 一、电化学系统及其相间电势差有α、β两相,αϕ和βϕ分别代表两相的内电势,则两相间的电势差βαϕϕϕ∆=-,常见的相间电势差有:金属—溶液、金属—金属以及两种电解质溶液间的电势差。