福建省福州市第一中学2020-2021学年高一数学上学期期末考试试题(含解析)
- 格式:doc
- 大小:2.16 MB
- 文档页数:22
2021-2022学年福建省厦门第一中学高一上学期入学考试数学试题一、单选题1 ) A .2± B .4±C .2D .4【答案】A【解析】,所以所求为4的平方根,按平方根的定义计算即可.【详解】,4的平方根为2±. 故选:A【点睛】本题考查平方根的计算,解题的关键是认真审题,本题属于基础题.2.据厦门中学生助手微信公众号统计,2020年厦门市全社会用于基础建设的资金约为100553000000元,这个数用科学记数法表示为( ) A .1.00553×1010元; B .1.00553×10 11 元; C .1.00553×1012元; D .1.00553×1013元【答案】B【分析】直接用科学计数法法表示即可.【详解】解:根据科学计数法可知:11100553000000 1.0055310=⨯, 所以,这个数用科学记数法表示为111.0055310⨯元. 故选:B3.已知,a b 满足方程组51234a b a b +=⎧⎨-=⎩,则a b +的值为( )A .4B .﹣4C .2D .﹣2【答案】A【分析】解方程得2b =,2a =,再计算a b +即可.【详解】解:因为51234a b a b +=⎧⎨-=⎩,所以3153634a b a b +=⎧⎨-=⎩,所以1632b =,即2b =,所以1252a b =-=, 所以4a b += 故选:A4.如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是()A.97cm B.85cm C.9cm D.(3213)+cm 【答案】B【分析】把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,结合勾股定理,即可求解.【详解】第一种情况:把所看的前面和上面组成一个平面,如图所示,则这个长方形的长和宽分别为9和4,所以所走的路程最短线段为229497;第二种情况:把看到的左面与上面组成一个长方形,如图所示,则这个长方形的长和宽分别为7和6,所以所走的路程最短线段为227685;第三种情况:把看到的前面与右面组成一个长方形,如图所示,则这个长方形的长和宽分别为10和3,所以所走的路程最短线段为22+=;103109故选:B.5.函数2和在同一直角坐标系内的图象可以是()y ax b y ax bx c=+=++A .B .C .D .【答案】C【分析】分类讨论,0a >和0a <时,由一次函数的单调性与二次函数图象的开口方向,排除一些选项,再由b 的正负,确定二次函数对称轴的位置,从而可得最后结果. 【详解】若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的开口向上,故可排除A ;若a <0,同理可排除D. 对于选项B ,由直线可知a >0,b >0,从而02ba-<,而二次函数的对称轴在y 轴的右侧,故应排除B. 故选:C.6.一同学在n 天假期中观察: (1)下了7次雨,在上午或下午; (2)当下午下雨时,上午是晴天; (3)一共有5个下午是晴天; (4)一共有6个上午是晴天. 则n 最小为( ) A .7 B .9C .10D .11【答案】B【分析】可假设上下午下雨的天数,然后计算出上下午晴天的天数,直到找到符合题意的情况,可得答案.【详解】假设上午或下午下了7次雨,则应有下午或上午下雨0次,即下午或上午有7个是晴天,与一共有5个下午是晴天以及一共有6个上午是晴天都不符合,故假设不成立;假设上午或下午下了6次雨,则应有下午或上午下雨1天,即下午或上午有6个是晴天,与一共有5个下午是晴天不符合,故假设不成立;假设上午或下午下了5次雨,则应有下午或上午下雨2天,即下午或上午有5个是晴天,与一共有6个上午是晴天不符合,故假设不成立;假设上午或下午下了4次雨,则应有下午或上午下雨3天,那么都加上3个上下午都晴天,即上午晴6天,下午晴7天,与题意不符合,故假设不成立;故假设下午下了4次雨,则应有上午下雨3天,那么都加上2个上下午都晴天,即有5个下午是晴天,有6个上午是晴天,与题意都符合,故n 最小为4329++= ; 故选:B7.已知(3)1y x x a =-+-+是关于x 的二次函数, 当x 的取值范围在15x ≤≤时,y 在1x =时取得最大值,则实数a 的取值范围是( )A .9a =B .5a =C .9a ≤D .5a ≤【答案】D【分析】由题知对应的二次函数开口向下,对称轴为32ax -=-且在15x ≤≤时,y 随着x 的增大而减小,进而解不等式312a--≤即可得答案. 【详解】解:()2(3)131y x x a x a x =-+-+=---+,开口向下,对称轴为32ax -=-, 因为当x 的取值范围在15x ≤≤时,y 在1x =时取得最大值, 所以,x 的取值范围在15x ≤≤时,y 随着x 的增大而减小, 所以312ax -=-≤,解得5a ≤. 所以,实数a 的取值范围是5a ≤. 故选:D8.正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK 的面积为( )A .10B .12C .14D .16【答案】D【分析】根据题意,连接,,BD GE FK ,则////BD GE FK ,进而得GDEGBES S=,GEKGEFSS=,再计算面积即可得答案.【详解】解:如图,连接,,BD GE FK ,则////BD GE FK , 所以,在梯形BEGD 中,GDEGBES S=(等底等高),在梯形GEKF 中,GEKGEFS S=(等底等高)所以,16GDEGEKGBEGEFBEFGDEKSSS SSS +=+===.故选: D9.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数241k k y x++=的图像上,若点A 的坐标为(2,3)--,则正数k 的值为( )A .1B .2C .4D .5【答案】A【分析】设()00,C x y ,进而根据题意得006x y =,即200416k x y k =+=+,再解方程即可得答案.【详解】解:设()00,C x y ,因为矩形ABCD 的对角线BD 经过坐标原点,点A 的坐标为(2,3)--所以,设直线BD 的方程为()0y mx m =≠,()()002,,,3B y D x --,所以0023y m mx =-⎧⎨-=⎩,所以006x y =,因为点C 在反比例函数241k k y x++=的图像上,所以200416k x y k =+=+,即2450k k +-=,解得1k =或5k =-(舍)所以,正数k 的值为1k =. 故选:A10.如图,AB 是⊙O 的直径, 点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为D ,直线DC 与AB 的延长线交于点P ,弦CE 平分ACB ∠,交AB 于点F ,连接BE ,72BE =.下列四个结论:①AC 平分DAB ∠;②2·PF PB PA=;③若12BC OP =,则阴影部分的面积为749π344-;④若24PC =,则3tan 4PCB ∠=.其中正确的是( )A .①②B .③④C .①②④D .①②③【答案】C【分析】连接OC ,结合切线的性质得//OC AD ,进而根据平行线的性质判断①;根据几何关系证明PC PF =,再根据PCB PAC △△得2PC PB PA =⋅判断②;连接AE ,根据几何关系证明OBC 是等边三角形,进而计算阴影部分面积判断③;由PCB PAC △△得tan tan BC PBPCB PAC AC PC∠=∠==,再设PB x =,则14PA x =+,根据2PC PB PA =⋅解得18PB =,进而可判断④;【详解】解:对于①,连接OC ,OA OC =,OAC OCA ∴∠=∠, ∵PC 是圆O 的切线,AD CD ⊥,∴90OCP D ︒∠=∠=,∴//OC AD , ∴CAD OCA OAC ∠=∠=∠,即AC 平分DAB ∠,故①正确; 对于②,∵AB 是直径,∴90ACB ︒∠=,90PCB ACD ︒∴∠+∠=, 又90CAD ACD ︒∠+∠=,CAB CAD PCB ∴∠=∠=∠,又,ACE BCE PFC CAB ACE ∠=∠∠=∠+∠,PCF PCB BCE ∠=∠+∠,PFC PCF ∴∠=∠,PC PF ∴=,∵P ∠是公共角,PCB PAC ∴△△,::PA C PB PC P =∴,2P PC B PA =∴⋅,即2PF PB PA =⋅,故②正确;对于③,连接AE ,∵ACE BCE ∠=∠,∴AE BE =,∴AE BE =,又∵AB 是直径,∴90AEB ︒∠=,∴227214AB BE ==⨯=,∴7OB OC ==,∵PD 是切线,∴90OCP ︒∠=,∵12BC OP =,∴BC 是Rt OPC 的中线,∴BC OB OC ==,即OBC 是等边三角形,∴60BOC ︒∠=, ∴24960493,743606BOC BOC S S ππ==⨯⨯=△扇形, ∴ 阴影部分面积为4949364π-,故③错误; 对于④,PCB PAC △△,∴PB BCPC AC=,tan tan BC PB PCB PAC AC PC ∴∠=∠==, 设PB x =,则14PA x =+,2P PC B PA =∴⋅,224(14)x x ∴=+,解得1218,32x x ==-,18PB ∴=,183tan 244PB PCB PC ∠===,故④正确. 故选:C二、双空题11.如图,在平面直角坐标系xOy 中,把由两条射线AE ,BF 和以AB 为直径的半圆所组成的图形叫作图形C (注:不含AB 线段).已知(1,0),(1,0)A B -,AE ∥BF ,且半圆与y 轴的交点D 在射线AE 的反向延长线上.①当一次函数y=x+b 的图象与图形C 恰好只有一个公共点时,b 的取值范围为_________;②已知平行四边形AMPQ (四个顶点A ,M ,P ,Q 按顺时针方向排列)的各顶点都在图形C 上,且不都在两条射线上,则点M 的横坐标x 的取值范围为_________. 【答案】 2b =11b -<<; 21x -<<-或20x ≤<. 【分析】根据直线与半圆的交点个数,讨论y x b =+的位置并确定边界情况下b 的值,即可得参数范围;讨论M 在射线AE ,AD 上以及G 为BD 中点,M 在DG 、GB ,射线BF 上,结合已知条件判断是否有满足要求的平行四边形AMPQ 即可.【详解】由图知:若y x b =+在射线,BF AE 之间时,与图形C 恰好只有一个公共点, 当BF 与y x b =+重合,1b =-; 当AE 与y x b =+重合,1b =;若y x b =+与图形C 12=,即2b = 又y x b =+过一、二、三象限,故2b =综上,2b =11b -<<时,一次函数y=x+b 的图象与图形C 恰好只有一个公共点. 1、当M 在射线AE 上,A ,M ,P ,Q 按顺时针方向排列,则PQ 必在AM 上方,即,P Q 在AM 上不含,A M 两点,所以02PQ <<,而//AM PQ 且AM PQ =,故02AM <<21x -<<-; 2、当M 在AD 上,则PQ 必在AM 下方,结合题图,不存在满足条件的平行四边形AMPQ ; 3、如下图,若G 为BD 中点,连接OG ,当M 在DG 上,过M 作MQ OG ⊥交BD 于Q ,则OG 垂直平分MQ ,再连接A 和其垂足并延长交射线BF 于P ,此时,四边形AMPQ 为平行四边形,满足题设,则20x ≤4、当M 在上图GB 上,则PQ 必在AM 下方,结合上图,不存在满足条件的平行四边形AMPQ ;5、当M 在射线BF 上,则PQ 必在AM 下方,此时P 与B 重合,Q 在射线AE 上,显然不满足A ,M ,P ,Q 不都在两条射线上,不存在满足条件的平行四边形AMPQ ; 综上,21x -<<-或202x ≤<. 【点睛】关键点点睛:判断是否存在平行四边形AMPQ 时,注意讨论M 的位置情况,根据平行四边形的性质判断不同情况下是否可以找到满足条件的平行四边形. 三、填空题 120,21x >-且5x y +=,则x 的取值范围是______. 【答案】172x << 【分析】021x >-,根据分式、根式的性质列不等式组求x 的范围即可. 【详解】0,21x >- 所以70210x x ->⎧⎨->⎩,可得172x <<.故答案为:172x << 13.操场上站成一排的100名学生进行报数游戏,规则是:每位同学依次报自己的顺序数的倒数加1.如:第一位同学报111+,第二位同学报112+,第三位同学报113+,……这样得到的100个数的积为__________. 【答案】101【分析】用数学符号表示出每位同学的报数,再直接相乘即可. 【详解】设第n 位同学的报数为n a ,则111n n a n n+=+=, 则121002310110112100a a a ;故答案为:101.14.为了参加中考体育测试,厦门中学的甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?____.(填:甲或乙或一样大) 【答案】乙【分析】根据古典概型概率公式计算可得.【详解】三次传球后,所有可能结果为:(乙、甲、乙)、(乙、甲、丙)、(乙、丙、甲)、(乙、丙、乙)、(丙、甲、乙)、(丙、甲、丙)、(丙、乙、甲)、(丙、乙、丙), 球回到甲脚下的概率:14P =; 球回到乙脚下的概率:38P =; 所以球回到乙脚下的概率大. 故答案为:乙.15.如图是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图中∠ACB =20°)时最为合适,已知货车车厢底部到地面的距离AB =1.5m ,木板超出车厢部分AD =0.5m ,则木板CD 的长度为________.(参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m ).【答案】4.9m【分析】根据ACB ∠的正弦函数和AB 的长度求AC 的长,再加上AD 即可. 【详解】解:由题意可知:AB BC ⊥.∴在Rt ABC △中,sin AB ACB AC∠=, 1.5 1.54.39sin sin 200.3420AB AC ACB ∴===≈∠︒,4.390.5 4.89 4.9(m)CD AC AD ∴=+=+=≈.故答案为:4.9m.16.如图所示,正方形ABCD的面积为12,ABE△是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD PE+的和最小,则这个最小值为______.【答案】23【分析】连接PB,由正方形的对称性可知PB PD=,所以PD PE PB PE BE+=+≥,求出BE的长可知答案【详解】连接PB,因为正方形ABCD的面积为12,所以1223AB==,因为ABE△是等边三角形,所以23BE AB==,因为P为正方形ABCD对角线AC上一点,所以PB PD=,所以23PD PE PB PE BE+=+≥=,当,,B P E共线时取等号所以PD PE+的最小值为23,故答案为:23四、解答题17.计算(先化简,再求值):223122111a a aa a--+--+1-5a=【答案】1【分析】根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【详解】解:∵a =1<,∴10a -<, 原式=22312211a a a a -----=()21111a a a a a -++-- =11-1a a - =1(1)a a -=1 ∴原式的值为1.18.已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由; (2)求使12212x x x x +-的值为整数的实数k 的整数值. 【答案】(1)存在,95k = (2)235k =---,,【分析】(1)利用反证法先假设存在实数k ,使得()()12123222x x x x --=-成立,根据一元二次方程有两个实数根可得95k =,因此原假设不成立,故不存在; (2)根据题意()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++,可得1k +能被4整除,即可求出k 的值.【详解】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求), 由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-, 95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++, ∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,, 0k <,235k ∴=---,,.19.某校九年级共有80名同学参与数学科托底训练.其中(1)班30人,(2)班25人,(3)班25人,厦门中学生助手在托底训练后对这些同学进行测试,并对测试成绩进行整理,得到下面统计图表.班级平均数中位数 众数(1)班 75.2 m 82 (2)班 71.2 68 79 (3)班 72.87575(1)表格中的m 落在________组;(填序号)①40≤x <50, ②50≤x <60, ③60≤x <70,④70≤x <80, ⑤80≤x <90, ⑥90≤x ≤100. (2)求这80名同学的平均成绩;(3)在本次测试中,(2)班小颖同学的成绩是70分,(3)班小榕同学的成绩是74分,这两位同学成绩在自己所在班级托底同学中的排名,谁更靠前?请简要说明理由. 【答案】(1)④ (2)73.2分(3)小颖在自己班级的排名更靠前,理由见解析 【分析】(1)根据成绩分布直方图判断即可; (2)结合表中数据,计算平均数即可; (3)根据表中的中位数大小分析判断即可.【详解】(1)解:根据题意,(1)班成绩在4050x ≤<内的有1人,在5060x ≤<内的有3人,在6070x ≤<内的有6人,在7080x ≤<内的有7人,此时共17人, 所以,(1)班成绩的中位数m 在7080x ≤<内,故选序号④.(2)解:根据题意,(1)班的平均成绩为75.2分,共30人,(2)班的平均成绩为71.2分,共25人,(3)班的平均成绩为72.8分,共25人, 所以,这80名同学的平均成绩为75.23071.22572.82573.280x ⨯+⨯+⨯==分.(3)解:小颖同学在自己班级的托底同学中排名更靠前.理由:因为7068>,所以小颖同学成绩处于自己班级托底同学的中上水平; 因为7475<,所以小榕同学成绩处于自己班级托底同学的中下水平,且这两个班的参加托底训练的人数相同,所以小颖在自己班级的排名更靠前.20.木匠黄师傅用长AB =3,宽BC =2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O 1、O 2分别在CD 、AB 上,半径分别是O 1C 、O 2A ,锯两个外切的半圆拼成一个圆;方案三: 沿对角线AC 将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆; 方案四:锯一块小矩形BCEF 拼到矩形AFED 下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大? (3)在方案四中,设CE =x (0<x <1),圆的半径为y . ①求y 关于x 的函数解析式;②当x 取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大. 【答案】(1)1 (2)方案三半径较大(3)①答案见解析;②x =12时,最大为54,方案四时可取的圆桌面积最大【分析】(1)直接利用CB 的长即可求出圆的半径.(2)分别利用勾股定理以及相似三角形的判定与性质得出两半径长进而求出答案. (3)首先得出所截出圆的直径最大为3x -或2x +两者中较小的一个,再利用一次函数增减性得出即可.【详解】(1)因为长方形的长宽分别为3,2,那么直接取圆直径最大为2, 则方案一中的半径最大为1;(2)如图1,方案二中连接O 1,O 2,过O 1作O 1E ⊥AB 于E ,方案三中,过点O 分别作AB ,BF 的垂线,交于M ,N ,此时M ,N 恰为⊙O 与AB ,BF 的切点.方案二:设半径为r ,在Rt △O 1O 2E 中,∵O 1O 2=2r ,O 1E =BC =2,O 2E =AB -AO 2-CO 1=3-2r , ∴(2r )2=22+(3-2r )2,解得1312r =. 方案三:设半径为r ,在△AOM 和△OFN 中,∵∠A =∠FON ∠OMA =∠FNO ,∴△AOM ∽△OFN , ∴OM FN AM ON =,∴23r r r r -=-,解得65r =. 比较知,方案三半径较大;(3)①∵EC =x ,∴新拼图形水平方向跨度为3-x ,竖直方向跨度为2+x . 类似(1),所截出圆的直径最大为3-x 或2+x 较小的.a .当3-x <2+x 时,即当1>x >12时,y =12(3-x ); b .当3-x =2+x 时,即当x =12时,y =12(3-12)=54;c .当3-x >2+x 时,即当0<x <12时,y =12(2+x ). ②当x >12时,y =12(3-x )<12(3-12)=54;当x =12时,y =12(3-12)=54;当x <12时,y =12(2+x )<12(2+12)=54,∴方案四中,当x =12时,y 最大为54.∵1<1312<65<54,∴方案四时可取的圆桌面积最大.21.已知:直角梯形OABC 中,BC ∥OA ,∠AOC =90°,以AB 为直径的圆M 交OC 于D ,E ,连结AD ,BD ,BE .(1)在不添加其他字母和线的前提下..............,直接..写出图1中的两对相似三角形. (2)直角梯形OABC 中,以O 为坐标原点,A 在x 轴正半轴上建立直角坐标系(如图2), 若抛物线223(0)y ax ax a a =--<经过点A .B .D ,且B 为抛物线的顶点. ①求抛物线的解析式.②在x 轴下方的抛物线上是否存在这样的点P :过点P 作PN ⊥x 轴于N ,使得△P AN 与△OAD 相似?若存在,求出点P 的坐标;若不存在,说明理由. 【答案】(1)△OAD ∽△CDB . △ADB ∽△ECB (2)①2y x 2x 3=-++;②存在,(-2,-5)【分析】(1)由圆周角定理知:90,ADB ∠=︒首先可联想到的相似三角形是,BCD DOA ,易知BAD BED ∠=∠,可得的另一对相似三角形是Rt ,Rt BAD BED ∠.(2)①根据抛物线的解析式,易求得,,B D A 的坐标,也就得到了,,,OA OD CD BC 的长,根据(1)中的相似三角形,即可根据对应的成比例线段求出a 的值,即可求出抛物线的方程. ②由①易得△OAD 为等腰三角形,根据抛物线的解析式设出P 点坐标,然后根据PN =AN 的条件来求出P 点坐标.【详解】(1)如图1,因为AB 为直径,所以90,ADB ∠=︒ 所以90,CDB ADO ∠+∠=︒ 因为90,OAD ADO ∠+∠=︒所以OAD CDB ∠=∠,又因为90C O ∠=∠=︒, 所以△OAD ∽△CDB.因为BAD BED ∠=∠,C ADB ∠=∠,所以△ADB ∽△ECB. △OAD ∽△CDB . △ADB ∽△ECB (2)①顶点B (1,-4a ), ∵△OAD ∽△CDB ,∴=DC CB OA OD又∵ax 2-2ax -3a =0,可得A (3,0) 又OC =-4a ,OD =-3a ,CD =-a ,CB =1, ∴133-=-a a ∴21a = ∵0a < ∴1a =- 故抛物线的解析式为:2y x 2x 3=-++ ②假设存在,设P (x ,-x 2+2x +3)∵△P AN 与△OAD 相似,且△OAD 为等腰三角形, ∴PN =AN ,当x <0(x <-1)时,-x +3=-(-x 2+2x +3),x 1=-2,x 2=3(舍去), ∴P (-2,-5).当x >0(x >3)时,x -3= -(-x 2+2x +3), x 1=0,x 2=3(都不合题意舍去) 符合条件的点P 为(-2,-5).22.如图,在矩形ABCD 中,46AB AD E ==,,是AD 边上的一个动点,将四边形BCDE 沿直线BE 折叠,得到四边形BC D E '',连接AC AD '',.(1)若直线DA 交BC '于点F ,求证:EF BF =; (2)当433AE AC D ''△是等腰三角形; (3)在点E 的运动过程中,求AC D ''△面积的最小值. 【答案】(1)证明见解析 (2)证明见解析 (3)4【分析】(1)根据题意证明FEB FBE ∠=∠即可证明结论;(2)分别过点A 作AG BC ⊥'于点G AH C D ⊥'',于点H ,进而根据几何关系证明AH 是C D ''垂直平分线即可证明结论;(3)作点A 关于BE 的对称点A ',点A '落在以点B 为圆心,以AB 为半径的弧AM 上.设弧AM 交BC 于点M ,过点A '作A N CD '⊥于N ,进而得当点A '落在点M 处时,A CD '的面积最小,再根据142AC D A CDSC DC SM '''=⋅==即可得答案.【详解】(1)证明:∵四边形ABCD 是矩形,∴//AD BC . ∴FEB EBC ∠=∠.根据对称可得FBE EBC ∠=∠, ∴FEB FBE ∠=∠.∴BF EF =.(2)证明:如图2,分别过点A 作AG BC ⊥'于点G AH C D ⊥'',于点H , ∵四边形ABCD 是矩形, ∴90BAD ∠=︒.∴433343tan AE A B B A E ===∠∴30ABE ∠=︒.∴9060FEB ABE ∠=︒-∠=︒. ∴60FBE FEB ∠=∠=︒.∴30ABG FBE ABE ∠=∠-∠=︒. ∴122AG AB ==. 根据对称可得90BC D C ∠''=∠=,C D CD ''=. ∴90BC D C GA C HA ∠''=∠'=∠'=. ∴四边形AGC H '是矩形. ∴2AG C H ='=.∴AH 是C D ''的垂直平分线. ∴AC AD '='.(3)解:根据对称可得点C '与点D '的对称点分别为点C D ,. 作点A 关于BE 的对称点A ',如图3.由对称性得ACDAC D BA BA ''''=≌,. ∴A CDAC DSS''=,点A '落在以点B 为圆心,以AB 为半径的弧AM 上.设弧AM 交BC 于点M ,过点A '作A N CD '⊥于N . 由垂线段最短知BA A N BM MC '+'≥+. ∵BA BM '=,∴A N MC '≥.∴当点A '落在点M 处时,A CD '的面积最小. 即A CD '的面积最小.此时2MC BC BM =-=.142AC D A CDSC DC SM '''=⋅==. ∴AC D ''△面积的最小值为4。
福清市高中联合体2020—12021学年第一学期高一年期末考试数学试卷(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3A =-,{}31B x x =-<,则A B =( )A. {}3B. {}1,0,1-C.1,0,1,2D. {}1,0,1,2,3-2. 命题“0x ∀≥,sin x x ≤”的否定是( ) A. 0x ∀≥,sin x x > B. 00x ∃<,00sin x x > C. 00x ∃≥,00sin x x >D. 00x ∃≥,00sin x x ≤3. 函数()f x x =是( ) A. 奇函数,且在R 上单调递减 B. 奇函数,且在R 上单调递增 C. 偶函数,且在R 上单调递减D. 偶函数,且在R 上单调递增4. 若角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(1,-,则sin 2α=( )A. B. 12-C.12D.25. 函数()38ln f x x x =-+的零点所在区间应是( )A. ()1,2B. ()2,3C. ()3,4D. ()4,56. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-⎪⎝⎭图象上所有点的横坐标( ) A. 向左平移12π个单位长度B. 向右平移12π个单位长度C. 向左平移24π个单位长度D. 向右平移24π个单位长度7. 已知51log 4a =,1514b ⎛⎫= ⎪⎝⎭,41log 5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b c a >>C. b a c >>D. c b a >>8. 月均温全称月平均气温,气象学术语,指一月所有日气温的平均气温.某城市一年中12个月的月均温y (单位:C )与月份x (单位:月)的关系可近似地用函数()sin 36y A x a π⎡⎤=-+⎢⎥⎣⎦(1,2,3,,12x =)来表示,已知6月份的月均温为29C ,12月份的月均温为17C ,则10月份的月均温为( ) A. 20CB. 20.5CC. 21CD. 21.5C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 下列函数中,最小值是2的有( )A. 1y xx=+B. y =C. 223y x x =++D. e e x x y -=+10. 命题“x R ∀∈,210x ax -+≥”为真命题的一个必要不充分条件可以是( ) A. 22a -≤≤B. 2a ≥-C. 2a ≤D. 22a -<<11. 关于函数()sin cos f x x x =+有下述四个结论,其中正确的是:( ) A. ()f x 的图象关于原点对称 B. ()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减 C. ()f x 在[],ππ-有2个零点D. ()f x 的最大值为212. 已知定义在R 上的函数()f x 满足()()4f x f x +=,若()1y f x =-的图象关于直线1x =对称,且对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则下列结论正确的是( ) A. ()f x 是偶函数B. ()f x 在()2018,2020上单调递增C. 4是函数()f x 的周期D. ()f x 在()2018,2020上单调递减第Ⅱ卷注意事项: 用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13. 已知函数()1,12,1x f x x x <⎧=⎨≥⎩则()()0f f =________.14. 已知22tan 31tan αα=--,且α为锐角,则α=________.15. 如图,Rt ABC 的三个顶点A ,B ,C 恰好分别落在函数()21xy x =>,y x =,12log y x =的图象上,且B ,C 两点关于x 轴对称,则点A 的横坐标为________.16. 已知定义在R 上的偶函数()f x ,当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩则满足()()12f x f x +<的x 的取值范围是________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 求下列各式的值: (1)(0312932224-⎛⎫--⨯ ⎪⎝⎭;(2)55251log 3log log 25log 215++⨯. 18. 已知全集U =R ,集合{}20A x x a =+>,()(){}140B x x x =+-≤. (1)当2a =时,求()UA B ;(2)若B A ⊆,求实数a 的取值范围.19. 在①1k =-,②1k =这两个条件中任选一个,补充在下面问题中. 已知函数()kf x kx x=-,且_______, (1)求()f x 的定义域,并判断()f x 的奇偶性;(2)判断()f x 的单调性,并用定义给予证明.20. 已知,2παπ⎛⎫∈ ⎪⎝⎭,且2sin cos 222αα-= (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 21. 某儿童活动中心,为儿童修建一个面积为100平方米的矩形游泳池,为保障儿童生命安全,在其四周都留有宽2米的路面,问所选场地的长和宽各为多少时,才能使占用场地的面积S 最小,并求出该最小值? 22. 已知函数()2sin 36f x x ππ⎛⎫=+⎪⎝⎭.(1)用“五点作图法”在给定的坐标系中,画出函数()f x 在[]0,6上的图象; (2)求()f x 图象的对称轴与单调递增区间; (3)当[]0,x m ∈时,()12f x ≤≤,求实数m 取值范围.福清市高中联合体2020—12021学年第一学期高一年期末考试数学试卷(解析版)(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3A =-,{}31B x x =-<,则A B =( )A. {}3B. {}1,0,1-C.1,0,1,2D. {}1,0,1,2,3-【答案】A 【解析】 【分析】先求得集合B ,再根据交集定义直接得结果.【详解】因为{}()312B x x =-<=+∞,,又{}1,0,1,2,3A =-,所以{}3A B ⋂=, 故选:A.2. 命题“0x ∀≥,sin x x ≤”的否定是( ) A. 0x ∀≥,sin x x > B. 00x ∃<,00sin x x > C. 00x ∃≥,00sin x x > D. 00x ∃≥,00sin x x ≤【答案】C 【解析】 【分析】由全称命题的否定变换形式即可得出结果. 【详解】命题“0x ∀≥,sin x x ≤” 的否定是00x ∃≥,00sin x x >.故选:C3. 函数()f x x =是( ) A. 奇函数,且在R 上单调递减 B. 奇函数,且在R 上单调递增 C. 偶函数,且在R 上单调递减 D. 偶函数,且在R 上单调递增【答案】B 【解析】 【分析】利用函数的奇偶性定义判断奇偶性,根据函数的解析式判断单调性. 【详解】函数的定义域为R ,关于原点对称,又()(()f x x x f x -=-+=-+=-,所以()f x是奇函数,又,y x y ==R 上的增函数,所以()f x 是R 上的增函数, 故选:B4. 若角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(1,-,则sin 2α=( )A. B. 12-C.12D.【答案】D 【解析】 【分析】根据任意角的三角函数的定义,求出sin α和cos α,再由二倍角的正弦公式,即可求出结果.【详解】因为角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点(1,-,所以sin 2α==-,1cos 2α==-,因此1sin 22sin cos 22ααα⎛⎛⎫==⨯⨯-= ⎪ ⎝⎭⎝⎭.故选:D.5. 函数()38ln f x x x =-+的零点所在区间应是( )A. ()1,2B. ()2,3C. ()3,4D. ()4,5【答案】B 【解析】 【分析】利用函数的零点存在定理求解.【详解】由函数()38ln f x x x =-+, 因为()()2ln 220,3ln310f f =-<=+>, 所以函数的零点所在区间应是()2,3 故选:B6. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-⎪⎝⎭图象上所有点的横坐标( ) A. 向左平移12π个单位长度B. 向右平移12π个单位长度C. 向左平移24π个单位长度 D. 向右平移24π个单位长度【答案】D 【解析】 【分析】根据sin 2sin 23244y x x πππ⎡⎤⎛⎫⎛⎫=-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用平移变换求解. 【详解】因为sin 2sin 23244y x x πππ⎡⎤⎛⎫⎛⎫=-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需由sin 24y x π⎛⎫=- ⎪⎝⎭图象上所有点横坐标向右平移24π个单位长度,故选:D 7. 已知51log 4a =,1514b ⎛⎫= ⎪⎝⎭,41log 5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b c a >>C. b a c >>D. c b a >>【答案】C 【解析】 【分析】利用指数函数和对数函数的单调性判断.【详解】因为55510log log 4log 514a >==->-=-,15110144b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭, 4441log log 5log 415c ==-<-=-,所以b a c >> 故选:C8. 月均温全称月平均气温,气象学术语,指一月所有日气温的平均气温.某城市一年中12个月的月均温y (单位:C )与月份x (单位:月)的关系可近似地用函数()sin 36y A x a π⎡⎤=-+⎢⎥⎣⎦(1,2,3,,12x =)来表示,已知6月份的月均温为29C ,12月份的月均温为17C ,则10月份的月均温为( ) A. 20C B. 20.5CC. 21CD. 21.5C【答案】A 【解析】 【分析】由题意得出关于A 、a 的方程组,可得出函数解析式,在函数解析式中令10x =可得结果.【详解】由题意可得sin 2923sin 172A a A a A a a A ππ⎧+=+=⎪⎪⎨⎪+=-=⎪⎩,解得623A a =⎧⎨=⎩,所以,函数解析式为()6sin 3236y x π⎡⎤=-+⎢⎥⎣⎦, 在函数解析式中,令10x =,可得716sin236232062y π⎛⎫=+=⨯-+= ⎪⎝⎭. 因此,10月份的月均温为20C . 故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 下列函数中,最小值是2的有( )A. 1y xx=+B. y =C. 223y x x =++D. e e x x y -=+【答案】BCD 【解析】 【分析】根据基本不等式逐一判断即可.【详解】对于A ,1y x x =+,当0x >时,12y x x =+≥=,当且仅当1x =时取等号;当0x <时,12y x x ⎛⎫=--+≤-=- ⎪-⎝⎭, 当且仅当1x =-时取等号,故A 不正确;对于B ,2y=≥=,当且仅当1x =时取等号. 对于C ,()2223122y x x x =++=++≥,当1x =-时,取最小值;对于D ,e e 2x x y -=+≥=,当且仅当0x =时取等号; 故选:BCD【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方10. 命题“x R ∀∈,210x ax -+≥”为真命题的一个必要不充分条件可以是( ) A. 22a -≤≤ B. 2a ≥- C. 2a ≤ D. 22a -<<【答案】BC 【解析】 【分析】根据题意,命题为真可得()240a ∆=--≤,求出a 的取值范围,再根据必要不充分条件即可求解. 【详解】由命题“x R ∀∈,210x ax -+≥”为真命题,可得()240a ∆=--≤,解得22a -≤≤, 对于A ,22a -≤≤是命题为真的充要条件; 对于B ,由2a ≥-不能推出22a -≤≤,反之成立, 所以2a ≥-是命题为真的一个必要不充分条件; 对于C ,2a ≤不能推出22a -≤≤,反之成立, 所以2a ≤也是命题为真的一个必要不充分条件; 对于D ,22a -<<能推出22a -≤≤,反之不成立, 22a -<<是命题为真的一个充分不必要条件.故选:BC11. 关于函数()sin cos f x x x =+有下述四个结论,其中正确的是:( ) A. ()f x 的图象关于原点对称 B. ()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减C. ()f x在[],ππ-有2个零点 D. ()f x 的最大值为2【答案】BC 【解析】 【分析】分sin 0x ≥,sin 0x <,将函数转化(),224sin cos ,2224x k x k f x x x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=+=⎛⎫++<<+ ⎪⎝⎭,再逐项求解判断.【详解】当sin 0x ≥,即22k x k πππ≤≤+时,()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,当sin 0x <,即222ππππ+<<+k x k 时,()sin cos 4f x x x x π⎛⎫=-+=+ ⎪⎝⎭,所以(),224sin cos ,2224x k x k f x x x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=+=⎛⎫++<<+ ⎪⎝⎭,A.因为函数定义域为R ,关于原点对称,又()()()()sin cos sin cos f x x x x x f x -=-+-=+=,所以()f x 是偶函数,其图象关于y 轴对称,故错误;B.当,4x ππ⎛⎫∈⎪⎝⎭时, 53,,42422x πππππ⎛⎫⎛⎫+∈⊆ ⎪ ⎪⎝⎭⎝⎭,因为sin y x =在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减,所以()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减,故正确; C. 令()04f x x π⎛⎫=+= ⎪⎝⎭,则4x k ππ+=,因为[]0,x π∈,解得34x π=,又因为()f x 是偶函数,所以函数()f x 在[],ππ-有2个零点,故正确; D. ()f x,故错误; 故选:BC【点睛】关键点点睛:将函数变形为(),224,2224x k x k f x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=⎛⎫++<<+ ⎪⎝⎭是本题求解的关键.12. 已知定义在R 上的函数()f x 满足()()4f x f x +=,若()1y f x =-的图象关于直线1x =对称,且对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 在()2018,2020上单调递增 C. 4是函数()f x 的周期 D. ()f x 在()2018,2020上单调递减【答案】ACD 【解析】 【分析】A. 由()1y f x =-的图象与()y f x =的图象关系判断;C.由()f x 满足()()4f x f x +=判断;BD.由对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,得到()f x 在[]0,2上递增,再结合函数的周期性判断.【详解】因为()1y f x =-的图象关于直线1x =对称,所以()y f x =的图象关于直线0x =对称,所以()f x 是偶函数,故A 正确;()f x 满足()()4f x f x +=,所以4是函数()f x 的周期,故C 正确;因为对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在[]0,2上递增,又()()()()20182,20200f f f f == ,所以()f x 在()2018,2020上单调递减,故D 正确B 错误; 故选:ACD第Ⅱ卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效. 三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13. 已知函数()1,12,1x f x x x <⎧=⎨≥⎩则()()0f f =________.【答案】2 【解析】 【分析】根据分段函数每段的定义域求解.【详解】因为函数()1,12,1x f x x x <⎧=⎨≥⎩所以()01f =, 所以()()()012ff f ==,故答案为:214. 已知22tan 1tan αα=-α为锐角,则α=________. 【答案】3π 【解析】 【分析】根据二倍角的正切公式,求出tan2α,再由α为锐角,即可求出α.【详解】因为22tan tan 21tan ααα==-α为锐角,所以02απ<<, 因此223πα=, 所以3πα=.故答案为:3π.15. 如图,Rt ABC 的三个顶点A ,B ,C 恰好分别落在函数()21xy x =>,y x =,12log y x =的图象上,且B ,C 两点关于x 轴对称,则点A 的横坐标为________.【答案】2 【解析】 【分析】设出点(),2tA t ,根据题意可知//AB x 轴,从而可得出点B ,进而可得点C ,代入对数函数的解析式即可求解.【详解】设出点(),2tA t ,ABC 是直角三角形,且B ,C 两点关于x 轴对称,∴//AB x 轴,A 和B 纵坐标相同,2t x ∴=4t x ∴=,()4,2t t B ∴,则()4,2t t C -,C 在12log y x =的图象上,则12log 42t t=-,整理可得22t t -=-,()1t >,解得2t =. 故答案为:216. 已知定义在R 上的偶函数()f x ,当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩则满足()()12f x f x +<的x 的取值范围是________. 【答案】113-<<x【解析】 【分析】根据cos y x =和y x =-的单调性,又 cos 1π=-,得到()f x 在 [0,)+∞上递减,再根据()f x 是偶函数,将不等式()()12f x f x +<转化为()()12fx f x +<求解.【详解】当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩当01x ≤<时, 0x ππ≤<,因为 cos y x =在 []0,π上递减,所以 ()f x 在 [0,1)上递减,当1≥x 时,y x =-递减,又 cos 1π=-,所以()f x 在 [0,)+∞上递减, 又因为()f x 是定义在R 上的偶函数, 则不等式()()12f x f x +<可化为:()()12f x f x +<,所以12x x +>, 解得113-<<x , 故答案为:113-<<x四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 求下列各式的值: (1)(03129324-⎛⎫--⨯ ⎪⎝⎭;(2)55251log 3log log 25log 215++⨯. 【答案】(1)3;(2)1. 【解析】 【分析】(1)根据指数的运算性质即可求解. (2)利用对数的运算性质即可求解. 【详解】(1)原式=33=+=(2)原式51lg 25lg 2log (3)15lg 2lg5=⨯+⨯ 152lg5lg 2log 5lg 2lg5-=+⨯ 12=-+ 1=.18. 已知全集U =R ,集合{}20A x x a =+>,()(){}140B x x x =+-≤. (1)当2a =时,求()UA B ;(2)若B A ⊆,求实数a 的取值范围. 【答案】(1){}|4x x ;(2)()2,+∞. 【解析】 【分析】(1)由2a =得到{}|1A x x =>-,再利用集合的补集和并集运算求解. (2)化简|2a A x x ⎧⎫=>-⎨⎬⎩⎭,{}|14B x x=-,再由B A ⊆求解.【详解】(1)当2a =时,集合{}|1A x x =>-,{}|1UxA x -=,因为()(){}|140B x x x =+-,所以{}|14B x x=-, 所以{}()|4U A B x x=.(2)因为{}|20A x x a =+>, 所以|2a A x x ⎧⎫=>-⎨⎬⎩⎭, 由(1)知,{}|14B x x=-,又因为B A ⊆,所以12a-<-, 解得2a >,所以实数a 的取值范围()2,+∞.19. 在①1k =-,②1k =这两个条件中任选一个,补充在下面问题中. 已知函数()kf x kx x=-,且_______,(1)求()f x 的定义域,并判断()f x 的奇偶性; (2)判断()f x 的单调性,并用定义给予证明. 【答案】(1)答案见解析;(2)答案见解析. 【解析】 【分析】选择①1k =-,可得1()f x x x =-,选择②1k =,可得1()f x x x=-. (1)使函数()f x 有意义,只需0x ≠;再求出()f x -与()f x 的关系即可求解. (2)根据证明函数单调性的步骤:取值、作差、变形、定号即可证明. 【详解】选择①1k =-,因为()kf x kx x =-,所以1()f x x x=-. (1)要使函数()f x 有意义,只需0x ≠, 所以函数()f x 的定义域为(,0)(0,)-∞+∞.因为11()()()f x x x f x x x-=--=--=--, 所以()f x 为奇函数.⑵ 函数()f x 在区间(,0)-∞和(0,)+∞均为增函数. 证明如下: 12,(0,)x x ∀∈+∞,且12x x <, 则12121211()()()f x f x x x x x -=--- 121212()x x x x x x -=-+12121()1)x x x x =-+( ()121212()1x x x x x x -+=,因为120x x <<,所以120x x -<,120x x >,1210x x +>, 所以12())0(f x f x -<,即12()()f x f x <, 故函数()f x 在区间(0,)+∞为增函数; 同理可证,函数()f x 在区间(,0)-∞为增函数;所以函数()f x 在区间(,0)-∞和(0,)+∞均为增函数. 选择②1k =,因为()kf x kx x =-,所以1()f x x x=-. (1)要使函数()f x 有意义,只需0x ≠, 所以函数()f x 的定义域为(,0)(0,)-∞+∞.因为11()()()()f x x x f x x x-=--=--=--, 所以()f x 奇函数.⑵ 函数()f x 在区间(,0)-∞和(0,)+∞均为减函数. 证明如下:12,(0,)x x ∀∈+∞,且12x x <, 则12121211()()()f x f x x x x x -=--- 212112()x x x x x x -=+- 21121()1x x x x ⎛⎫=-+ ⎪⎝⎭()211212()1x x x x x x -+=,因为120x x <<,所以210x x ->,120x x >,1210x x +>, 所以12())0(f x f x ->,即12()()f x f x >, 故函数()f x 在区间(0,)+∞为减函数; 同理可证,函数()f x 在区间(,0)-∞为减函数; 所以函数()f x 在区间(,0)-∞和(0,)+∞均为减函数.20. 已知,2παπ⎛⎫∈ ⎪⎝⎭,且sin cos 222αα-=. (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 【答案】(1);(2. 【解析】 【分析】(1)将已知条件两边平方,求得sin α的值,进而求得cos α的值.(2)先求得()cos αβ-的值,然后利用cos cos[()]βααβ=--,结合两角差的余弦公式,求得cos β的值.【详解】(1)将sincos222αα-=两边同时平方,得11sin 2α-=,则1sin 2α=,又2παπ∈(,),所以cos 2α==-.(2)由(1)知,1sin ,cos 2αα==, 因为2παπ∈(,),2βπ∈π(,),所以22ππαβ-<-<.又因为4sin()5αβ-=,所以3cos()5αβ-,所以cos cos[)]βααβ=--( cos cos()sin sin()ααβααβ=-+-314525=+⨯, 【点睛】关键点点睛:对于三角函数给值求值的问题,关键在于运用已知角的和,差,二倍的运算表示待求的角,再选择相关公式得以求值.21. 某儿童活动中心,为儿童修建一个面积为100平方米的矩形游泳池,为保障儿童生命安全,在其四周都留有宽2米的路面,问所选场地的长和宽各为多少时,才能使占用场地的面积S 最小,并求出该最小值? 【答案】长为14米,宽为14米;196平方米. 【解析】 【分析】先设泳池的长为x 米,宽为y 米,列出式子,再利用基本不等式即可求解.【详解】解:设游泳池的长为x 米,宽为y 米,则场地长为(4)x +米,宽为(4)y +米,()1000,0xy x y =>>,(4)(4)S x y =++ 4()16xy x y =+++ 100164()x y =+++ 1164()x y =++1168xy ≥+11680=+196=,当且仅当“10x y ==”时取等号.∴当10x y ==时,S 取得最小值为196平方米,此时场地长为14米,宽为14米.22. 已知函数()2sin 36f x x ππ⎛⎫=+⎪⎝⎭.(1)用“五点作图法”在给定的坐标系中,画出函数()f x 在[]0,6上的图象; (2)求()f x 图象的对称轴与单调递增区间;(3)当[]0,x m ∈时,()12f x ≤≤,求实数m 的取值范围.【答案】(1)答案见解析;(2)对称轴方程为()31x k k Z =+∈,递增区间为[]()62,61k k k -+∈Z ;(3)[1,2].【解析】 【分析】(1)由[]0,6x ∈,计算出36x ππ+的取值范围,通过列表、描点、连线,可作出函数()f x 在[]0,6上的图象; (2)解方程()362x k k Z ππππ+=+∈可得出函数()f x 的对称轴方程,解不等式()222362k x k k Z ππππππ-≤+≤+∈可得函数()f x 的单调递增区间;(3)利用(1)中的图象结合()12f x ≤≤可得出实数m 的取值范围. 【详解】(1)因为()2sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,当[]0,6x ∈时,13,3666x ππππ⎡⎤+∈⎢⎥⎣⎦, 列表如下:x0 1 524112636xππ+6π2ππ32π2π136πy 1 2 0 2-0 1作图如下:(2)因为()2sin36f x xππ⎛⎫=+⎪⎝⎭,令()362x k k Zππππ+=+∈,解得()31x k k Z=+∈,令()222362k x k k Zππππππ-≤+≤+∈,解得()6261k x k k Z-≤≤+∈,所以()f x的对称轴方程为()31x k k Z=+∈,递增区间为[]()62,61k k k-+∈Z;(3)[]0,x m∈,,36636mxπππππ⎡⎤∴+∈+⎢⎥⎣⎦,又()12f x≤≤,由(1)的图象可知,12m≤≤,m∴的取值范围是[]1,2.【点睛】方法点睛:函数()()sin0y A x Aωϕω=+>>0,的图象的两种作法是五点作图法和图象变换法:(1)五点法:用“五点法”作()()sin0y A x Aωϕω=+>>0,的简图,主要是通过变量代换,设z xωϕ=+,由z取0、2π、π、32π、2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象;(2)三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同.。
福建省福州第一中学【最新】高一上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题 1.函数()f x =( ) A .{|1}x x > B .{|1}x x ≥ C .{|12}x x x >≠且D .{|12}x x x ≥≠且2.图中的阴影表示的集合中是( )A .UA B ⋂ B .UB A ⋂C .()UA B ⋂D .U()A B ⋃3.已知函数()()1,223,2x x f x x f x x +⎧>⎪=-⎨⎪+≤⎩,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知全集{}1,2,3U =且{}2U C A =,则集合A 的真子集共有( ) A .1个B .3个C .4个D .7个5.函数1()=ln f x x x-的零点所在的区间可以是 A .(0,1)B .(1,2)C .(2,3)D .(3,4)6.下列大小关系正确的是( )A .30.440.43log 0.3<<B .30.440.4log 0.33<<C .30.44log 0.30.43D .0.434log 0.330.4<<7.下列函数中,满足“()()()f xy f x f y =⋅”且为单调递增函数的是( ) A .()3x f x =B .3()log f x x =C .1()f x x -=D .3()f x x =8.已知函数()()()f x x a x b =--(其中)a b >的图象如图所示,则函数()x g x a b =+的图象是( )A .B .C .D .9.已知函数()212,12,1x x ax x f x a a x ⎧+-≤⎪=⎨⎪->⎩在()0,+∞上是增函数,则实数a 的取值范围是( ) A .(]1,2B .()1,2C .[)2,+∞D .()1,+∞10.已知两条直线1:l y m =和12121441313⨯=,1l 与函数2log y x =的图像从左至右相交于点A ,B ,2l 与函数2log y x =的图像从左至右相交于点C, D 。
福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)本试卷共5页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一.单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|4}A x x =>,{|2}B x x ,则A B =( )A. (2,)+∞B. (4,)+∞C. (2,4)D. (,4)-∞【答案】B 【解析】 【分析】由交集的定义求解即可. 【详解】{|{|2}4}{|4}x A B x x x x x =>>=>故选:B【点睛】本题主要考查了集合间的交集运算,属于基础题. 2.sin(600)-︒的值是( )A.12B. 12-C.2D. 【答案】C 【解析】 【分析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【详解】解:()()()sin 600sin 720120sin120sin 18060sin60-︒=-︒+︒=︒=︒-︒=︒= 故选C .【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键. 3.下列各函数的值域与函数y x =的值域相同的是( ) A. 2yxB. 2xy =C. sin y x =D.2log y x =【答案】D 【解析】 【分析】分别求出下列函数的值域,即可判断. 【详解】函数y x =的值域为R20y x =≥,20x y =>则A ,B 错误;函数sin y x =的值域为[]1,1-,则C 错误; 函数2log y x =的值域为R ,则D 正确; 故选:D【点睛】本题主要考查了求具体函数的值域,属于基础题.4.已知函数42,0,()log ,0,x x f x x x ⎧=⎨>⎩则((1))f f -=( )A. 2-B. 12-C.12D. 2【答案】B 【解析】 【分析】分别计算(1)f -,12f ⎛⎫ ⎪⎝⎭即可得出答案.【详解】121(1)2f --==,241211log log 12222f -⎛⎫===- ⎪⎝⎭所以1((1))2f f -=- 故选:B【点睛】本题主要考查了已知自变量求分段函数的函数值,属于基础题. 5.函数log ||()(1)||a x x f x a x =>图象的大致形状是( )A. B.C. D.【答案】A 【解析】 【分析】判断函数函数()f x 为奇函数,排除BD 选项,取特殊值排除C ,即可得出答案. 【详解】log ||log ||()()||||a a x x x x f x f x x x ---==-=--所以函数()f x 为奇函数,故排除BD.log ||()10||a a a f a a ==>,排除C故选:A【点睛】本题主要考查了函数图像的识别,属于基础题.6.已知0.22log 0.2,2,sin 2a b c ===,则( )A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】B【解析】 【分析】分别求出a ,b ,c 的大概范围,比较即可.【详解】因为22log 0.2log 10<=,0sin 21<<,0.20221>= 所以a c b <<. 故选:B【点睛】本题主要考查了指数,对数,三角函数的大小关系,找到他们大概的范围再比较是解决本题的关键,属于简单题.7.已知以原点O 为圆心的单位圆上有一质点P ,它从初始位置01(,22P 开始,按逆时针方向以角速度1/rad s 做圆周运动.则点P 的纵坐标y 关于时间t 的函数关系为 A. sin(),03y t t π=+≥ B. sin(),06y t t π=+≥ C. cos(),03y t t π=+≥D. cos(),06y t t π=+≥【答案】A 【解析】当时间为t 时,点P 所在角的终边对应的角等于3t π+, 所以点P 的纵坐标y 关于时间t 的函数关系为sin(),03y t t π=+≥.8.已知函数()f x 为定义在(0,)+∞的增函数,且满足()()()1f x f y f xy +=+.若关于x 的不等式(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+恒成立,则实数a 的取值范围为( ) A. 1a >- B. 14a >-C. 1a >D. 2a >【答案】D 【解析】 【分析】将题设不等式转化为2(cos )(cos )f x f a x <+,根据函数()f x 的单调性解不等式得出2cos cos x a x <+,通过换元法,构造函数2()g x t t =-,[]1,1t ∈-求出最大值,即可得到实数a 的取值范围.【详解】(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+(1sin )(1sin )(cos )(1)f x f x f a x f ∴-++<++因为()()()2(1sin )(1sin )1sin 1sin 1(cos)1f x f x fx x f x -++=-++=+,(cos )(1)(cos )1f a x f f a x ++=++所以2(cos )(cos )f x f a x <+在(0,)x ∈+∞恒成立故2cos cos x a x <+在(0,)x ∈+∞恒成立,即2cos cos x x a -<在(0,)x ∈+∞恒成立 令[]cos ,1,1x t t =∈-,则22()cos cos g x x x t t =-=-所以函数2()g x t t =-在11,2⎡⎤-⎢⎥⎣⎦上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,(1)2(1)0g g -=>= 所以2a > 故选:D【点睛】利用函数的单调性解抽象不等式以及不等式的恒成立问题,属于中档题.二.多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.9.设11,,1,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域是R ,且为奇函数的α值可以是( )A. 1-B.12C. 1D. 3【答案】CD 【解析】 【分析】求出对应α值函数y x α=的定义域,利用奇偶性的定义判断即可.【详解】当α的值为11,2-时,函数y x α=的定义域分别为()(),00,-∞+∞,[)0,+∞当1α=时,函数y x =的定义域为R ,令()f x x =,()()f x x f x -=-=-,则函数y x =为R 上的奇函数当3α=时,函数3y x =的定义域为R ,令3()f x x =,3()()f x x f x -=-=-,则函数3y x=为R 上的奇函数故选:CD【点睛】本题主要考查了判断函数的奇偶性,属于基础题. 10.要得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象上所有的点( ) A. 向右平行移动5π个单位长度,再把所得各点的横坐标缩短到原来的12倍B. 向右平行移动10π个单位长度,再把所得各点的横坐标缩短到原来的12倍C. 横坐标缩短到原来的12倍,再把所得各点向右平行移动5π个单位长度D. 横坐标缩短到原来的12倍,再把所得各点向右平行移动10π个单位长度【答案】AD 【解析】 【分析】由正弦函数的伸缩变换以及平移变换一一判断选项即可. 【详解】将函数sin y x =的图象上所有的点向右平行移动5π个单位长度,得到函数n 5si y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故A 正确;将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,得到函数sin 10y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 210y x π⎛⎫=- ⎪⎝⎭的图象,故B 错误;将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动5π个单位长度,得到25sin 2y x π⎛⎫=-⎪⎝⎭的图象,故C 错误; 将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动10π个单位长度,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故D 正确;故选:AD【点睛】本题主要考查了正弦函数的伸缩变换以及平移变换,属于基础题.11.对于函数()sin(cos )f x x =,下列结论正确的是( ) A. ()f x 为偶函数B. ()f x 的一个周期为2πC. ()f x 的值域为[sin1,sin1]-D. ()f x 在[]0,π单调递增【答案】ABC 【解析】 【分析】利用奇偶性的定义以及周期的定义判断A ,B 选项;利用换元法以及正弦函数的单调性判断C 选项;利用复合函数的单调性判断方法判断D 选项. 【详解】函数()f x 的定义域为R ,关于原点对称()()()()sin cos sin cos ()f x x x f x -=-==,则函数()f x 偶函数,故A 正确;()()()sin co 22s sin cos ()f x x x f x ππ+=+==⎡⎤⎣⎦,则函数()f x 的一个周期为2π,故B正确;令[]cos ,1,1t x t =∈-,则()sin f x t =,由于函数sin y t=[]1,1-上单调递增,则()sin 1()sin1sin1()sin1f x f x -≤≤⇒-≤≤,故C 正确;当[]0,x π∈时,函数cos t x =为减函数,由于[]cos 0,1t x =∈,则函数sin y t =在0,1上为增函数,所以函数()f x 在[]0,π单调递减,故D 错误; 故选:ABC【点睛】本题主要考查了判断函数的奇偶性,周期性,求函数值域,复合函数的单调性,属于中档题.12.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( ) A. ()g x 为奇函数B. 若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C. ()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D. 若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【解析】 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫-⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅= 所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题. 三、填空题:本大题共4题,每小题5分,共20分.13.函数()1xf x a =+(0a >且1a ≠)的图象恒过点__________【答案】()0,2 【解析】分析:根据指数函数xy a =过()0,1可得结果.详解:由指数函数的性质可得xy a =过()0,1,所以1xy a =+过()0,2,故答案为()0,2.点睛:本题主要考查指数函数的简单性质,属于简单题. 14.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【答案】6π 【解析】 【分析】由扇形面积公式求出扇形半径,根据扇形弧长公式即可求解.【详解】设扇形的半径为r 由扇形的面积公式得:216212r ππ=⨯,解得2r该扇形的弧长为2126ππ⨯=故答案为:6π 【点睛】本题主要考查了扇形面积公式以及弧长公式,属于基础题. 15.函数()2sin 23f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为______;【答案】[2] 【解析】 【分析】由x 的范围,确定23x π-的范围,利用换元法以及正弦函数的单调性,即可得出答案.【详解】0,2x π⎡⎤∈⎢⎥⎣⎦,22,333x πππ⎡⎤∴-∈-⎢⎥⎣⎦令22,333t x πππ⎡⎤=-∈-⎢⎥⎣⎦,函数()2sin g t t =在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,在2,23ππ⎡⎤⎢⎥⎣⎦上单调递减2si ()(n 33)g ππ--==2si 2()2n 2g ππ==, 222sin (3)3g ππ==所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为[2]故答案为:[2]【点睛】本题主要考查了正弦型函数的值域,属于中档题. 16.已知函数1()f x x=,()2sin g x x =,则函数()f x 图象的对称中心为_____,函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为____. 【答案】 (1). (0,0) (2). 0 【解析】 【分析】判断函数()f x ,()g x 为奇函数,即可得出函数()f x ,()g x 图象的对称中心都为原点; 根据对称性即可得出所有交点的横坐标与纵坐标之和. 【详解】1()()f x f x x-=-=-,则函数()f x 为奇函数,即函数()f x 图象的对称中心为(0,0) ()()2sin 2sin ()g x x x g x -=-=-=-,则函数()g x 为奇函数,即函数()g x 的对称中心为(0,0)所以函数()y f x =的图象与函数()y g x =的图象所有交点都关于原点对称 即所有交点的横坐标之和为0,纵坐标之和也为0则函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为0 故答案为:(0,0);0【点睛】本题主要考查了函数奇偶性的应用以及对称性的应用,属于中档题.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知α为锐角,且3cos 5α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求cos sin(2)2παπα⎛⎫-+-⎪⎝⎭的值. 【答案】(1)-7(2)4425【解析】 【分析】(1)利用平方关系以及商数关系得出tan α,再利用两角和的正切公式求解即可; (2)利用诱导公式以及二倍角的正弦公式求解即可. 【详解】解:(1)因为α为锐角,且3cos 5α=. 所以24sin 1cos 5αα, 所以sin 4tan cos 3ααα==, 所以41tan tan34tan 7441tan tan 1143παπαπα++⎛⎫+===- ⎪⎝⎭--⨯. (2)因为cos sin 2παα⎛⎫-=⎪⎝⎭, sin(2)sin 2παα-=,所以cos sin(2)sin sin 22παπααα⎛⎫-+-=+ ⎪⎝⎭sin 2sin cos ααα=+4432555=+⨯⨯ 4425= 【点睛】本题主要考查了两角和的正切公式,诱导公式,二倍角的正弦公式,属于中档题. 18.已知集合{}|2216xA x =<<,{|sin 0,(0,2)}B x x x π=>∈. (1)求AB ;(2)集合{|1}C x x a =<<()a ∈R ,若AC C =,求a 的取值范围.【答案】(1){|04}A B x x ⋃=<<(2)4a 【解析】 【分析】(1)利用指数函数以及正弦函数的性质化简集合,A B ,再求并集即可;(2)由题设条件得出C A ⊆,分别讨论集合C =∅和C ≠∅的情况,即可得出答案.【详解】解:(1)依题意{|14}A x x =<<,{|0}B x x π=<<,所以{|04}A B x x ⋃=<<. (2)因为AC C =,所以C A ⊆.①当C =∅时,1a ,满足题意;②当C ≠∅时,1a >,因为C A ⊆,得4a ≤,所以14a <; 综上,4a .【点睛】本题主要考查了集合的并集运算以及根据集合间的包含关系求参数范围,属于中档题.19.已知函数()2sin (sin cos )f x x x x =⋅+. (1)求()f x 的最小正周期; (2)求()f x 的单调区间.【答案】(1)最小正周期为π.(2)单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【解析】 【分析】利用倍角公式以及辅助角公式化简函数()f x ,根据周期公式得出第一问;根据正弦函数的单调增区间和减区间求()f x 的单调区间,即可得出第二问. 【详解】解:因为2()2sin 2sin cos f x x x x =+⋅22sin sin 2x x =+1cos2sin2x x =-+ sin2cos21x x =-+214x π⎛⎫=-+ ⎪⎝⎭(1)所以函数()f x 的最小正周期为22T ππ==.(2)由222,242k x k k πππππ-+-+∈Z ,得3222,44k x k k ππππ-++∈Z , 即3,88k xk k ππππ-++∈Z , 所以()f x 的单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,同理可得,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【点睛】本题主要考查了求正弦型函数的最小正周期以及单调区间,属于中档题. 20.已知2()1x af x x bx +=++是定义在[1,1]-上的奇函数. (1)求a 与b 的值;(2)判断()f x 的单调性,并用单调性定义加以证明; (3)若[0,2)απ∈时,试比较(sin )f α与(cos )f α的大小.【答案】(1)0a =. 0b =.(2)()f x 在[1,1]-单调递增.见解析 (3)见解析 【解析】 【分析】(1)根据奇函数的性质得出(0)0f =,(1)(1)f f -=-,求解方程,即可得出a 与b 的值; (2)利用函数单调性的定义证明即可;(3)分别讨论α的取值使得sin cos αα=,sin cos αα<,sin cos αα>,结合函数()f x 的单调性,即可得出(sin )f α与(cos )f α的大小.【详解】解:(1)因为()f x 是定义在[1,1]-上的奇函数,所以(0)0f =,得0a =.又由(1)(1)f f -=-,得到1122b b -=--+,解得0b =. (2)由(1)可知2()1xf x x =+,()f x 在[1,1]-上为增函数.证明如下:任取12,[1,1]x x ∈-且设12x x <, 所以()()1212221211x x f x f x x x -=-++()()22121212221211x x x x x x x x +--=++ ()()()()122112221211x x x x x x x x -+-=++()()()()21122212111x x x x xx --=++由于12x x <且12,[1,1]x x ∈-,所以210x x ->,且2110x x -<,又2110x +>,2210x +>,所以()()()()211222121011x x x x xx --<++,所以()()12f x f x <,从而()f x 在[1,1]-单调递增. (3)当4πα=或54πα=时,sin cos αα=,所以(sin )(cos )f f αα=;当04πα<或524παπ<<时,sin cos αα<, 又因为sin [1,1]α∈-,cos [1,1]α∈-,且()f x 在[1,1]-上为增函数,所以(sin )(cos )f f αα<当544ππα<<时,sin cos αα>,同理可得(sin )(cos )f f αα>; 综上,当4πα=或54πα=时,(sin )(cos )f f αα=;当50,,244ππαπ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭时,(sin )(cos )f f αα<;当5,44ππα⎛⎫∈ ⎪⎝⎭时,(sin )(cos )f f αα>.【点睛】本题主要考查由函数的奇偶性求参数,判断函数的单调性以及利用单调性比较函数值大小,属于中档题.21.海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: .(1)设港口在x 时刻的水深为y 米,现给出两个函数模型:sin()(0,0,)y A x h A ωϕωπϕπ=++>>-<<和2(0)y ax bx c a =++≠.请你从两个模型中选择更为合适的函数模型来建立这个港口的水深与时间的函数关系式(直接选择模型,无需说明理由);并求出7x =时,港口的水深.(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),问该船何时能进入港口,何时应离开港口?一天内货船可以在港口呆多长时间?【答案】(1)选择函数模型Asin()y x h ωϕ=++更适合. 水深为3米 (2)货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港.一天内货船可以在港口呆的时间为8小时. 【解析】 【分析】(1)观察表格中水深的变化具有周期性,则选择函数模型Asin()y x h ωϕ=++更适合,由表格数据得出,,,A h ωϕ的值,将7x =代入解析式求解即可; (2)由题意 5.5y 时,船可以进港,解不等式2.5sin4.255.56x π+,得出x 的范围,由x的范围即可确定进港,出港,一天内在港口呆的时间. 【详解】解:(1)选择函数模型Asin()y x h ωϕ=++更适合因为港口在0:00时刻的水深为4.25米,结合数据和图象可知 4.25h =6.75 1.752.52A -==因为12T =,所以22126T πππω===, 所以 2.5sin 4.256y x πϕ⎛⎫=++⎪⎝⎭, 因为0x =时, 4.25y =,代入上式得sin 0ϕ=,因为πϕπ-<<,所以0ϕ=, 所以 2.5sin4.256y x π=+.当7x =时,712.5sin4.25 2.5 4.25362y π⎛⎫=+=⨯-+= ⎪⎝⎭, 所以在7x =时,港口的水深为3米(2)因为货船需要的安全水深是4 1.5 5.5+=米, 所以 5.5y 时,船可以进港, 令2.5sin4.255.56x π+,则1sin62xπ, 因为024x <,解得15x 或1317x ,所以货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港. 因为(51)(173)8-+-=,一天内货船可以在港口呆的时间为8小时. 【点睛】本题主要考查了三角函数在生活中的应用,属于中档题. 22.已知函数3(1)log (1)f x a x +=+,且(2)1f =. (1)求()f x 的解析式;(2)已知()f x 的定义域为[2,)+∞. (ⅰ)求()41xf +的定义域;(ⅱ)若方程()()412xxf f k k x +-⋅+=有唯一实根,求实数k 取值范围.【答案】(1)2()log f x x =(2)(ⅰ)[0,)+∞.(ⅱ)1k = 【解析】 【分析】(1)利用换元法以及(2)1f =,即可求解()f x 的解析式;(2)(ⅰ)解不等式412x +≥,即可得出()41xf +的定义域;(ⅱ)根据()41xf +,()2x f k k ⋅+的定义域得出1k ,结合函数()f x 的解析式将方程化为()2(1)2210x x k k -⋅+⋅-=,利用换元法得出2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,讨论k的值,结合二次函数的性质即可得出实数k 的取值范围.【详解】解:(1)令1(0)t x t =+>,则3()log f t a t =,所以3()log f x a x =, 因为3(2)log 21f a ==,所以231log 3log 2a ==, 所以3232()log log 3log log f x a x x x ==⨯= (2)(ⅰ)因为()f x 的定义域为[2,)+∞, 所以412x +≥,解得0x , 所以()41xf +的定义域为[0,)+∞.(ⅱ)因为0,22,x x k k ⎧⎨⋅+⎩,所以221xk +在[0,)+∞恒成立, 因为221x y =+在[0,)+∞单调递减,所以221x y =+最大值为1,所以1k .又因为()()412xxf f k k x +-⋅+=,所以()()22log 41log 2xxk k x +-⋅+=, 化简得()2(1)2210xx k k -⋅+⋅-=,令2(1)xt t =,则2(1)10k t k t -⋅+⋅-=在[1,)+∞有唯一实数根, 令2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,当1k =时,令()0g t =,则1t =,所以21x =,得0x =符合题意,所以1k =; 当1k >时,2440k k ∆=+->,所以只需(1)220g k =-,解得1k ,因为1k >,所以此时无解; 综上,1k =.【点睛】本题主要考查了利用换元法求函数解析式以及根据函数的零点确定参数的范围,属于较难题.。
2023-2024学年度第一学期八县(市、区)一中期中联考高中一年数学科试卷(答案在最后)11月8日完卷时间:120分钟满分:150分第Ⅰ卷一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.设全集{}1,2,3,4,5U =,集合{}{}1,2,4,5A B ==,则U A B ⋃=ð()A.{}1,2,3 B.{}1,2,3,4,5 C.{}1,2,4,5 D.{}2,3,4,52.以下选项正确的是()A.若a b >,则11a b< B.若a b >,则22ac bc >C.若0c a b >>>,则a bc a c b >-- D.若0a b c >>>,则a a cb b c+<+3.设()11,,1,2,32f x x αα⎛⎫⎧⎫=∈-⎨⎬ ⎪⎩⎭⎝⎭,则“函数()f x 的图象经过点()1,1-”是“函数()f x 在(),0∞-上递减”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知)1fx -=-+()f x 的值域是()A.1,4⎛⎤-∞ ⎥⎝⎦B.(],0-∞ C.1,4⎛⎫-∞ ⎪⎝⎭D.1,4⎡⎫+∞⎪⎢⎣⎭5.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,,x x x x ∈+∞≠,有()()21210f x f x x x -<-,且()30f =,则不等式()0xf x >的解集是()A.()3,3- B.()()3,03,-⋃+∞ C.()(),33,-∞-+∞ D.()(),30,3-∞-⋃6.设函数()()210f x mx x m =-->,命题“存在()12,2x f x ≤≤>”是假命题,则实数m 的取值范围是()A.54m ≥B.504m <≤C.04m <≤D.504m <<7.已知函数()212x f x x +=+,下列推断正确的个数是()①函数图像关于y 轴对称;②函数()f x 与()3f x +的值域相同;③()f x 在[]1,2上有最大值23;④()f x 的图像恒在直线1y =的下方.A.1B.2C.3D.48.若至少存在一个0x <,使得关于x 的不等式2332x a x x -->+成立,则实数a 的取值范围是()A.37,34⎛⎫-⎪⎝⎭B.133,4⎛⎫- ⎪⎝⎭C.3713,44⎛⎫-⎪⎝⎭ D.()3,3-二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.下列结论中错误的有()A.集合{}03x x ∈≤<N 的真子集有7个B.已知命题2:,10p x x x ∀∈-+≥R ,则2000:,10p x x x ⌝∃∉-+<R C.函数y =与函数y =表示同一个函数D.若函数()2f x 的定义域为[]0,2,则函数()31f x +的定义域为[]1,510.已知,a b 为正实数,则下列说法正确的是()A.的最小值为2B.若2a b +=的最大值是2.C.若2a b ab +=则ab 的最小值是8.D.若121a b+=则2a b +的最大值是8.11.已知()f x 是定义在R 上的奇函数,()g x 是定义在R 上的偶函数,且()(),f x g x 在(],0-∞单调递增,则以下结论正确的是()A.()()()()12ff f f < B.()()()()12f g f g -<C.()()()()12g f g f > D.()()()()12g g g g >12.已知函数()[)()[)0,212,2,2x f x f x x ∞∈=⎨-∈+⎪⎩,则以下结论正确的是()A.当[)()2,4,x f x ∈=B .[)()()1212,0,,x x f x f x ∀∈+∞-<C.若()24f x <在[),t +∞上恒成立,则t 的最小值为6D.若关于x 的方程()()()22210a f x a f x ⎡⎤+++=⎣⎦有三个不同的实数根则(a ∈--.第П卷三、填空题(本题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上)13.不等式102x x3-≥-的解集为______.14.已知函数()22,12,1x x f x x x x +≤-⎧=⎨-+>-⎩,若()3f a =-,则实数a 的值为______.15.若函数()()239g x f x x =-是奇函数,且()13f -=,则()1f =______.16.已知命题:p “方程2210ax x ++=至少有一个负实根”,若p 为真命题的一个必要不充分条件为1a m ≤+,则实数m 的取值范围是______.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.设U =R ,已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.(1)当4m =时,求()U A B ð;(2)若B ≠∅,且B A ⊆,求实数m 的取值范围.18.已知函数()()2,2,24xf x x x =∈-+.(1)求()()1ff 的值;(2)用定义证明函数()f x 在()2,2-上为增函数;(3)若()()1210f t f t +-->,求实数t 的取值范围.19.均值不等式)0,02a ba b +≥>>可以推广成均值不等式链,在不等式证明和求最值中有广泛的应()20,0112a b a b a b+≥≥≥>>+.(12a b+≥.上面给出的均值不等式链是二元形式,其中()0,02a ba b +≥>>指的是两个正数的平方平均数不小它们的算数平均数,类比这个不等式给出对应的三元形式,即三个正数的平方平均数不小于它们的算数平均数(无需证明)(2)若一个直角三角形的直角边分别为,a b ,斜边4c =,求直角三角形周长l 的取值范围.20.福清的观音埔大桥横跨龙江两岸是福清的标志性建筑之一,提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当车流密度不超过50辆/千米时,车流速度为50千米/小时,当50150x ≤≤时,车流速度v 是车流密度x 的一次函数.当桥上的车流密度达到150辆/千米时,造成堵塞,此时车流速度为0.(1)当0150x ≤≤时,求函数()v x 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()f x x v x =⋅可以达到最大,并求出最大值.(精确到1辆/时).21.已知函数()()()2236f x ax a x a =-++∈R (1)若()0f x >的解集是{|2x x <或}3x >,求实数a 的值;(2)当1a =时,若22x -≤≤时函数()()532f x m x m ≤-+++有解,求m 的取值范围.22.设函数()(),f x F x 的定义域分别为,I D ,且ID .若对于任意x I ∈,都有()()F x f x =,则称()F x 为()f x 在D 上的一个延伸函数.给定函数()()22103f x x x x =+-<≤.(1)若()F x 是()f x 在给定[]3,3-上的延伸函数,且()F x 为奇函数,求()F x 的解析式;(2)设()g x 为()f x 在()0,∞+上的任意一个延伸函数,且()()g x h x x=是()0,∞+上的单调函数.①证明:当(]0,3x ∈时,()()121222h x h x x x h ++⎛⎫≥⎪⎝⎭.②判断()h x 在(]0,3的单调性(直接给出结论即可);并证明:0,0m n ∀>>都有()()()g m n g m g n +>+.2023-2024学年度第一学期八县(市、区)一中期中联考高中一年数学科试卷11月8日完卷时间:120分钟满分:150分第Ⅰ卷一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.设全集{}1,2,3,4,5U =,集合{}{}1,2,4,5A B ==,则U A B ⋃=ð()A.{}1,2,3 B.{}1,2,3,4,5 C.{}1,2,4,5 D.{}2,3,4,5【答案】A 【解析】【分析】应用集合的补集和并集的运算即可.【详解】依题得U {1,2,3}B =ð,则{}U 1,2,3A B =⋃ð.故选:A2.以下选项正确的是()A.若a b >,则11a b< B.若a b >,则22ac bc >C.若0c a b >>>,则a bc a c b>-- D.若0a b c >>>,则a a cb b c+<+【答案】C 【解析】【分析】根据不等式的性质、差比较法等知识确定正确答案.【详解】A 选项,若a b >,如1,1a b ==-,则11a b>,所以A 选项错误.B 选项,若a b >,0c =,则22ac bc =,所以B 选项错误.C 选项,若0c a b >>>,则0,0,0c a c b a b ->->->,则()()()()()()()0a c b b c a a b c a bc a c b c a c b c a c b -----==>------,所以a bc a c b>--,所以C 选项正确.D 选项,若0a b c >>>,则0a b ->,()()()()()0a b c b a c a b c a a c b b c b b c b b c +-+-+-==>+++,所以a a cb b c+>+,所以D 选项错误.故选:C3.设()11,,1,2,32f x x αα⎛⎫⎧⎫=∈-⎨⎬ ⎪⎩⎭⎝⎭,则“函数()f x 的图象经过点()1,1-”是“函数()f x 在(),0∞-上递减”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由幂函数的性质结合充分条件和必要条件的定义即可得出答案.【详解】函数()f x 的图象经过点()1,1-,则()()11f x α=-=,因为11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,所以2α=,所以()2f x x =,所以()f x 在(),0∞-上递减,而()f x 在(),0∞-上递减,函数()f x 的图象不一定经过点()1,1-,如:()1f x x -=.所以“函数()f x 的图象经过点()1,1-”是“函数()f x 在(),0∞-上递减”的充分不必要条件.故选:A .4.已知)1fx -=-+()f x 的值域是()A.1,4⎛⎤-∞ ⎥⎝⎦B.(],0-∞ C.1,4⎛⎫-∞ ⎪⎝⎭D.1,4⎡⎫+∞⎪⎢⎣⎭【答案】A 【解析】【分析】求出函数()f x 的表达式即可得出值域.【详解】由题意,在)1fx -=-+1t-=,即()21x t=+,∴()()2211f t t t t t=-+++=--即()2f x x x=--,在()2f x x x=--中,10-<,开口向下,对称轴()112212bxa-=-=-=-⨯-,∴()211112224f x f⎛⎫⎛⎫⎛⎫≤-=---=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴()f x的值域是1,4⎛⎤-∞⎥⎝⎦,故选:A.5.定义在R上的偶函数()f x满足:对任意的[)()1212,0,,x x x x∈+∞≠,有()()2121f x f xx x-<-,且()30f=,则不等式()0xf x>的解集是()A.()3,3- B.()()3,03,-⋃+∞ C.()(),33,-∞-+∞D.()(),30,3-∞-⋃【答案】D【解析】【分析】根据函数单调性的定义知,()f x在[)0,∞+上单调递减,在(),0∞-上单调递增,且()30f=,分0x>与0x<两种情况进行求解,得到答案.【详解】因为对任意的[)()1212,0,,x x x x∈+∞≠,有()()2121f x f xx x-<-,所以()f x在[)0,∞+上单调递减,又()f x为定义在R上的偶函数,所以()f x在(),0∞-上单调递增,且()()330f f-==,当0x>时,由()0xf x>得()()03f x f>=,故03x<<,当0x<时,由()0xf x>得()()03f x f<=-,故3x<-,综上:不等式()0xf x>的解集是()(),30,3-∞-⋃.故选:D.6.设函数()()210f x mx x m=-->,命题“存在()12,2x f x≤≤>”是假命题,则实数m的取值范围是()A.54m ≥B.504m <≤C.04m <≤D.504m <<【答案】B 【解析】【分析】根据存在量词命题的真假性,利用分离常数法求得m 的取值范围.【详解】由于“存在()12,2x f x ≤≤>”是假命题,所以“任意12x ≤≤,()2f x ≤”是真命题,即任意12x ≤≤,212mx x --≤,22331x m x x x+≤=+,令11,12t x ⎡⎤=∈⎢⎥⎣⎦,23y t t =+的开口向上,对称轴为16t =-,所以当12t =,即2x =时,231x x +取得最小值为315424+=,所以504m <≤.故选:B7.已知函数()212x f x x +=+,下列推断正确的个数是()①函数图像关于y 轴对称;②函数()f x 与()3f x +的值域相同;③()f x 在[]1,2上有最大值23;④()f x 的图像恒在直线1y =的下方.A.1 B.2 C.3 D.4【答案】D 【解析】【分析】对于①,利用函数奇偶性定义判断出函数为偶函数,①正确;对于②,由两函数图象关系得到值域相同;对于③,变形后,结合对勾函数性质得到最值;对于④,先得到0x ≥时,()212x f x x +=+,换元后结合对勾函数性质得到函数值域,再由函数的奇偶性得到值域为10,4⎛+⎤⎥ ⎝⎦,故④正确.【详解】对于①,()212x f x x +=+的定义域为R ,且()()()2112x x f x f x x -++-===+-+,故()212x f x x +=+为偶函数,故函数图象关于y 轴对称,①正确;对于②,()3f x +是由()f x 向左平移3个单位得到的,故值域不改变,②正确;对于④,当0x ≥时,()212x f x x +=+,令11x t +=≥,()222113322y t t t tt t t -+-===++-,由对勾函数性质可知,()3g t t t=+在⎡⎣上单调递减,在)+∞上单调递增,故()min g t ==,故104y +<≤,由①可知,()212x f x x +=+为偶函数,故()f x 在R 上的值域为310,4⎛⎤⎥ ⎝⎦,由于114+<,故满足()f x 的图像恒在直线1y =的下方,④正确;对于③,因为[]1,2x ∈,则[]12,3x t +=∈,()3g t t t=+在[]2,3上单调递增,故()()()[]2,3 3.5,4g t g g ∈=⎡⎤⎣⎦,故132y t t=+-的值域为12,23⎡⎤⎢⎥⎣⎦,故()f x 在[]1,2上有最大值为23,③正确.故选:D8.若至少存在一个0x <,使得关于x 的不等式2332x a x x -->+成立,则实数a 的取值范围是()A.37,34⎛⎫-⎪⎝⎭B.133,4⎛⎫- ⎪⎝⎭C.3713,44⎛⎫-⎪⎝⎭D.()3,3-【答案】A 【解析】【分析】化简不等式2332x a x x -->+,根据二次函数的图象、含有绝对值函数的图象进行分析,从而求得a 的取值范围.【详解】依题意,至少存在一个0x <,使得关于x 的不等式2332x a x x -->+成立,即至少存在一个0x <,使得关于x 的不等式2233x x x a --+>-成立,画出()2230y x x x =--+<以及3y x a =-的图象如下图所示,其中2230x x --+>.当3y x a =-与()2230y x x x =--+<相切时,由2323y x a y x x =-⎧⎨=--+⎩消去y 并化简得2530x x a +--=,37254120,4a a ∆=++==-.当3y x a =-+与()2230y x x x =--+<相切时,由2323y x a y x x =-+⎧⎨=--+⎩消去y 并化简得230x x a -+-=①,由14120a ∆=-+=解得134a =,代入①得2211042x x x ⎛⎫-+=-= ⎪⎝⎭,解得12x =,不符合题意.当3y x a =-+过()0,3时,3a =.结合图象可知a 的取值范围是37,34⎛⎫- ⎪⎝⎭.故选:A【点睛】对于含有参数的不等式问题的求解,可考虑直接研究法,也可以考虑分离参数,也可以合理转化法.如本题中的不等式,可以将其转化为一边是含有绝对值的式子,另一边是二次函数,再根据二次函数以及含有绝对值的函数的图象来对问题进行分析和求解.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.下列结论中错误的有()A.集合{}03x x ∈≤<N 的真子集有7个B.已知命题2:,10p x x x ∀∈-+≥R ,则2000:,10p x x x ⌝∃∉-+<R C.函数24y x =-与函数22y x x =+-表示同一个函数D.若函数()2f x 的定义域为[]0,2,则函数()31f x +的定义域为[]1,5【答案】BCD 【解析】【分析】由集合元素个数与真子集个数间的关系可判断A 项;由命题的否定可判断B 项;求出两个函数的定义域可判断C 项;根据抽象函数定义域的求法可判断D 项.【详解】对于A 项,因为集合{}{}030,1,2x x ∈≤<=N ,所以该集合有3217-=个真子集,所以A 项正确;对于B 项,命题2:,10p x x x ∀∈-+≥R 的否定2000:,10p x x x ⌝∃∈-+<R ,所以B 项错误;对于C 项,由240x -≥得2x ≥或2x ≤-,所以函数y =的定义域为(][),22,-∞-+∞U ,由2020x x +≥⎧⎨-≥⎩得2x ≥,所以函数y =的定义域为[)2,+∞,由于函数y =与函数y =定义域不同,所以不是同一函数,所以C 项错误;对于D 项,由于函数()2f x 的定义域为[]0,2,所以024x ≤≤,令0314x ≤+≤得113x -≤≤,所以函数()31f x +的定义域为1,13⎡⎤-⎢⎥⎣⎦,所以D 项错误.故选:BCD.10.已知,a b 为正实数,则下列说法正确的是()A.的最小值为2B.若2a b +=的最大值是2.C.若2a b ab +=则ab 的最小值是8.D.若121a b+=则2a b +的最大值是8.【答案】BC 【解析】【分析】根据基本不等式对选项进行分析,从而确定正确答案.【详解】A≥=无实数解,所以①的等式不成立,所以A 选项错误.B 选项,2222a b⎛+≤= ⎝⎭,当且仅当1a b ==时等号成立,所以B 选项正确.C 选项,220a b ab ab +=≥-≥,8ab ≥≥,当且仅当24a b ==时等号成立,所以C 选项正确.D 选项,()124224b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭48≥+=,当且仅当4,24b ab a a b===时等号成立,所以D 选项错误.故选:BC11.已知()f x 是定义在R 上的奇函数,()g x 是定义在R 上的偶函数,且()(),f x g x 在(],0-∞单调递增,则以下结论正确的是()A.()()()()12ff f f < B.()()()()12f g f g -<C.()()()()12g f g f > D.()()()()12g g g g >【答案】AC 【解析】【分析】根据函数的奇偶性、单调性确定正确答案.【详解】A 选项,()f x 是奇函数,且在(],0-∞单调递增,则()f x 在R 上单调递增,所以()()12f f <,则()()()()12ff f f <,所以A 选项正确.B 选项,()g x 是偶函数,且在(],0-∞单调递增,则()g x 在[)0,∞+上单调递减,所以()()()112g g g -=>,所以()()()()12f g f g ->,所以B 选项错误.C 选项,()()()0012f f f =<<,则()()()()12g f g f >,所以C 选项正确.D 选项,()()12g g >,但符号无法确定,所以()()()()1,2g g g g 大小关系不确定,所以D 选项错误.故选:AC12.已知函数()[)()[)0,212,2,2x f x f x x ∞∈=⎨-∈+⎪⎩,则以下结论正确的是()A.当[)()2,4,x f x ∈=B.[)()()1212,0,,x x f x f x ∀∈+∞-<C.若()4f x <在[),t +∞上恒成立,则t 的最小值为6D.若关于x 的方程()()()22210a f x a f x ⎡⎤+++=⎣⎦有三个不同的实数根则(a ∈--.【答案】AB 【解析】【分析】根据题意,作出[)2,22,N x n n n ∈+∈时,()f x =的图像,数形结合逐个判断即可.【详解】设[)2,4x ∈时,则[)20,2x -∈,所以()2f x -=,又()()122f x f x =-,所以当[)2,4x ∈时,()f x =当[)4,6x ∈时,则[)22,4x -∈,所以()2f x -=,又()()122f x f x =-,所以当[)4,6x ∈时,()f x =当[)6,8x ∈时,则[)24,6x -∈,所以()2f x -=,又()()122f x f x =-,所以当[)6,8x ∈时,()f x =所以由此可知[)2,22,N x n n n ∈+∈时,()f x =;作出函数()f x 的部分图象,如下图所示:则A 正确,由图象可知,()f x ⎡∈⎣,所以1x ∀,[)20,x ∈+∞,()()12f x f x -<,故B 正确;在同一坐标系中作出函数()f x 和函数4y =的图象,如下图所示:由图象可知,当[)4,∈+∞x 时,()24f x <恒成立,所以t 的最小值为4,故C 错误;令()t f x =,则2t ⎡∈⎣,则方程()()()22210a f x a f x ⎡⎤+++=⎣⎦等价于()()22210at t a a +++=∈R ,即()()1210t at ++=,所以1t a =-,或12t =-(舍去),在同一坐标系中作出函数()f x ,函数24y =和函数28y =的图象,如下图所示:由图象可知,当122,84a ⎫-∈⎪⎪⎣⎭时,即4222a -≤<-关于x 的方程()()()()22120a f x f a a x ++⎦+⎤=⎡⎣∈R 有三个不同的实根,故D 错误.故选:AB第П卷三、填空题(本题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上)13.不等式102x x 3-≥-的解集为______.【答案】1,23⎡⎫⎪⎢⎣⎭【解析】【分析】将分式不等式转化为一元二次不等式求解即可得到答案.【详解】不等式102x x 3-≥-,等价于()()312020x x x ⎧--≥⎨-≠⎩,解得123≤<x ,所以不等式的解集为1,23⎡⎫⎪⎢⎣⎭.故答案为:1,23⎡⎫⎪⎢⎣⎭14.已知函数()22,12,1x x f x x x x +≤-⎧=⎨-+>-⎩,若()3f a =-,则实数a 的值为______.【答案】5-或3【解析】【分析】根据()3f a =-列方程,从而求得a 的值.【详解】当1a ≤-时,由23a +=-解得5a =-;当1a >-时,由2123a a a >-⎧⎨-+=-⎩解得3a =.所以a 的值为5-或3.故答案为:5-或315.若函数()()239g x f x x =-是奇函数,且()13f -=,则()1f =______.【答案】1-【解析】【分析】根据奇函数的性质即可求【详解】函数()()239g x f x x =-是奇函数,则()()g x g x -=-,当13x =-时,()12131g f ⎛⎫=--= ⎝-⎪⎭,则213(1)1g f ⎛⎫=-=- ⎪⎝⎭,则(1)1f =-.故答案为:1-16.已知命题:p “方程2210ax x ++=至少有一个负实根”,若p 为真命题的一个必要不充分条件为1a m ≤+,则实数m 的取值范围是______.【答案】0m >【解析】【分析】先求得p 为真命题时a 的取值范围,再根据必要不充分条件求得m 的取值范围.【详解】若命题:p “方程2210ax x ++=至少有一个负实根”为真命题,0a =时,1210,2x x +==-,符合题意;当a<0时,440a ∆=->,且1212210,0x x x x a a+=->=<,则此时方程2210ax x ++=有一个正根和一个负根,符合题意;当0a >时,由440a ∆=-=,解得1a =,此时方程为()222110,1x x x x ++=+==-符合题意;由440a ∆=->解得01a <<,此时1212210,0x x x x a a+=-<=>,则此时方程2210ax x ++=有两个负根,符合题意.综上所述,p 为真命题时,a 的取值范围是(],1-∞.若p 为真命题的一个必要不充分条件为1a m ≤+,则11,0m m +>>.故答案为:0m >【点睛】含参数的一元二次方程根的分布问题,可采用直接讨论法来进行研究,也可以采用分离参数法来进行研究,如果采用直接讨论法,在分类讨论的过程中,要注意做到不重不漏.求命题的必要不充分条件,可转化为找一个比本身“大”的范围来进行求解.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.设U =R ,已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.(1)当4m =时,求()U A B ð;(2)若B ≠∅,且B A ⊆,求实数m 的取值范围.【答案】(1){2x x <-或}7x >;(2)[]2,3.【解析】【分析】(1)根据并集和补集的概念即可求出结果;(2)由题意可得12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解不等式组即可求出结果.【小问1详解】当4m =时,{}57B x x =≤≤,且{}25A x x =-≤≤,则{}27A B x x ⋃=-≤≤,所以(){2U A B x x ⋃=<-ð或}7x >;【小问2详解】因为B ≠∅,且B A ⊆,所以需满足12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解得23m ≤≤,所以实数m 的取值范围为[]2,3.18.已知函数()()2,2,24xf x x x =∈-+.(1)求()()1ff 的值;(2)用定义证明函数()f x 在()2,2-上为增函数;(3)若()()1210f t f t +-->,求实数t 的取值范围.【答案】(1)()()51101ff =(2)证明见解析(3)1(,1)2-【解析】【分析】(1))先求(1)f 的值,再求((1))f f 的值即可;(2)利用定义法证明函数的单调性即可;(3)根据题意,由(2)中的结论,根据函数的单调性列出不等式,求解即可得到结果.【小问1详解】()115f =,155101f ⎛⎫= ⎪⎝⎭()()51101f f ∴=【小问2详解】证明:任取12,x x ,且1222x x -<<<,()()()()()()121212122222121244444x x x x x x f x f x x x x x ---=-=++++2212121240,40,0,40x x x x x x +>+>-<-< ()()()()12120,f x f x f x f x ∴-<∴<()f x \在()2,2-上为增函数.【小问3详解】若()()1210f t f t +-->,则()()121f t f t +>-由(2)知,()f x 在()2,2-上为增函数22112t t ∴-<-<+<,112t ∴-<<,则实数t 的取值范围是1(,1)2-.19.均值不等式)0,02a ba b +≥>>可以推广成均值不等式链,在不等式证明和求最值中有广泛的应()20,0112a b a b a b+≥≥≥>>+.(12a b+≥.上面给出的均值不等式链是二元形式,其中()0,02a ba b +≥>>指的是两个正数的平方平均数不小它们的算数平均数,类比这个不等式给出对应的三元形式,即三个正数的平方平均数不小于它们的算数平均数(无需证明)(2)若一个直角三角形的直角边分别为,a b ,斜边4c =,求直角三角形周长l 的取值范围.【答案】(1)证明见解析,三元形式见解析(2)(8,4⎤⎦【解析】【分析】(1)利用差比较法证得不等式成立.通过类比写出三元形式.(2)根据基本不等式求得a b +的范围,进而求得三角形周长的取值范围.【小问1详解】2a b +≥即证22222a b a b ++⎛⎫≥ ⎪⎝⎭,()()()22222222222022444a b a b a b a b a b a b ab +-+-+++-⎛⎫-=== ⎪⎝⎭,22222a b a b ++⎛⎫∴≥ ⎪⎝⎭2a b+≥当且仅当a b =时等号成立.()0,0,03a b c a b c ++≥>>>.【小问2详解】22216a b c +== ,由(1()0,0,2a b a b a b +≥>>∴+≤当且仅当a b ==取“=”,又4a b c +>=,8a b c ++>,所以三角形周长的取值范围(8,4⎤+⎦.20.福清的观音埔大桥横跨龙江两岸是福清的标志性建筑之一,提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当车流密度不超过50辆/千米时,车流速度为50千米/小时,当50150x ≤≤时,车流速度v 是车流密度x 的一次函数.当桥上的车流密度达到150辆/千米时,造成堵塞,此时车流速度为0.(1)当0150x ≤≤时,求函数()v x 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()f x x v x =⋅可以达到最大,并求出最大值.(精确到1辆/时).【答案】(1)()50,050175,501502x v x x x ≤<⎧⎪=⎨-+≤≤⎪⎩(2)75辆/千米,2812辆/小时.【解析】【分析】(1)根据已知条件列方程组求得,a b ,进而求得()v x .(2)根据函数的单调性以及二次函数的性质求得()f x 的最大值以及此时对应的x 的值.【小问1详解】由题意:当050x ≤≤时,()50v x =;当50150x ≤≤时,设()v x ax b=+再由已知得15005050a b a b +=⎧⎨+=⎩,解得1275a b ⎧=-⎪⎨⎪=⎩故函数()v x 的表达式为()50,050175,501502x v x x x ≤<⎧⎪=⎨-+≤≤⎪⎩.【小问2详解】依题并由(1)可得()250,050175,501502x x f x x x x ≤<⎧⎪=⎨-+≤≤⎪⎩,当050x ≤<时,()f x 为增函数,()()502500f x f ∴<<,当50150x ≤≤时,()2max 755625()75281222f x f ===≈,即当75x =时,()f x 在区间[]0,150上取得最大值约为2812,即当车流密度为75辆/千米时,车流量可以达到最大值,最大值约为2812辆/小时.21.已知函数()()()2236f x ax a x a =-++∈R (1)若()0f x >的解集是{|2x x <或}3x >,求实数a 的值;(2)当1a =时,若22x -≤≤时函数()()532f x m x m ≤-+++有解,求m 的取值范围.【答案】(1)1(2)4m ≥【解析】【分析】(1)根据一元二次不等式的解集列方程,由此求得a 的值.(2)化简不等式()()532f x m x m ≤-+++,通过直接讨论法或分离常数法,结合二次函数的性质或基本不等式求得m 的取值范围.【小问1详解】依题意,()()()2236f x ax a x a =-++∈R 的解集是{|2x x <或}3x >,则0a >,且122,3x x ==是方程()22360ax a x -++=的两个根,所以02323623a a a a ⎧⎪>⎪+⎪+=⎨⎪⎪⨯=⎪⎩,解得1a =.【小问2详解】1a =时,()()532f x m x m ≤-+++在22x -≤≤有解,即2320x mx m ++-≤在[]22-,有解,法一:因为232y x mx m =++-的开口向上,对称轴2m x =-①22m -≤-即4,2m x ≥=-时,函数取得最小值4232740,4m m m m -+-=-≤∴≥.②222m -<-<即44m -<<时,当2m x =-取得最小值,此时23204m m -+-≤,解得4m ≥或4m ≤-.又44,44m m -<<∴-≤<.③当22m -≥即4m ≤-,当2x =时取得最小值,此时423270m m ++-=≤不成立,即m 无解.综上,4m ≥.法二:()2320x m x ++-≤在[]22-,有解,当2x =时()2320x m x ++-≤不成立,当2x ≠时()2320x m x ++-≤,即232x m x +≥-在[]22-,有解,2min 32x m x ⎛⎫+≥ ⎪-⎝⎭,令(]2,0,4t x t =-∈,223477442x t t t x t t+-+==+-≥-,当且仅当7t t =即t =取“=”,2min342x x ⎛⎫+∴=- ⎪-⎝⎭,4m ∴≥.22.设函数()(),f x F x 的定义域分别为,I D ,且I D .若对于任意x I ∈,都有()()F x f x =,则称()F x 为()f x 在D 上的一个延伸函数.给定函数()()22103f x x x x =+-<≤.(1)若()F x 是()f x 在给定[]3,3-上的延伸函数,且()F x 为奇函数,求()F x 的解析式;(2)设()g x 为()f x 在()0,∞+上的任意一个延伸函数,且()()g x h x x =是()0,∞+上的单调函数.①证明:当(]0,3x ∈时,()()121222h x h x x x h ++⎛⎫≥ ⎪⎝⎭.②判断()h x 在(]0,3的单调性(直接给出结论即可);并证明:0,0m n ∀>>都有()()()g m n g m g n +>+.【答案】(1)()2221,030,021,30x x x F x x x x x ⎧+-<≤⎪==⎨⎪-++-≤<⎩(2)①证明见解析;②单调递增,证明见解析【解析】【分析】(1)根据函数的奇偶性以及“延伸函数”的定义求得()F x 的解析式;(2)①通过差比较法证得不等式成立;②根据函数的单调性以及不等式的性质证得不等式成立.【小问1详解】依题可知()00F =,当(]0,3x ∈时()()221F x f x x x ==+-.[)3,0x ∀∈-则(]0,3x -∈,()221F x x x ∴-=--,()F x Q 为奇函数,()()221F x F x x x ∴=--=-++,()2221,030,021,30x x x F x x x x x ⎧+-<≤⎪∴==⎨⎪-++-≤<⎩.【小问2详解】①证明: 当(]0,3x ∈时()()121g x h x x x x==-+,()()()121212121212112221222x x h x h x x x x x h x x x x ⎛⎫+-++ ⎪++⎛⎫⎝⎭∴-=+-- ⎪+⎝⎭()()()()221212121212121212121212121142202222x x x x x x x x x x x x x x x x x x x x x x x x ++--+=-=-==≥++++,()()121222h x h x x x h ++⎛⎫∴≥ ⎪⎝⎭.② 当(]0,3x ∈时()()121g x h x x x x==-+且单调递增,()h x ∴在()0,∞+上单调递增,()()0,00m n m n m h m n h m >>∴+>>∴+> ,即()()g m n g m m n m +>+,即()()()mg m n m n g m +>+,同理可得()()()ng m n m n g n +>+,将上述两个不等式相加可得()()()g m n g m g n +>+.∴原不等式成立.【点睛】解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.。
2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。
福建省福州市第一中学【最新】高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知角α的终边与单位圆的交点为P ⎛ ⎝⎭,则sin cos αα-=( )A .BC .5D . 2.一钟表的秒针长12cm ,经过25s ,秒针的端点所走的路线长为( ) A .10cmB .14cmC .10cm πD .14cm π3.函数cos 23y x π⎛⎫=-⎪⎝⎭的单调递减区间是( ) A .()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()27,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 4.已知平面直角坐标系中,ABC ∆的顶点坐标分别为()4,6A 、()2,1B -、()4,1C -,G 为ABC ∆所在平面内的一点,且满足()13AG AB AC =+,则G 点的坐标为( ) A .()2,2B .()1,2C .()2,1D .()2,45.sin4,4cos ,tan4的大小关系是( ) A .sin4tan4cos4<< B .tan4sin4cos4<< C .cos4sin4tan4<<D .sin4cos4tan4<<6.将函数sin 2y x =的图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,得到函数22sin y x =-的图象,那么ϕ可以取的值为( )A .6πB .4π C .3π D .2π 7.已知定义在R 上的奇函数()f x 满足()()0f x f x π++=,且当()0,x π∈时,()sin f x x =,则233f π⎛⎫=⎪⎝⎭( )A .12-B .12C . D二、多选题8.下列关于函数()tan 24f x x π⎛⎫=+⎪⎝⎭的相关性质的命题,正确的有( ) A .()f x 的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭B .()f x 的最小正周期是πC .()f x 的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈⎪⎝⎭ D .()f x 的对称中心是(),028k k Z ππ⎛⎫-∈⎪⎝⎭ 9.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BC C .a b⊥D .()6a b BC +⊥10.以下函数在区间0,2π⎛⎫⎪⎝⎭上为单调增函数的有( )A .sin cos y x x =+B .sin cos y x x =-C .sin cos y x x =D .sin cos xy x=11.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形三、填空题12.已知()()sin 2cos 0παπα-++=,则1sin cos αα=________.13.已知tan 2α=,()tan αβ+=tan β=_________. 14.已知非零向量a 、b 满足2a =,24a b -=,a 在b 方向上的投影为1,则()2b a b ⋅+=_______.四、双空题15.已知O 为ABC ∆的外心,6AB =,10AC =,AO x AB y AC =+,且263x y +=;当0x =时,cos BAC ∠=______;当0x ≠时,cos BAC ∠=_______.五、解答题16.在平面直角坐标系中,已知()1,2a =-,()3,4b =.(Ⅰ)若()()3//a b a kb -+,求实数k 的值;(Ⅱ)若()a tb b -⊥,求实数t 的值.17.已知函数2sin 23y x π⎛⎫=+⎪⎝⎭.(Ⅰ)用“五点法”作出该函数在一个周期内的图象简图;(Ⅱ)请描述如何由函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+⎪⎝⎭的图象. 18.某实验室一天的温度(单位:C )随时间t (单位:h )的变化近似满足函数关系:()16cos1212f t t t ππ=-,[)0,24t ∈.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于17C ,则在哪个时间段实验室需要降温? 19.已知函数()()2sin 10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭,()f x 图象上两相邻对称轴之间的距离为2π;_______________; (Ⅰ)在①()f x 的一条对称轴3x π=-;②()f x 的一个对称中心5,112π⎛⎫⎪⎝⎭;③()f x 的图象经过点5,06π⎛⎫⎪⎝⎭这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(Ⅱ)若动直线[]()0,x t t π=∈与()f x 和()cos g x x x =的图象分别交于P 、Q 两点,求线段PQ 长度的最大值及此时t 的值.注:如果选择多个条件分别解答,按第一个解答计分.20.在等腰梯形ABCD 中,已知//AB DC ,4AB =,2BC =,60ABC ∠=,动点E 和F 分别在线段BC 和DC 上(含端点),且BE mBC =,DF nDC =且(m 、n 为常数),设AB a =,BC b =.(Ⅰ)试用a 、b 表示AE 和AF ; (Ⅱ)若1m n +=,求AE AF ⋅的最小值. 21.已知函数()()()()22f x x m x m R =-+∈.(Ⅰ)对任意的实数α,恒有()sin 10f α-≤成立,求实数m 的取值范围; (Ⅱ)在(Ⅰ)的条件下,当实数m 取最小值时,讨论函数()()2cos 15F x f x a =+-在[)0,2x π∈时的零点个数.参考答案1.A 【解析】 【分析】利用三角函数的定义得出sin α和cos α的值,由此可计算出sin cos αα-的值. 【详解】由三角函数的定义得cos α=,sin α=,因此,sin cos αα-=故选:A. 【点睛】本题考查三角函数的定义,考查计算能力,属于基础题. 2.C 【分析】计算出秒针的端点旋转所形成的扇形的圆心角的弧度数,然后利用扇形的弧长公式可计算出答案. 【详解】秒针的端点旋转所形成的扇形的圆心角的弧度数为2552606ππ⨯=, 因此,秒针的端点所走的路线长()512106cm ππ⨯=. 故选:C. 【点睛】本题考查扇形弧长的计算,计算时应将扇形的圆心角化为弧度数,考查计算能力,属于基础题. 3.D 【分析】解不等式()2223k x k k Z ππππ≤-≤+∈,即可得出函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间. 【详解】解不等式()2223k x k k Z ππππ≤-≤+∈,得()263k x k k Z ππππ+≤≤+∈,因此,函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间为()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 故选:D. 【点睛】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题. 4.A 【分析】设点G 的坐标为(),x y ,根据向量的坐标运算得出关于x 、y 的方程组,解出这两个未知数,可得出点G 的坐标. 【详解】设点G 的坐标为(),x y ,()6,5AB =--,()0,7AC =-,()4,6AG x y =--,()()()1160,572,433AG AB AC =+=-+--=--,即4264x y -=-⎧⎨-=-⎩,解得22x y =⎧⎨=⎩,因此,点G 的坐标为()2,2. 故选:A. 【点睛】本题考查向量的坐标运算,考查计算能力,属于基础题. 5.D 【分析】作出4弧度角的正弦线、余弦线和正切线,利用三角函数线来得出sin4、4cos 、tan4的大小关系. 【详解】作出4弧度角的正弦线、余弦线和正切线如下图所示,则sin MP α=,cos OM α=,tan AT α=,其中虚线表示的是角54π的终边, 544π>,则0MP OM AT <<<,即sin4cos4tan4<<. 故选:D.【点睛】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题. 6.B 【分析】写出平移变换后的函数解析式,将函数22sin y x =-的解析式利用二倍角公式降幂,化为正弦型函数,进而可得出ϕ的表达式,利用赋特殊值可得出结果. 【详解】将函数sin 2y x =的图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,所得图象对应的函数的解析式为()sin 221y x ϕ=+-,22sin cos 21sin 212y x x x π⎛⎫=-=-=+- ⎪⎝⎭,()222k k Z πϕπ∴=+∈,解得()4k k Z πϕπ=+∈,当0k =时,4πϕ=.故选:B. 【点睛】本题考查利用三角函数图象变换求参数,解题的关键就是结合图象变换求出变换后所得函数的解析式,考查计算能力,属于中等题. 7.C 【分析】先推导出函数()y f x =的周期为2π,可得出2333f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,然后利用函数()y f x =的奇偶性结合函数的解析式可计算出结果.【详解】函数()y f x =是R 上的奇函数,且()()0f x f x π++=,()()f x f x π∴+=-,()()()2f x f x f x ππ∴+=-+=,所以,函数()y f x =的周期为2π,则23sin 33332f f f ππππ⎛⎫⎛⎫⎛⎫=-=-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:C. 【点睛】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题. 8.AC 【分析】分别求出函数()y f x =的定义域、最小正周期、单调递增区间和对称中心坐标,即可判断出四个选项的正误. 【详解】对于A 选项,令()242x k k Z πππ+≠+∈,解得()28k x k Z ππ≠+∈, 则函数()y f x =的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,A 选项正确; 对于B 选项,函数()y f x =的最小正周期为2π,B 选项错误; 对于C 选项,令()2242k x k k Z πππππ-<+<+∈,解得()32828k k x k Z ππππ-<<+∈, 则函数()y f x =的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,C 选项正确; 对于D 选项,令()242k x k Z ππ+=∈,解得()48k x k Z ππ=-∈, 则函数()y f x =的对称中心为(),048k k Z ππ⎛⎫-∈ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】本题考查正切型函数的基本性质,考查计算能力,属于基础题. 9.ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC a b AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题. 10.BD 【分析】先利用辅助角、二倍角以及同角三角函数的商数关系化简各选项中的函数解析式,然后利用正弦函数和正切函数的单调性判断各选项中函数在区间0,2π⎛⎫⎪⎝⎭上的单调性,由此可得出结论. 【详解】对于A 选项,sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,3,444x πππ⎛⎫+∈ ⎪⎝⎭, 所以,函数sin cos y x x =+在区间0,2π⎛⎫⎪⎝⎭上不单调;对于B 选项,sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,,444x πππ⎛⎫-∈- ⎪⎝⎭,所以,函数sin cos y x x =-在区间0,2π⎛⎫⎪⎝⎭上单调递增; 对于C 选项,1sin cos sin 22y x x x ==,当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈, 所以,函数sin cos y x x =在区间0,2π⎛⎫⎪⎝⎭上不单调; 对于D 选项,当0,2x π⎛⎫∈ ⎪⎝⎭时,sin tan cos x y x x ==,所以,函数sin cos x y x =在区间0,2π⎛⎫⎪⎝⎭上单调递增. 故选:BD. 【点睛】本题考查三角函数单调性的判断,解题的关键就是将三角函数解析式化简,并利用正弦、余弦和正切函数的单调性进行判断,考查推理能力,属于中等题. 11.BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论.【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确; 对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A Bπ+--∴-=-===cos 0cos cos CA B=->,cos cos cos 0A B C ∴<,对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确. 故选:BCD. 【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题. 12.52【分析】利用诱导公式化简等式()()sin 2cos 0παπα-++=,可求出tan α的值,将所求分式变形为221sin cos sin cos sin cos αααααα+=,在所得分式的分子和分母中同时除以2cos α,将所求分式转化为只含tan α的代数式,代值计算即可. 【详解】()()sin 2cos 0παπα-++=,sin 2cos 0αα∴-=,tan 2α∴=,因此,22221sin cos tan 1215sin cos sin cos tan 22αααααααα+++====.故答案为:52. 【点睛】本题考查利用诱导公式和弦化切思想求值,解题的关键就是求出tan α的值,考查计算能力,属于基础题. 13.4【分析】利用两角差的正切公式可计算出()tan tan βαβα=+-⎡⎤⎣⎦的值. 【详解】由两角差的正切公式得()()()tan tan tan tan 1tan tan αβαβαβααβα+-=+-==⎡⎤⎣⎦++=. 【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.14.18 【分析】利用向量数量积的几何意义得出2a b ⋅=,在等式24a b -=两边平方可求出b 的值,然后利用平面向量数量积的运算律可计算出()2b a b ⋅+的值. 【详解】2a =,a 在b 方向上的投影为1,212a b ⋅=⨯=,24a b -=,222222216244444242a b a a b b a a b b b =-=-⋅+=-⋅+=⨯-⨯+,可得22b =,因此,()22222818b a b a b b ⋅+=⋅+=+⨯=. 故答案为:18. 【点睛】本题考查平面向量数量积的计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题. 15.35 59【分析】(1)由0x =可得出O 为AC 的中点,可知AC 为ABC ∆外接圆的直径,利用锐角三角函数的定义可求出cos BAC ∠;(2)推导出外心的数量积性质212AO AB AB ⋅=,212AO AC AC ⋅=,由题意得出关于x 、y 和AB AC ⋅的方程组,求出AB AC ⋅的值,再利用向量夹角的余弦公式可求出cos BAC ∠的值. 【详解】当0x =时,由263x y +=可得12y =,12AO xAB y AC AC ∴=+=, 所以,AC 为ABC ∆外接圆的直径,则2ABC π∠=,此时3cos 5AB BAC AC ∠==; 如下图所示:取AB 的中点D ,连接OD ,则⊥OD AB ,所0DO AB ⋅=,()212AO AB AD DO AB AD AB AB ∴⋅=+⋅=⋅=,同理可得212AO AC AC ⋅=. 所以,()()221212263AO AB xAB y AC AB AB AO AC xAB y AC AC AC x y ⎧⋅=+⋅=⎪⎪⎪⋅=+⋅=⎨⎪+=⎪⎪⎩,整理得361810050263x y AB AC xAB AC y x y ⎧+⋅=⎪⋅+=⎨⎪+=⎩,解得356x =,2756y =,1003AB AC ⋅=,因此,5cos 9AB AC BAC AB AC ⋅∠==⋅. 故答案为:35;59. 【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出212AO AB AB ⋅=,212AO AC AC ⋅=,并以此建立方程组求解,计算量大,属于难题.16.(Ⅰ)13-;(Ⅱ)15-.【分析】(Ⅰ)求出向量3a b -和a kb +的坐标,然后利用共线向量的坐标表示得出关于k 的方程,解出即可;(Ⅱ)由()a tb b -⊥得出()0a tb b -⋅=,利用向量数量积的坐标运算可得出关于实数t 的方程,解出即可. 【详解】 (Ⅰ)()1,2a =-,()3,4b =,()()()331,23,40,10a b ∴-=--=-,()()()1,23,431,42a kb k k k +=-+=+-,()()3//a b a kb -+,()10310k ∴-+=,解得13k =-; (Ⅱ)()()()1,23,413,24a tb t t t -=--=---,()a tb b -⊥,()()()3134242550a tb b t t t ∴-⋅=⨯-+⨯--=--=,解得15t =-. 【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.17.(Ⅰ)图象见解析;(Ⅱ)答案不唯一,见解析. 【分析】 (Ⅰ)分别令23x π+取0、2π、π、32π、2π,列表、描点、连线可作出函数2sin 23y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图象简图;(Ⅱ)根据三角函数图象的变换原则可得出函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象的变换过程.【详解】(Ⅰ)列表如下:函数2sin 23y x π⎛⎫=+⎪⎝⎭在一个周期内的图象简图如下图所示:(Ⅱ)总共有6种变换方式,如下所示: 方法一:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法二:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法三:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象向左平移6π个单位,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法四:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法五:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法六:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象向左平移3π个单位,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象.【点睛】本题考查利用五点作图法作出正弦型函数在一个周期内的简图,同时也考查了三角函数图象变换,考查推理能力,属于基础题.18.(Ⅰ)4C ;(Ⅱ)从中午12点到晚上20点. 【分析】(Ⅰ)利用辅助角公式化简函数()y f t =的解析式为()162sin 126f t t ππ⎛⎫=-+ ⎪⎝⎭,由此可得出实验室这一天的最大温差; (Ⅱ)由[)0,24t ∈,得出13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭,令()17f t >,得到1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,解此不等式即可得出结论. 【详解】(Ⅰ)()16cos162sin 1261212f t t t t ππππ⎛⎫+ ⎪-=-⎝=-⎭,[)0,24t ∈. 因此,实验室这一天的最大温差为4C ; (Ⅱ)当[)0,24t ∈时,13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭, 令()162sin 17126f t t ππ⎛⎫=-+> ⎪⎝⎭,得1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,所以71161266t ππππ<+<,解得1220t <<,因此,实验室从中午12点到晚上20点需要降温. 【点睛】本题考查三角函数模型在生活中的应用,涉及正弦不等式的求解,考查运算求解能力,属于中等题.19.(Ⅰ)选①或②或③,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(Ⅱ)当0t =或t π=时,线段PQ 的长取到最大值2. 【分析】(Ⅰ)先根据题中信息求出函数()y f x =的最小正周期,进而得出2ω=. 选①,根据题意得出()232k k Z ππϕπ-+=+∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式; 选②,根据题意得出()56k k Z πϕπ+=∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式; 选③,根据题意得出51sin 32πϕ⎛⎫+=-⎪⎝⎭,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式;(Ⅱ)令()()()h x f x g x =-,利用三角恒等变换思想化简函数()y h x =的解析式,利用正弦型函数的基本性质求出()h t 在[]0,t π∈上的最大值和最小值,由此可求得线段PQ 长度的最大值及此时t 的值. 【详解】(Ⅰ)由于函数()y f x =图象上两相邻对称轴之间的距离为2π,则该函数的最小正周期为22T ππ=⨯=,222T ππωπ∴===,此时()()2sin 21f x x ϕ=++. 若选①,则函数()y f x =的一条对称轴3x π=-,则()232k k Z ππϕπ-+=+∈,得()76k k Z πϕπ=+∈,22ππϕ-<<,当1k =-时,6π=ϕ,此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭; 若选②,则函数()y f x =的一个对称中心5,112π⎛⎫⎪⎝⎭,则()56k k Z πϕπ+=∈, 得()56k k Z πϕπ=-∈,22ππϕ-<<,当1k =时,6π=ϕ, 此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;若选③,则函数()y f x =的图象过点5,06π⎛⎫⎪⎝⎭,则552sin 1063f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得51sin 32πϕ⎛⎫+=- ⎪⎝⎭,22ππϕ-<<,7513636πππϕ∴<+<, 51136ππϕ∴+=,解得6π=ϕ,此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭.综上所述,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(Ⅱ)令()()()2sin 21cos 6h x f x g x x x x π⎛⎫=-=++- ⎪⎝⎭122cos 212cos 21022x x x x ⎛⎫=++=+≥ ⎪ ⎪⎝⎭,()cos21PQ h t t ∴==+, []0,t π∈,[]20,2t π∴∈,当20t =或22t π=时,即当0t =或t π=时,线段PQ 的长取到最大值2. 【点睛】本题考查利用三角函数的基本性质求解析式,同时也考查了余弦型三角函数在区间上最值的计算,考查计算能力,属于中等题. 20.(Ⅰ)AE a mb =+,12n AF a b +=+;(Ⅱ)6. 【分析】(Ⅰ)过点D 作//DM BC ,交AB 于点M ,证明出2AM BM CD ===,从而得出2AB CD =,然后利用向量加法的三角形法则可将AE 和AF 用a 、b 表示;(Ⅱ)计算出2a 、a b ⋅和2b 的值,由1m n +=得出1n m =-,且有01m ≤≤,然后利用向量数量积的运算律将AE AF ⋅表示为以m 为自变量的二次函数,利用二次函数的基本性质可求出AE AF ⋅的最小值. 【详解】(Ⅰ)如下图所示,过点D 作//DM BC ,交AB 于点M ,由于ABCD 为等腰梯形,则2AD BC ==,且60BAD ABC ∠=∠=,//AB DC ,即//CD BM ,又//DM BC ,所以,四边形BCDM 为平行四边形,则2DM BC AD ===,所以,ADM ∆为等边三角形,且2AM =,2CD BM AB AM ∴==-=,2AB CD ∴=, AE AB BE AB mBC a mb =+=+=+,()()111122n AF AB BC CF AB BC n CD a b n a a b +=++=++-=+--=+; (Ⅱ)2216a AB ==,1cos1204242a b AB BC ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,224b BC ==, 由题意可知,01m ≤≤,由1m n +=得出1n m =-, 所以,1112222n m mAF a b a b a b +-+-=+=+=+, ()()22222222m m m m AE AF a mb a b a a b a b mb---⎛⎫∴⋅=+⋅+=+⋅+⋅+ ⎪⎝⎭()222812224m m m =-+=-+,令()()2224f m m =-+,则函数()y f m =在区间[]0,1上单调递减,所以,()()min 16f m f ==,因此,AE AF ⋅的最小值为6. 【点睛】本题考查利用基底表示向量,同时也考查了平面向量数量积最值的计算,考查运算求解能力,属于中等题.21.(Ⅰ)[)0,+∞;(Ⅱ)见解析.【分析】(Ⅰ)由[]sin 12,0α-∈-可知,区间[]2,0-是不等式()0f x ≤解集的子集,由此可得出实数m 的不等式,解出即可;(Ⅱ)由题意可知,0m =,则()224f x x x =+,令()0F x =,可得出()152cos a f x -=,令[]2cos 2,2t x =∈-,对实数a 的取值范围进行分类讨论,先讨论方程()15a f t -=的根的个数及根的范围,进而得出方程2cos t x =的根个数,由此可得出结论.【详解】(Ⅰ)1sin 1α-≤≤,2sin 10α∴-≤-≤,对任意的实数α,恒有()sin 10f α-≤成立,则区间[]2,0-是不等式()0f x ≤解集的子集,02m ∴≥,解得0m ≥, 因此,实数m 的取值范围是[)0,+∞;(Ⅱ)0m ≥,由题意可知,0m =,()()22224f x x x x x =+=+, 令()0F x =,得()152cos a f x -=,令[]2cos 2,2t x =∈-,则()15a f t -=,作出函数15y a =-和函数()y f t =在[]2,2t ∈-时的图象如下图所示:作出函数2cos t x =在[)0,2x π∈时的图象如下图所示:①当152a -<-或1516a ->时,即当1a <-或17a >时,方程()15a f t -=无实根, 此时,函数()y F x =无零点;②当152a -=-时,即当17a =时,方程()15a f t -=的根为1t =-,而方程2cos 1x =-在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ③当2150a -<-<时,即当1517a <<时,方程()15a f t -=有两根1t 、2t ,且()12,1t ∈--,()21,0t ∈-,方程12cos x t =在区间[)0,2π上有两个实根,方程22cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有四个零点;④当150a -=时,即当15a =时,方程()15a f t -=有两根分别为2-、0,方程2cos 2x =-在区间[)0,2π上只有一个实根,方程2cos 0x =在区间[)0,2π上有两个实根,此时,函数()y F x =有三个零点;⑤当01516a <-<时,即当115a -<<时,方程()15a f t -=只有一个实根1t ,且()10,2t ∈,方程12cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ⑥当1516a -=时,即当1a =-时,方程()15a f t -=只有一个实根2,方程2cos 2x =在区间[)0,2π上只有一个实根,此时,函数()y F x =只有一个零点. 综上所述,当1a <-或17a >时,函数()y F x =无零点;当1a =-时,函数()y F x =只有一个零点;当115a -<<或17a =时,函数()y F x =有两个零点;当15a =时,函数()y F x =有三个零点;当1517a <<时,函数()y F x =有四个零点.【点睛】本题考查利用二次不等式求参数,同时也考查了复合型二次函数的零点个数的分类讨论,解题时要将函数分解为内层函数和外层函数来分析,考查数形结合思想与分类讨论思想的应用,属于难题.。
2020-2021学年第一学期高一年段期末五校联考数 学 试 卷一,单项选择题1. 设全集U =R ,{}220A x x x =-<,{}10B x x =->,则如图阴影部分表示地集合为()A. {}1x x ≥ B. {}1x x ≤C. {}01x x <≤ D. {}12x x ≤<【结果】D 【思路】【思路】解出集合A ,B ,然后利用图中阴影部分所表示地集合地含义得出结果.【详解】{}{}22002A x x x x x =-<=<< ,{}{}101B x x x x =->=<.图中阴影部分所表示地集合为{x x A ∈且}{}12x B x x ∉=≤<.故选:D.【点睛】本题考查韦恩图表示地集合地求解,同时也考查了一圆二次不等式地解法,解题地关键就是弄清楚阴影部分所表示地集合地含义,考查运算求解能力,属于基础题.2. 设p:x >,q :22x >,则p 是q 地( )A. 充要款件B. 充分不必要款件C. 必要不充分款件D. 既不充分也不必要款件【结果】B 【思路】思路】解出不等式22x >,依据集合地包含关系,可得到结果.【详解】解:因为q :22x >,【所以q :x >或x <,因为p :x >,所以p 是q 地充分不必要款件.故选:B【点睛】本题考查了充分不必要款件地判断,两个命题均是范围形式,解决问题常见地方式是判断出集合之间包含关系.3. 设2log 0.3,a =0.53,b =0.50.3c =,则a ,b ,c 地大小关系是A. a b c >> B. c a b>> C. c b a>> D. b c a>>【结果】D 【思路】【思路】运用对数函数,指数函数地单调性,利用中间值法进行比较即可.【详解】22log 0.3log 10,a =<=0.50331,b =>=050.00.30.0131c <=∴<<< ,因此可得b c a >>.故选:D【点睛】本题考查了对数式,指数式之间地大小比较问题,考查了对数函数,指数函数地单调性,考查了中间值比较法,属于基础题.4. 已知函数f (x )=6x-log 2x ,则f (x )地零点所在地区间是( )A. (0,1) B. (2,3)C. (3,4) D. (4,+∞)【结果】C 【思路】【思路】先判断出函数地单调性,然后得出()()3,4f f 地函数符号,从而得出结果.【详解】由6y x=在()0,∞+上单调递减,2log y x =在()0,∞+上单调递减所以函数()26log f x x x=-在()0,∞+上单调递减又()()22243132log 3log 0,4log 40322f f =-=>=-=-<依据函数f (x ) 在()0,∞+上单调递减,由零点存在定理可得函数在(3,4)之间存在零点.故选:C5. 一个扇形地弧长为6,面积为6,则这个扇形地圆心角是( )A. 1 B. 2C. 3D. 4【结果】C 【思路】【思路】依据扇形地弧长公式和扇形地面积公式,列出方程组,即可求解,得到结果.【详解】设扇形所在圆地半径为r ,由扇形地弧长为6,面积为6,可得26162l r S r αα==⎧⎪⎨==⎪⎩,解得3α=,即扇形地圆心角为3rad .故选C.【点睛】本题主要考查了扇形地弧长公式,以及扇形地面积公式地应用,其中解答中熟练应用扇形地弧长公式和扇形地面积公式,准确运算是解答地关键,着重考查了推理与运算能力,属于基础题.6. 福州新港江阴港区地处福建最大海湾兴化湾西北岸,全年全日船泊进出港不受航道及潮水地限制,是迄今为止“我国少有,福建最佳”地天然良港.如图,是港区某个泊位一天中6时到18时地水深变化曲线近似满足函数3sin()y x k ωϕ=++,据此可知,这段时长水深(单位:m )地最大值为( )A. 5B. 6C. 8D. 10【结果】C 【思路】【思路】从图象中地最小值入手,求出5k =,进而求出函数地最大值,即为结果.【详解】从图象可以看出,函数3sin()y x k ωϕ=++最小值为-2,即当sin()1x ωϕ+=-时,函数得到最小值,即32k -+=,解得:5k =,所以3sin()5y x ωϕ=++,当sin()1x ωϕ+=时,函数得到最大值,max 358y =+=,这段时长水深(单位:m )地最大值为8m.7. 若函数()()222,1log 1,1xx f x x x ⎧+≤⎪=⎨->⎪⎩在(],a -∞上地最大值为4,则a 地取值范围为( )A. []0,17B. (],17-∞C. []1,17D. [)1,+∞【结果】C 【思路】【思路】先分别探究函数()122,1xf x x =+≤与()()22log 1,1f x x x =->地单调性,再求()f x 地最大值.【详解】因为()122xf x =+在(],1-∞上单调递增,()()22log 1f x x =-在()1,+∞上单调递增.而()14f =,()174f =,所以a 地取值范围为[]1,17.【点睛】本题主要考查分段函数地最值以及指数函数,对数函数地单调性,属于中档题.8. 用函数()M x 表示函数()f x 和()g x 中地较大者,记为:()max{(),()}M x f x g x =,若()(0)f x x =≠,2()g x x -=,则()M x 地大约图像为( )A. B.C. D.【结果】A 【思路】【思路】利用特殊值确定正确选项.【详解】依题意()max{(),()}M x f x g x =,()()()21222214f g M -==⇒=>,排除CD 选项.()()()()21222214f g M ---=-=⇒-=>,排除B 选项.所以A 选项正确.9. 十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号地引入对不等式地发展影响深远. 已知01a b <<<,则下面不等式成立地是( )A. 1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B. ln ln a b> C.11a b> D.11ln ln a b>【结果】ACD 【思路】【思路】利用指数函数地单调性可判断A 选项。
2024-2025学年第一学期福州第一中学第一次月考高一数学(完卷时间:120分钟;满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.1. 已知全集(](]0,4,2,4U U A B A C B =⋃=⋂=,则集合B =( )A. (],2∞- B. (),2∞- C. (]0,2 D. ()0,2【答案】C【解析】【分析】集合运算可得()=I U U B C A C B ,即可求出结果【详解】(0,4]A B = ,(2,4]=I U A C B 所以()(0,2]==I U U B C A C B 故选:C2. 某城新冠疫情封城前,某商品的市场需求量y 1(万件),市场供应量y 2(万件)与市场价格x (百元/件)分别近似地满足下列关系:150y x =-+,2210y x =-,当12y y =时的需求量称为平衡需求量,解封后,政府为尽快恢复经济,刺激消费,若要使平衡需求量增加6万件,政府对每件商品应给予消费者发放的消费券补贴金额是( )A. 6百元B. 8百元C. 9百元D. 18百元【答案】C【解析】【分析】求出封城前平衡需求量,可计算出解封后的需求量,利用需求量计算价格差距即为补贴金额.【详解】封城前平衡需求量时的市场价格x 为5021020x x x -+=-⇒=,平衡需求量为30,平衡价格为20,解封后若要使平衡需求量增加6万件,则11365014x x =-+⇒=,223621023x x =-⇒=,则补贴金额为23149-=.故选:C.3. 设[]x 表示不超过x 的最大整数,对任意实数x ,下面式子正确的是( )A. []x = |x|B. []xC. []x >-xD. []x > 1x -【答案】D 的【解析】【详解】分析:[]x 表示不超过x 最大整数,表示向下取整,带特殊值逐一排除.详解:设 1.5x =,[]1x =, 1.5x =1.5=,10.5x -=,排除A 、B ,设 1.5x =-,[]2x =-, 1.5x -=,排除C .故选D点睛:比较大小,采用特殊值法是常见方法之一.4. 已知函数2943,0()2log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数(())y f f x =的零点所在区间为( )A. (1,0)- B. 73,2⎛⎫ ⎪⎝⎭ C. 7,42⎛⎫ ⎪⎝⎭ D. (4,5)【答案】B【解析】【分析】当0x …时,()43(())43430x f x f f x +=+=+=无解,此时,(())y f f x =无零点;当0x >时,根据()f x 为增函数,且(3)0f =可得函数(())y f f x =的零点为3()2log 12x g x x =+-的零点,根据零点存在性定理可得结果.【详解】当0x …时,()430x f x =+>,()43(())43430x f x f f x +=+=+=无解,此时,(())y f f x =无零点;当0x >时,293()2log 92log 9x x f x x x =+-=+-为增函数,且(3)0f =.令(())0(3)f f x f ==,得3()2log 93x f x x =+-=,即32log 120x x +-=,令3()2log 12x g x x =+-,则函数(())y f f x =的零点就是3()2log 12x g x x =+-的零点,因为()3332log 31230g =+-=-<,72377()2log 1222g =+-37log 1202=+->,所以函数(())y f f x =的零点所在区间为73,2⎛⎫ ⎪⎝⎭.故选:B.【点睛】本题考查了分段函数的零点问题,考查了根据零点存在性定理判断零点所在的区间,考查了根据的解析式判断函数的单调性,属于中档题.5. 设函数()2,11,1x a x f x x x -⎧≤⎪=⎨+>⎪⎩,若()1f 是f(x)的最小值,则实数a 的取值范围为( )A [)1,2- B. []1,0- C. []1,2 D. [)1,+∞【答案】C【解析】【分析】由1x >,求得()f x 的范围;再求得||()2x a f x -=的单调性,讨论1a <,1a …时函数()f x 在1x …的最小值,即可得到所求范围.【详解】解:函数2,1()1,1x a x f x x x -⎧⎪=⎨+>⎪⎩…,若1x >,可得()12f x x =+>,由()1f 是()f x 的最小值,由于||()2x a f x -=可得在x a >单调递增,在x a <单调递减,若1a <,1x …,则()f x 在x a =处取得最小值,不符题意;若1a …,1x …,则()f x 在1x =处取得最小值,且122a -…,解得12a ……,综上可得a 的范围是[1,2].故选:C .【点睛】本题考查分段函数的最值的求法,注意运用分类讨论思想方法,以及指数函数的单调性,考查运算能力,属于中档题.6. 已知函数()f x 的定义域为R ,且()()()()0f x y f x y f x f y ++--=,()11f -=,则( )A. ()00f = B. ()f x 为奇函数C. ()81f =- D. ()f x 的周期为3【答案】C【解析】【分析】令 0x y ==,则得(0)2f =,再令0x =即可得到奇偶性,再令1y =-则得到其周期性,最后根.据其周期性和奇偶性则得到()8f 的值.【详解】令 0x y ==, 得()()22000f f -=得 (0)0f = 或 (0)2f =,当 (0)0f = 时,令0y =得 ()0f x = 不合题意, 故 (0)2f =, 所以 A 错误 ;令 0x = 得 ()()f y f y =-, 且()f x 的定义域为R ,故 ()f x 为偶函数, 所以B 错误 ;令 1y =-, 得 (1)(1)()f x f x f x -++=, 所以 ()(2)(1)f x f x f x ++=+,所以 (2)(1)f x f x +=--, 则(3)()f x f x +=-,则()(6)(3)f x f x f x +=-+=,所以 ()f x 的周期为 6 , 所以 D 错误 ;令 1x y ==, 得 2(2)(0)(1)f f f +=, 因为()()111f f -==所以 (2)1f =-,所以 ()(8)21f f ==-, 故C 正确.故选:C 【点睛】关键点点睛:本题的关键是利用赋值法得到其奇偶性和周期性,并依此性质求出函数值即可.7. 函数()(),f x g x 的定义域均为R ,且()()()()4488f x g x g x f x +-=--=,,()g x 关于4x =对称,()48g =,则()1812m f m =∑的值为( )A. 24- B. 32- C. 34- D. 40-【答案】C【解析】【分析】利用已知、方程、函数的对称性、周期性进行计算求解.【详解】因为()()44f xg x +-=①, ()()88g x f x --=②,对于②式有:()()88g x f x +-=③,由①+③有:()()8412g x g x ++-=,即()()1212g x g x +-=④,又()g x 关于4x =对称,所以()()8g x g x =-⑤,由④⑤有:()()81212g x g x -+-=,即()()81212g x g x +++=,()()4812g x g x +++=,两式相减得:()()1240g x g x +-+=,即()()124g x g x +=+,即()()8g x g x +=,因为函数()g x 的定义域为R ,所以()g x 的周期为8,又()48g =,所以()()()412208g g g ==== ,由④式()()1212g x g x +-=有:()66g =,.所以()()()614226g g g ==== ,由()48g =,()()1212g x g x +-=有:()84g =,所以()()()816244g g g ==== ,由⑤式()()8g x g x =-有:()()266g g ==,又()()8g x g x +=,所以()()1026g g ==,由②式()()88g x f x --=有:()()88f x g x =+-,所以()()()()()()()18122436101244818m f m f f f g g g ==+++=+++-⨯∑ ()686446881834=+++⨯++-⨯=-,故A ,B ,D 错误.故选:C.8. 已知函数()()()lg 2240f x x a x a a =+--+>,若有且仅有两个整数1x 、2x 使得()10f x >,()20f x >,则a 的取值范围是( )A. (]0,2lg 3- B. (]2lg 3,2lg 2--C. (]2lg 2,2- D. (]2lg 3,2-【答案】A【解析】【分析】由题意可知,满足不等式()lg 224x a x a >-+-的解中有且只有两个整数,即函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点,然后利用数形结合思想得出()20lg 33224a a a ->⎧⎨≤-+-⎩以及0a >,由此可得出实数a 的取值范围.【详解】由()()lg 2240f x x a x a =+--+>,得()lg 224x a x a >-+-.由题意可知,满足不等式()lg 224x a x a >-+-的解中有且只有两个整数,即函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点.如下图所示:由图象可知,由于()()()22422y a x a a x =-+-=--,该直线过定点()2,0.要使得函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点,则有()20lg 33224a a a ->⎧⎨≤-+-⎩,即22lg 3a a <⎧⎨-≥⎩,解得2lg 3a ≤-,又0a >,所以,02lg 3a <≤-,因此,实数a 的取值范围是(]0,2lg 3-.故选A.【点睛】本题考查函数不等式的求解,解题的关键利用数形结合思想找到一些关键点来得出不等关系,考查数形结合思想的应用,属于难题.二、多项选择题:本题共3小题,每小题6分,共18分.9. 下列命题正确的是( )A. “1a >”是“21a >”的充分不必要条件B. “M N >”是“lgM lgN >”的必要不充分条件C. 命题“2,10x R x ∀∈+<”的否定是“x R ∃∈,使得210x +<”D. 设函数()f x 的导数为()f x ',则“0()0f x '=”是“()f x 在0x x =处取得极值”的充要条件【答案】AB【解析】【分析】根据定义法判断是否为充分、必要条件,由全称命题的否定是∀→∃,否定结论,即可知正确的选项.【详解】A 选项中,211a a >⇒>,但211a a >⇒>或1a <-,故A 正确;B 选项中,当0M N >>时有lgM lgN >,而lgM lgN >必有0M N >>,故B 正确;C 选项中,否定命题为“x R ∃∈,使得210x +≥”,故C 错误;D 选项中,0()0f x '=不一定有()f x 在0x x =处取得极值,而()f x 在0x x =处取得极值则0()0f x '=,故D 错误;故选:AB【点睛】本题考查了充分、必要条件的判断以及含特称量词命题的否定,属于简单题.10. 若函数()f x 的定义域为R ,且()()2()()f x y f x y f x f y ++-=,(2)1f =-,则( )A. (0)0f =B. ()f x 为偶函数C. ()f x 的图象关于点(1)0,对称 D. 301()1i f i ==-∑【答案】BCD【解析】【分析】对于A ,令2,0x y ==,可得(0)1f =;对于B ,令0,x y x ==,可得()()f x f x =-,即可判断;对于C ,令1x y ==得f (1)=0,再令1,x y x ==即可判断;对于D ,根据条件可得()()2f x f x =--,继而()()2f x f x =-+,进一步分析可得函数周期为4,分析求值即可.【详解】对于A ,令2,0x y ==,则()()()22220f f f =⋅,因为(2)1f =-,所以()220f -=-,则(0)1f =,故A 错误;对于B ,令0,x y x ==,则()()()2(0)()2f x f x f f x f x +-==,则()()f x f x =-,故B 正确;对于C ,令1x y ==得,()()()220210f f f +==,所以f (1)=0,令1,x y x ==得,(1)(1)2(1)()0f x f x f f x ++-==,则()f x 的图象关于点(1)0,对称,故C 正确;对于D ,由(1)(1)0f x f x ++-=得()()2f x f x =--,又()()f x f x =-,所以()()2f x f x -=--,则()()2f x f x =-+,()()24f x f x +=-+,所以()()4f x f x =+,则函数()f x 的周期为4,又f (1)=0,(2)1f =-,则()()()3310f f f =-==,()()401f f ==,则f (1)+f (2)+f (3)+f (4)=0,所以()()301()12701i f i f f ==++⨯=-∑,故D 正确,故选:BCD.11. 已知函数()y f x =是R 上的奇函数,对于任意x R ∈,都有(4)()(2)f x f x f +=+成立,当[)0,2x ∈时,()21=-x f x ,给出下列结论,其中正确的是( )A. (2)0f =B. 点(4,0)是函数()y f x =的图象的一个对称中心C. 函数()y f x =在[6,2]--上单调递增D. 函数()y f x =在[6,6]-上有3个零点【答案】AB【解析】【分析】由(4)()(2)f x f x f +=+,赋值2x =-,可得(4)()f x f x +=,故A 正确;进而可得(4,0)是对称中心,故B 正确;作出函数图象,可得CD 不正确.【详解】在(4)()(2)f x f x f +=+中,令2x =-,得(2)0f -=,又函数()y f x =是R 上的奇函数,所以(2)(2)0f f =-=,(4)()f x f x +=,故()y f x =是一个周期为4的奇函数,因(0,0)是()f x 的对称中心,所以(4,0)也是函数()y f x =的图象的一个对称中心,故A 、B 正确;作出函数()f x 的部分图象如图所示,易知函数()y f x =在[6,2]--上不具单调性,故C 不正确;函数()y f x =在[6,6]-上有7个零点,故D 不正确.故选:AB【点睛】本题考查了函数的性质,考查了逻辑推理能力,属于基础题目.三、填空题:本大题共3小题,每小题5分,共15分12. 设函数()()x x f x e ae a R -=+∈,若()f x 为奇函数,则a =______.【答案】-1【解析】【分析】利用函数为奇函数,由奇函数的定义即可求解.【详解】若函数()x xf x e ae -=+为奇函数,则()()f x f x -=-,即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-.故答案为:-1【点睛】本题主要考查函数奇偶性的应用,需掌握奇偶性的定义,属于基础题.13. 422log 30.532314964log 3log 2225627--⎛⎫⎛⎫⎛⎫⋅-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=______【答案】1-【解析】【分析】利用指数幂的运算性质和对数的运算性质计算即可求解.【详解】原式=4123232log 3494122563-⨯⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=42log 379121616-++131=-+1=-.故答案为:1-.14. 设m 为实数,若{}22250()|{30()|250x y x y x x y x y mx y -+≥⎧⎫⎪⎪-≥⊆+≤⎨⎬⎪⎪+≥⎩⎭,,,则m 的取值范围是 .【答案】403m ≤≤【解析】【详解】如图可得440033m m -≤-≤∴≤≤四、解答题:本题共5小题,共77分.15. 阅读下面题目及其解答过程.已知函数23,0()2,0x x f x x x x +⎧=⎨-+>⎩…,(1)求f (-2)与f (2)的值;(2)求f(x)的最大值.解:(1)因为-2<0,所以f (-2)= ① .因为2>0,所以f (2)= ② .(2)因为x≤0时,有f(x)=x +3≤3,而且f (0)=3,所以f(x)在(,0]-∞上的最大值为 ③ .又因为x >0时,有22()2(1)11f x x x x =-+=--+…,而且 ④ ,所以f(x)在(0,+∞)上最大值为1.综上,f(x)的最大值为 ⑤ .以上题目的解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置(只需填写“A”或“B”).空格序号选项①A .(-2)+3=1 B .2(2)2(2)8--+⨯-=-②A.2+3=5 B .22220-+⨯=③A.3B.0④A .f (1)=1 B .f (1)=0的⑤ A.1 B.3【答案】(1)①A ; ②B ;(2)③A ; ④A ; ⑤B .【解析】【分析】依题意按照步骤写出完整的解答步骤,即可得解;【详解】解:因为23,0()2,0x x f x x x x +⎧=⎨-+>⎩…,(1)因为20-<,所以()2231f -=-+=,因为20>,所以()222220f =-+⨯=(2)因为0x ≤时,有()33f x x =+≤,而且()03f =,所以()f x 在(,0]-∞上的最大值为3.又因为0x >时,有22()2(1)11f x x x x =-+=--+…,而且()11f =,所以()f x 在(0,+∞)上的最大值为1.综上,()f x 的最大值为3.16. 如图,某小区要在一个直角边长为30m 的等腰直角三角形空地上修建一个矩形花园.记空地为ABC V ,花园为矩形DEFG .根据规划需要,花园的顶点F 在三角形的斜边BC 上,边DG 在三角形的直角边AC 上,顶点G 到点C 的距离是顶点D 到点A 的距离的2倍.(1)设花园的面积为S (单位:2m ),AD 的长为x (单位:m ),写出S 关于x 的函数解析式;(2)当AD 的长为多少时,花园的面积最大?并求出这个最大面积.【答案】(1)()()2303,010S x x x =-<<(2)当AD 的长为5m 时,花园的面积最大,最大面积为1502m .【解析】【分析】(1)根据矩形面积即可求解,(2)根据基本不等式即可求解.【小问1详解】,AD x =则2CG GF x ==,302303GD x x x =--=-,所以()()2303,010S GD GF x x x =⋅=-<<【小问2详解】()()()233032223033303150332x x S x x x x +-⎡⎤=-=⋅-≤=⎢⎥⎣⎦,当且仅当3303x x =-,即5x =时等号成立,故当AD 的长为5m 时,花园的面积最大,最大面积为1502m .17. 已知定义在R 上的奇函数f (x )满足:0x ≥时,21()21x x f x -=+.(1)求()f x 的表达式;(2)若关于x 的不等式()2(23)10f ax f ax ++->恒成立,求a 的取值范围.【答案】(1)21()21x x f x -=+ (2)(]4,0-【解析】【分析】(1)根据函数的奇偶性求得当0x <时的解析式,即可得到结果;(2)根据定义证明函数()f x 在R 上单调递增,然后再结合()f x 是定义在R 上的奇函数,化简不等式,求解即可得到结果.【小问1详解】设0x <,则0x ->,因为0x ≥时,21()21x x f x -=+,所以()21122112x xx xf x -----==++又因为()f x 是定义在R 上的奇函数,即()()12211221x x x x f x f x --=--=-=++所以当0x <时,21()21x x f x -=+综上,()f x 的表达式为21()21x x f x -=+【小问2详解】由(1)可知,212()12121x x x f x -==-++,设在R 上任取两个自变量12,x x ,令12x x <则()()121222112121⎛⎫⎛⎫-=--- ⎪ ⎪++⎝⎭⎝⎭x x f x f x ()()()1221212222221212121x x x x x x -=-=++++因为12x x <,则12220x x -<,所以()()()()12120f x f x f x f x -<⇒<所以函数()f x 在R 上单调递增.即()()22(23)10(23)1f ax f ax f ax f ax ++->⇒+>--,由()f x 是定义在R 上的奇函数,可得()()2211f ax f ax ---=即()21(23)f ax f ax >-+,由函数()f x 在R 上单调递增,可得22231240ax ax ax ax +>-⇒--<恒成立,当0a =时,即40-<,满足;当0a ≠时,即20Δ4160a a a <⎧⎨=+<⎩,解得40a -<<综上,a 的取值范围为(]4,0-18. 已知0,a b a c d >≥≥≥,且ab cd ≥.(1)请给出,,,a b c d 的一组值,使得2()a b c d ++≥成立;(2)证明不等式a b c d ++≥恒成立.【答案】(1)2,1,1,1a b c d ====-(答案不唯一)(2)证明见解析【解析】【分析】(1)找到一组符合条件的值即可;(2)由a c d ≥≥可得()()0a c a d --≥,整理可得2()a cd c d a ++≥,两边同除a 可得cd a c d a ++≥,再由ab cd ≥可得cd b a ≥,两边同时加a 可得cd a b a a+≥+,即可得证.【详解】解析:(1)2,1,1,1a b c d ====-(答案不唯一)(2)证明:由题意可知,0a ≠,因为a c d ≥≥,所以()()0a c a d --≥.所以2()0a c d a cd -++≥,即2()a cd c d a ++≥.因为0a b >≥,所以cd a c d a++≥,因为ab cd ≥,所以cd b a≥,所以cd a b a c d a +++≥≥.【点睛】考查不等式的证明,考查不等式的性质的应用.19. 对于非负整数集合S (非空),若对任意,x y S ∈,或者x y S +∈,或者x y S -∈,则称S 为一个好集合.以下记S 为S 的元素个数.(1)给出所有的元素均小于3的好集合.(给出结论即可)(2)求出所有满足4S =的好集合.(同时说明理由)(3)若好集合S 满足2019S =,求证:S 中存在元素m ,使得S 中所有元素均为m 的整数倍.【答案】(1){0},{0,1},{0,2},{0,1,2}.(2){0,,,}b c b c +;证明见解析.(3)证明见解析.【解析】【分析】(1)根据好集合的定义列举即可得到结果;(2)设{},,,S a b c d =,其中a b c d <<<,由0S ∈知0a =;由0d c S <-∈可知d c c -=或d c b -=,分别讨论两种情况可的结果;(3)记1009n =,则21S n =+,设{}1220,,,,n S x x x =⋅⋅⋅,由归纳推理可求得()1i x im i n =≤≤,从而得到22n M x nm ==,从而得到S ,可知存在元素m 满足题意.【详解】(1){}0,{}0,1,{}0,2,{}0,1,2.(2)设{},,,S a b c d =,其中a b c d <<<,则由题意:d d S +∉,故0S ∈,即0a =,考虑,c d ,可知:0d c S <-∈,d c c ∴-=或d c b -=,若d c c -=,则考虑,b c ,2c b c c d <+<= ,c b S ∴-∈,则c b b -=,{},,2,4S a b b b ∴=,但此时3b ,5b S ∉,不满足题意;若d c b -=,此时{}0,,,S b c b c =+,满足题意,{0,,,}S b c b c ∴=+,其中,b c 为相异正整数.(3)记1009n =,则21S n =+,首先,0S ∈,设{}1220,,,,n S x x x =⋅⋅⋅,其中1220n x m x x M <=<<⋅⋅⋅<=,分别考虑M 和其他任一元素i x ,由题意可得:i M x -也在S 中,而212210,n n M x M x M x M --<-<-<⋅⋅⋅<-<,()21i n i M x x i n -∴-=≤≤,2n M x ∴=,对于1i j n ≤<≤,考虑2n i x -,2n j x -,其和大于M ,故其差22n i n j j i x x x x S ---=-∈,特别的,21x x S -∈,2122x x m ∴==,由31x x S -∈,且1313x x x x <-<,3213x x x m ∴=+=,以此类推:()1i x im i n =≤≤,22n M x nm ∴==,此时(){}0,,2,,,1,,2S n m nm n m nm =⋅⋅⋅+⋅⋅⋅,故S 中存在元素m ,使得S 中所有元素均为m 的整数倍.【点睛】本题考查集合中的新定义问题的求解,关键是明确已知中所给的新定义的具体要求,根据集合元素的要求进行推理说明,对于学生分析和解决问题能力、逻辑推理能力有较高的要求,属于较难题.。
福建省福州市第一中学2020-2021学年高一数学上学期期末考试试题(含解析)(完卷120分钟 满分150分)(注意:不得使用计算器,并把答案写在答案卷上)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知角α的终边与单位圆的交点为55P ⎛-- ⎝⎭,则sin cos αα-=( )A. C.5D. 【答案】A 【解析】 【分析】利用三角函数的定义得出sin α和cos α的值,由此可计算出sin cos αα-的值.【详解】由三角函数的定义得cos α=,sin α=,因此,sin cos αα-=故选:A.【点睛】本题考查三角函数的定义,考查计算能力,属于基础题. 2.一钟表的秒针长12cm ,经过25s ,秒针的端点所走的路线长为( ) A. 10cm B. 14cmC. 10cm πD. 14cm π【答案】C 【解析】 【分析】计算出秒针的端点旋转所形成的扇形的圆心角的弧度数,然后利用扇形的弧长公式可计算出答案.【详解】秒针的端点旋转所形成的扇形的圆心角的弧度数为2552606ππ⨯=, 因此,秒针的端点所走的路线长()512106cm ππ⨯=. 故选:C.【点睛】本题考查扇形弧长的计算,计算时应将扇形的圆心角化为弧度数,考查计算能力,属于基础题. 3.函数cos 23y x π⎛⎫=-⎪⎝⎭的单调递减区间是( ) A. ()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B. ()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C. ()27,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D. ()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 【答案】D 【解析】 【分析】解不等式()2223k x k k Z ππππ≤-≤+∈,即可得出函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间.【详解】解不等式()2223k x k k Z ππππ≤-≤+∈,得()263k x k k Z ππππ+≤≤+∈, 因此,函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间为()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 故选:D.【点睛】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题.4.已知平面直角坐标系中,ABC ∆的顶点坐标分别为()4,6A 、()2,1B -、()4,1C -,G 为ABC ∆所在平面内的一点,且满足()13AG AB AC =+,则G 点的坐标为( ) A. ()2,2 B. ()1,2C. ()2,1D. ()2,4【答案】A 【解析】 【分析】设点G 的坐标为(),x y ,根据向量的坐标运算得出关于x 、y 的方程组,解出这两个未知数,可得出点G 的坐标.【详解】设点G 的坐标为(),x y ,()6,5AB =--,()0,7AC =-,()4,6AG x y =--,()()()1160,572,433AG AB AC =+=-+--=--,即4264x y -=-⎧⎨-=-⎩,解得22x y =⎧⎨=⎩,因此,点G 的坐标为()2,2. 故选:A.【点睛】本题考查向量的坐标运算,考查计算能力,属于基础题. 5.sin4,4cos ,tan4的大小关系是( ) A. sin4tan4cos4<< B. tan4sin4cos4<< C. cos4sin4tan4<< D. sin4cos4tan4<<【答案】D 【解析】 【分析】作出4弧度角的正弦线、余弦线和正切线,利用三角函数线来得出sin4、4cos 、tan4的大小关系.【详解】作出4弧度角的正弦线、余弦线和正切线如下图所示,则sin MP α=,cos OM α=,tan AT α=,其中虚线表示的是角34π的终边, 344π>,则0MP OM AT <<<,即sin4cos4tan4<<. 故选:D.【点睛】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题. 6.将函数sin 2y x=图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,得到函数22sin y x =-的图象,那么ϕ可以取的值为( )A.6π B.4π C.3π D.2π 【答案】B 【解析】 【分析】写出平移变换后的函数解析式,将函数22sin y x =-的解析式利用二倍角公式降幂,化为正弦型函数,进而可得出ϕ的表达式,利用赋特殊值可得出结果.【详解】将函数sin 2y x =的图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,所得图象对应的函数的解析式为()sin 221y x ϕ=+-,22sin cos 21sin 212y x x x π⎛⎫=-=-=+- ⎪⎝⎭,()222k k Z πϕπ∴=+∈,解得()4k k Z πϕπ=+∈,当0k =时,4πϕ=.故选:B.【点睛】本题考查利用三角函数图象变换求参数,解题的关键就是结合图象变换求出变换后所得函数的解析式,考查计算能力,属于中等题.7.已知定义在R 上的奇函数()f x 满足()()0f x f x π++=,且当()0,x π∈时,()sin f x x =,则233f π⎛⎫=⎪⎝⎭( )A. 12-B.12C. 【答案】C 【解析】 【分析】先推导出函数()y f x =的周期为2π,可得出2333f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,然后利用函数()y f x =的奇偶性结合函数的解析式可计算出结果.【详解】函数()y f x =是R 上的奇函数,且()()0f x f x π++=,()()f x f x π∴+=-, ()()()2f x f x f x ππ∴+=-+=,所以,函数()y f x =的周期为2π,则23sin 33332f f f ππππ⎛⎫⎛⎫⎛⎫=-=-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选:C.【点睛】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题.二、多选题(本题共4小题,每小题5分,共20分。
在每小题给出的四个选项中,有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分.)8.下列关于函数()tan 24f x x π⎛⎫=+ ⎪⎝⎭的相关性质的命题,正确的有( )A. ()f x 的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭B. ()f x 的最小正周期是πC. ()f x 的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈⎪⎝⎭ D. ()f x 的对称中心是(),028k k Z ππ⎛⎫-∈ ⎪⎝⎭【答案】AC 【解析】 【分析】分别求出函数()y f x =的定义域、最小正周期、单调递增区间和对称中心坐标,即可判断出四个选项的正误.【详解】对于A 选项,令()242x k k Z πππ+≠+∈,解得()28k x k Z ππ≠+∈, 则函数()y f x =的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,A 选项正确; 对于B 选项,函数()y f x =的最小正周期为2π,B 选项错误;对于C 选项,令()2242k x k k Z πππππ-<+<+∈,解得()32828k k x k Z ππππ-<<+∈, 则函数()y f x =的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,C 选项正确; 对于D 选项,令()242k x k Z ππ+=∈,解得()48k x k Z ππ=-∈, 则函数()y f x =的对称中心为(),048k k Z ππ⎛⎫-∈ ⎪⎝⎭,D 选项错误. 故选:AC.【点睛】本题考查正切型函数的基本性质,考查计算能力,属于基础题.9.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A. a 为单位向量B. //b BCC. a b ⊥D.()6a b BC +⊥【答案】ABD 【解析】 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC a b AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD.【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.10.以下函数在区间0,2π⎛⎫⎪⎝⎭上为单调增函数的有( ) A. sin cos y x x =+ B. sin cos y x x =- C. sin cos y x x = D. sin cos xy x=【答案】BD 【解析】 【分析】先利用辅助角、二倍角以及同角三角函数的商数关系化简各选项中的函数解析式,然后利用正弦函数和正切函数的单调性判断各选项中函数在区间0,2π⎛⎫⎪⎝⎭上的单调性,由此可得出结论.【详解】对于A 选项,sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,3,444x πππ⎛⎫+∈ ⎪⎝⎭, 所以,函数sin cos y x x=+区间0,2π⎛⎫⎪⎝⎭上不单调;对于B 选项,sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,,444x πππ⎛⎫-∈- ⎪⎝⎭,所以,函数sin cos y x x =-在区间0,2π⎛⎫⎪⎝⎭上单调递增;对于C 选项,1sin cos sin 22y x x x ==,当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈, 所以,函数sin cos y x x=区间0,2π⎛⎫⎪⎝⎭上不单调;对于D 选项,当0,2x π⎛⎫∈ ⎪⎝⎭时,sin tan cos x y x x ==,所以,函数sin cos x y x =在区间0,2π⎛⎫⎪⎝⎭上单调递增. 故选:BD.【点睛】本题考查三角函数单调性的判断,解题的关键就是将三角函数解析式化简,并利用正弦、余弦和正切函数的单调性进行判断,考查推理能力,属于中等题. 11.下列命题中,正确的有( )A. 向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上B. 若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 C. 函数1cos 2y x =+是周期函数,最小正周期是2π D. ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形 【答案】BCD 【解析】 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论.【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确;对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A Bπ+--∴-=-===cos 0cos cos CA B=->,cos cos cos 0A B C ∴<,对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确. 故选:BCD.【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题. 三、填空题(本题共4小题,每小题5分,共20分) 12.已知()()sin 2cos 0παπα-++=,则1sin cos αα=________.【答案】52【解析】 【分析】利用诱导公式化简等式()()sin 2cos 0παπα-++=,可求出tan α的值,将所求分式变形为221sin cos sin cos sin cos αααααα+=,在所得分式的分子和分母中同时除以2cos α,将所求分式转化为只含tan α的代数式,代值计算即可. 【详解】()()sin 2cos 0παπα-++=,sin 2cos 0αα∴-=,tan 2α∴=,因此,22221sin cos tan 1215sin cos sin cos tan 22αααααααα+++====.故答案为:52. 【点睛】本题考查利用诱导公式和弦化切思想求值,解题的关键就是求出tan α的值,考查计算能力,属于基础题. 13.已知tan 2α=,()tan αβ+=tan β=_________.【解析】 【分析】利用两角差的正切公式可计算出()tan tan βαβα=+-⎡⎤⎣⎦的值. 【详解】由两角差的正切公式得()()()tan tan tan tan 1tan tan αβαβαβααβα+-=+-==⎡⎤⎣⎦++4=.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.14.已知非零向量a 、b 满足2a =,24a b -=,a 在b 方向上的投影为1,则()2b a b ⋅+=_______.【答案】18 【解析】 【分析】利用向量数量积的几何意义得出2a b ⋅=,在等式24a b -=两边平方可求出b 的值,然后利用平面向量数量积的运算律可计算出()2b a b ⋅+的值. 【详解】2a =,a 在b 方向上的投影为1,212a b ⋅=⨯=,24a b -=,222222216244444242a b a a b b a a b b b =-=-⋅+=-⋅+=⨯-⨯+,可得22b =,因此,()22222818b a b a b b ⋅+=⋅+=+⨯=. 故答案为:18.【点睛】本题考查平面向量数量积的计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题.15.已知O 为ABC ∆的外心,6AB =,10AC =,AO x AB y AC =+,且263x y +=;当0x =时,cos BAC ∠=______;当0x ≠时,cos BAC ∠=_______.【答案】 (1). 35 (2). 59【解析】 【分析】(1)由0x =可得出O 为AC 的中点,可知AC 为ABC ∆外接圆的直径,利用锐角三角函数的定义可求出cos BAC ∠;(2)推导出外心的数量积性质212AO AB AB ⋅=,212AO AC AC ⋅=,由题意得出关于x 、y 和AB AC ⋅的方程组,求出AB AC ⋅的值,再利用向量夹角的余弦公式可求出cos BAC ∠的值.【详解】当0x =时,由263x y +=可得12y =,12AO xAB y AC AC ∴=+=, 所以,AC 为ABC ∆外接圆的直径,则2ABC π∠=,此时3cos 5AB BAC AC ∠==; 如下图所示:取AB 的中点D ,连接OD ,则⊥OD AB ,所0DO AB ⋅=,()212AO AB AD DO AB AD AB AB ∴⋅=+⋅=⋅=,同理可得212AO AC AC ⋅=.所以,()()221212263AO AB xAB y AC AB AB AO AC xAB y AC AC AC x y ⎧⋅=+⋅=⎪⎪⎪⋅=+⋅=⎨⎪+=⎪⎪⎩,整理得361810050263x y AB AC xAB AC y x y ⎧+⋅=⎪⋅+=⎨⎪+=⎩,解得356x =,2756y =,1003AB AC ⋅=,因此,5cos 9AB AC BAC AB AC ⋅∠==⋅.故答案为:35;59. 【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出212AO AB AB ⋅=,212AO AC AC ⋅=,并以此建立方程组求解,计算量大,属于难题. 四、解答题(本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 16.在平面直角坐标系中,已知()1,2a =-,()3,4b =.(Ⅰ)若()()3//a b a kb -+,求实数k 的值;(Ⅱ)若()a tb b -⊥,求实数t 的值.【答案】(Ⅰ)13-;(Ⅱ)15-. 【解析】 【分析】(Ⅰ)求出向量3a b -和a kb +的坐标,然后利用共线向量的坐标表示得出关于k 的方程,解出即可;(Ⅱ)由()a tb b -⊥得出()0a tb b -⋅=,利用向量数量积的坐标运算可得出关于实数t 的方程,解出即可. 【详解】(Ⅰ)()1,2a =-,()3,4b =,()()()331,23,40,10a b ∴-=--=-,()()()1,23,431,42a kb k k k +=-+=+-,()()3//a b a kb -+,()10310k ∴-+=,解得13k =-; (Ⅱ)()()()1,23,413,24a tb t t t -=--=---,()a tb b -⊥,()()()3134242550a tb b t t t ∴-⋅=⨯-+⨯--=--=,解得15t =-. 【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.17.已知函数2sin 23y x π⎛⎫=+⎪⎝⎭.(Ⅰ)用“五点法”作出该函数在一个周期内的图象简图;(Ⅱ)请描述如何由函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象. 【答案】(Ⅰ)图象见解析;(Ⅱ)答案不唯一,见解析.【解析】 【分析】 (Ⅰ)分别令23x π+取0、2π、π、32π、2π,列表、描点、连线可作出函数2sin 23y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图象简图;(Ⅱ)根据三角函数图象的变换原则可得出函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象的变换过程.【详解】(Ⅰ)列表如下:23x π+2π π32π 2πx6π-12π3π 712π 56π y22-函数2sin 23y x π⎛⎫=+⎪⎝⎭在一个周期内的图象简图如下图所示:(Ⅱ)总共有6种变换方式,如下所示: 方法一:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法二:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法三:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象向左平移6π个单位,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法四:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法五:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法六:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象向左平移3π个单位,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象.【点睛】本题考查利用五点作图法作出正弦型函数在一个周期内的简图,同时也考查了三角函数图象变换,考查推理能力,属于基础题.18.某实验室一天的温度(单位:C )随时间t (单位:h )的变化近似满足函数关系:()16cos1212f t t t ππ=-,[)0,24t ∈.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于17C ,则在哪个时间段实验室需要降温? 【答案】(Ⅰ)4C ;(Ⅱ)从中午12点到晚上20点. 【解析】 【分析】(Ⅰ)利用辅助角公式化简函数()y f t =的解析式为()162sin 126f t t ππ⎛⎫=-+ ⎪⎝⎭,由此可得出实验室这一天的最大温差;(Ⅱ)由[)0,24t ∈,得出13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭,令()17f t >,得到1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,解此不等式即可得出结论.【详解】(Ⅰ)()16cos162sin 1261212f t t t t ππππ⎛⎫+ ⎪-=-⎝=-⎭,[)0,24t ∈. 因此,实验室这一天的最大温差为4C ; (Ⅱ)当[)0,24t ∈时,13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭, 令()162sin 17126f t t ππ⎛⎫=-+> ⎪⎝⎭,得1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,所以71161266t ππππ<+<,解得1220t <<, 因此,实验室从中午12点到晚上20点需要降温.【点睛】本题考查三角函数模型在生活中的应用,涉及正弦不等式的求解,考查运算求解能力,属于中等题.19.已知函数()()2sin 10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭,()f x 图象上两相邻对称轴之间的距离为2π;_______________; (Ⅰ)在①()f x 的一条对称轴3x π=-;②()f x 的一个对称中心5,112π⎛⎫⎪⎝⎭;③()f x 的图象经过点5,06π⎛⎫⎪⎝⎭这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(Ⅱ)若动直线[]()0,x t t π=∈与()f x 和()cos g x x x =的图象分别交于P 、Q 两点,求线段PQ 长度的最大值及此时t 的值.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(Ⅰ)选①或②或③,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(Ⅱ)当0t =或t π=时,线段PQ 的长取到最大值2. 【解析】【分析】(Ⅰ)先根据题中信息求出函数()y f x =的最小正周期,进而得出2ω=. 选①,根据题意得出()232k k Z ππϕπ-+=+∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式; 选②,根据题意得出()56k k Z πϕπ+=∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式;选③,根据题意得出51sin 32πϕ⎛⎫+=-⎪⎝⎭,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式;(Ⅱ)令()()()h x f x g x =-,利用三角恒等变换思想化简函数()y h x =的解析式,利用正弦型函数的基本性质求出()h t 在[]0,t π∈上的最大值和最小值,由此可求得线段PQ 长度的最大值及此时t 的值.【详解】(Ⅰ)由于函数()y f x =图象上两相邻对称轴之间的距离为2π,则该函数的最小正周期为22T ππ=⨯=,222T ππωπ∴===,此时()()2sin 21f x x ϕ=++. 若选①,则函数()y f x =的一条对称轴3x π=-,则()232k k Z ππϕπ-+=+∈,得()76k k Z πϕπ=+∈,22ππϕ-<<,当1k =-时,6π=ϕ, 此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭; 若选②,则函数()y f x =的一个对称中心5,112π⎛⎫⎪⎝⎭,则()56k k Z πϕπ+=∈,得()56k k Z πϕπ=-∈,22ππϕ-<<,当1k =时,6π=ϕ, 此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭; 若选③,则函数()y f x =的图象过点5,06π⎛⎫⎪⎝⎭,则552sin 1063f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得51sin 32πϕ⎛⎫+=-⎪⎝⎭,22ππϕ-<<,7513636πππϕ∴<+<,51136ππϕ∴+=,解得6π=ϕ,此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭.综上所述,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭; (Ⅱ)令()()()2sin 2123sin cos 6h x f x g x x x xπ⎛⎫=-=++- ⎪⎝⎭312sin 2cos 213sin 2cos 2102x x x x ⎛⎫=++-=+≥ ⎪ ⎪⎝⎭,()cos21PQ h t t ∴==+, []0,t π∈,[]20,2t π∴∈,当20t =或22t π=时,即当0t =或t π=时,线段PQ 的长取到最大值2.【点睛】本题考查利用三角函数的基本性质求解析式,同时也考查了余弦型三角函数在区间上最值的计算,考查计算能力,属于中等题.20.在等腰梯形ABCD 中,已知//AB DC ,4AB =,2BC =,60ABC ∠=,动点E 和F 分别在线段BC 和DC 上(含端点),且BE mBC =,DF nDC =且(m 、n 为常数),设AB a =,BC b =.(Ⅰ)试用a 、b 表示AE 和AF ; (Ⅱ)若1m n +=,求AE AF ⋅的最小值. 【答案】(Ⅰ)AE a mb =+,12n AF a b +=+;(Ⅱ)6. 【解析】 【分析】(Ⅰ)过点D 作//DM BC ,交AB 于点M ,证明出2AM BM CD ===,从而得出2AB CD =,然后利用向量加法的三角形法则可将AE 和AF 用a 、b 表示;(Ⅱ)计算出2a 、ab ⋅和2b 的值,由1m n +=得出1n m =-,且有01m ≤≤,然后利用向量数量积的运算律将AE AF ⋅表示为以m 为自变量的二次函数,利用二次函数的基本性质可求出AE AF ⋅的最小值.【详解】(Ⅰ)如下图所示,过点D 作//DM BC ,交AB 于点M ,由于ABCD 为等腰梯形,则2AD BC ==,且60BAD ABC ∠=∠=,//AB DC ,即//CD BM ,又//DM BC ,所以,四边形BCDM 为平行四边形,则2DM BC AD ===,所以,ADM ∆为等边三角形,且2AM =,2CD BM AB AM ∴==-=,2AB CD ∴=, AE AB BE AB mBC a mb =+=+=+,()()111122n AF AB BC CF AB BC n CD a b n a a b +=++=++-=+--=+; (Ⅱ)2216a AB ==,1cos1204242a b AB BC ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,224b BC ==, 由题意可知,01m ≤≤,由1m n +=得出1n m =-, 所以,1112222n m mAF a b a b a b +-+-=+=+=+, ()()22222222m m m m AE AF a mb a b a a b a b mb---⎛⎫∴⋅=+⋅+=+⋅+⋅+ ⎪⎝⎭()222812224m m m =-+=-+,令()()2224f m m =-+,则函数()y f m =在区间[]0,1上单调递减,所以,()()min 16f m f ==,因此,AE AF ⋅的最小值为6.【点睛】本题考查利用基底表示向量,同时也考查了平面向量数量积最值的计算,考查运算求解能力,属于中等题.21.已知函数()()()()22f x x m x m R =-+∈.(Ⅰ)对任意的实数α,恒有()sin 10f α-≤成立,求实数m 的取值范围;(Ⅱ)在(Ⅰ)的条件下,当实数m 取最小值时,讨论函数()()2cos 15F x f x a =+-在[)0,2x π∈时的零点个数.【答案】(Ⅰ)[)0,+∞;(Ⅱ)见解析. 【解析】 【分析】(Ⅰ)由[]sin 12,0α-∈-可知,区间[]2,0-是不等式()0f x ≤解集的子集,由此可得出实数m 的不等式,解出即可;(Ⅱ)由题意可知,0m =,则()224f x x x =+,令()0F x =,可得出()152cos a f x -=,令[]2cos 2,2t x =∈-,对实数a 的取值范围进行分类讨论,先讨论方程()15a f t -=的根的个数及根的范围,进而得出方程2cos t x =的根个数,由此可得出结论. 【详解】(Ⅰ)1sin 1α-≤≤,2sin 10α∴-≤-≤,对任意的实数α,恒有()sin 10f α-≤成立, 则区间[]2,0-是不等式()0f x ≤解集的子集,02m∴≥,解得0m ≥, 因此,实数m 的取值范围是[)0,+∞; (Ⅱ)0m ≥,由题意可知,0m =,()()22224f x x x x x =+=+,令()0F x =,得()152cos a f x -=,令[]2cos 2,2t x =∈-,则()15a f t -=,作出函数15y a =-和函数()y f t =在[]2,2t ∈-时的图象如下图所示:作出函数2cos t x =在[)0,2x π∈时的图象如下图所示:①当152a -<-或1516a ->时,即当1a <-或17a >时,方程()15a f t -=无实根,此时,函数()y F x =无零点;②当152a -=-时,即当17a =时,方程()15a f t -=的根为1t =-,而方程2cos 1x =-在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ③当2150a -<-<时,即当1517a <<时,方程()15a f t -=有两根1t 、2t , 且()12,1t ∈--,()21,0t ∈-,方程12cos x t =在区间[)0,2π上有两个实根,方程22cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有四个零点;④当150a -=时,即当15a =时,方程()15a f t -=有两根分别为2-、0,方程2cos 2x =-在区间[)0,2π上只有一个实根,方程2cos 0x =在区间[)0,2π上有两个实根,此时,函数()y F x =有三个零点;⑤当01516a <-<时,即当115a -<<时,方程()15a f t -=只有一个实根1t ,且()10,2t ∈,方程12cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ⑥当1516a -=时,即当1a =-时,方程()15a f t -=只有一个实根2,方程2cos 2x =在区间[)0,2π上只有一个实根,此时,函数()y F x =只有一个零点. 综上所述,当1a <-或17a >时,函数()y F x =无零点;当1a =-时,函数()y F x =只有一个零点;当115a -<<或17a =时,函数()y F x =有两个零点;当15a =时,函数()y F x =有三个零点;当1517a <<时,函数()y F x =有四个零点.【点睛】本题考查利用二次不等式求参数,同时也考查了复合型二次函数的零点个数的分类讨论,解题时要将函数分解为内层函数和外层函数来分析,考查数形结合思想与分类讨论思想的应用,属于难题.。