多项式习题解答
- 格式:doc
- 大小:1.08 MB
- 文档页数:20
多项式练习题带答案一、选择题1. 下列哪个表达式不是多项式?A. \( x^2 + 3x + 2 \)B. \( 5x - 3 \)C. \( \frac{x}{2} \)D. \( 2x^3 - 4x^2 + 7 \)答案:C2. 多项式 \( P(x) = ax^3 + bx^2 + cx + d \) 中,如果 \( a = 1 \),\( b = -1 \),\( c = 0 \),\( d = 2 \),则 \( P(x) \) 可以表示为:A. \( x^3 - x^2 + 2 \)B. \( x^3 - x^2 - 2 \)C. \( x^3 + x^2 + 2 \)D. \( x^3 - x^2 + 2x \)答案:A3. 如果 \( f(x) = x^3 - 6x^2 + 11x - 6 \),那么 \( f(1) \) 的值是:A. 0B. 1C. 2D. 3答案:B二、填空题1. 多项式 \( 2x^3 - 5x^2 + 3x - 4 \) 的次数是 ______ 。
答案:32. 如果 \( g(x) = x^4 - 3x^3 + 5x^2 - 2x + 1 \),那么 \( g(0) \) 的值是 ______ 。
答案:13. 多项式 \( h(x) = 4x^2 - 7x + 2 \) 与 \( x - 3 \) 的乘积是\( 4x^3 - \) ______ 。
答案:7x^2 + 10x - 6三、解答题1. 给定多项式 \( f(x) = 3x^3 - 2x^2 + 5x - 1 \),求 \( f(-1) \) 的值。
解:将 \( x = -1 \) 代入 \( f(x) \) 中,得到\( f(-1) = 3(-1)^3 - 2(-1)^2 + 5(-1) - 1 = -3 - 2 - 5 - 1 = -11 \)。
2. 已知 \( p(x) = 2x^3 + ax^2 + bx + c \),其中 \( p(1) = 5 \),\( p(-1) = -1 \),求 \( a \),\( b \),\( c \) 的值。
习 题 一A 组1.判别{},a a b =+∈QQ 是否为数域解 是.2. 设32()1f x x x x =+++,2()32g x x x =++,求()()f x g x +,()()f x g x -,()()f x g x . 解32()()243f x g x x x x +=+++, 3()()21f x g x x x -=--,5432()()46652f x g x x x x x x =+++++.3.设19932199431995()(54)(421)(8112)f x x x x x x =----+,求()f x 的展开式中各项系数的和.解 由于()f x 的各项系数的和等于(1)f ,所以199319941995(1)(54)(421)(8112)1f =----+=-.4. 求()g x 除以()f x 的商()q x 与余式()r x . (1) 322()31,()321f x x x x g x x x =---=-+;(2) 42()25,()2f x x x g x x x =-+=-+.解 (1) 用多项式除法得到23232227321313923374133714739926299x x x x x x x x x x x x x x -+-----+----+---所以,17262(),()3999q x x r x x =-=--. (2) 用多项式除法得到24243232322222512225245257x x x x x x x x x x x x x x x x x x x x -+-++--+--+-+--+-+--+所以,2()1,()57q x x x r x x =+-=-+.5.设,a b 是两个不相等的常数,证明多项式()f x 除以()()x a x b --所得余式为()()()()f a f b af b bf a x a b a b--+--. 证明 依题意可设()()()()f x x a x b q x cx d =--++,则(),().f a ca d f b cb d =+⎧⎨=+⎩ 解得()()()()(),()()).c f a f b a b d af b bf a a b =--⎧⎪⎨=--⎪⎩故所得余式为()()()()f a f b af b bf a x a b a b--+--. 6. 问,,m p q 适合什么条件时,()f x 能被()g x 整除 (1) 3()f x x px q =++,2()1g x x mx =+-; (2) 42()f x x px q =++,2()1g x x mx =++.解 (1) 由整除的定义知,要求余式()0r x =.所以先做多项式除法,233222221(1)(1)()x mx x px q x mx mx xmx p x q mx m xmp m x q m +-++-+--+++--++++-要求2()(1)()0r x p m x q m =+++-=, 所以2(1)0,0p m q m ++=-=.即21,p m q m =--=时,可以整除.(2) 方法同上.先做多项式除法,所得余式为22()(2)(1)r x m p m x q p m =--++--,所以22(2)0,10m p m q p m --=+--=,即01m p q ==+,或22,1p m q -==时,可以整除.7. 求()f x 与()g x 的最大公因式: (1) 43232()341,()1f x x x x x g x x x x =+---=+--;(2) 4332()41,()31f x x x g x x x =-+=-+;(3)42432()101,()61f x x x g x x x =-+=-+++.解 (1) 用辗转相除法得到3243232432222211134124312213841231223313122244331441x x x x x x x x xx x x x x x xx x x x x x x x xx x x -++--+---+++--------+-----------用等式写出来,就是2()()(231)f x xg x x x =+---,21133()(231)2444g x x x x x ⎛⎫⎛⎫=-+----+ ⎪ ⎪⎝⎭⎝⎭,284332313344x x x x ⎛⎫⎛⎫---=+-- ⎪⎪⎝⎭⎝⎭,所以()(),()1f x g x x =+.(2) 同样地,3243324323232221103141139123331021133101020313991611274413299162563331649216495391625627256x x x x x x x x x x x xx x x x x x x x x x x x x xx x -+-+-+-+--+-++--+--+-+----+---+-+-+-所以()(),()1f x g x =.(3) 同样用辗转相除法,可得()2(),()1f x g x x =--.8. 求(),()u x v x 使()()()()()(),()u x f x v x g x f x g x +=: (1) 432432()242,()22f x x x x x g x x x x x =+---=+---:(2) 43232()421659,()254f x x x x x g x x x x =--++=--+:(3) 4322()441,()1f x x x x x g x x x =--++=--.解 (1) 利用辗转相除法,可以得到3()()(2)f x g x x x =+-, 32()(1)(2)(2)g x x x x x =+-+-,322(2)x x x x -=-.因而,()2(),()2f x g x x =-,并且()()23(),()2()(1)(2)()(1)()() (1)()(2)(),f xg x x g x x x x g x x f x g x x f x x g x =-=-+-=-+-=--++所以()1,()2u x x v x x =--=+(2) 利用辗转相除法,可以得到2()2()(639)f x xg x x x =-+-,211()(639)(1)33g x x x x x ⎛⎫=-+--+-- ⎪⎝⎭,2(639)(1)(69)x x x x -+-=--+.因而,()(),()1f x g x x =-,并且()()2211(),()1(639)()3311()2()()331122()1(),3333f x g x x x x x g x f x xg x x g x x f x x x g x ⎛⎫=-=-+--+- ⎪⎝⎭⎛⎫=--+- ⎪⎝⎭⎛⎫⎛⎫=-++-- ⎪ ⎪⎝⎭⎝⎭所以21122(),()13333u x x v x x x =-+=--.(3) 利用辗转相除法,可以得到2()(3)()(2)f x x g x x =-+-,()(1)(2)1g x x x =+-+.因而()(),()1f x g x =,并且()232(),()1()(1)(2)()(1)(()(3)())(1)()(32)(),f xg x g x x x g x x f x x g x x f x x x x g x ==-+-=-+--=--++--所以32()1,()32u x x v x x x x =--=+--.9. 设323()(1)22,()f x x t x x u g x x tx u =++++=++的最大公因式是一个二次多项式,求,t u 的值.解 利用辗转相除法,可以得到2()()(1)(2)f x g x t x t x u =+++-+,222222212()(1)(2)[(1)(2)]()(1)(2)1(1)(1)(1)t t t u t t u t t g x x t x t x u x t t t t ⎡⎤⎛⎫-+-++-+--⎡⎤=+++-+++ ⎪⎢⎥⎣⎦++++⎝⎭⎣⎦由题意,()f x 与()g x 的最大公因式是一个二次多项式,所以22222()(1)(2)0,(1)[(1)(2)]0,(1)t t u t t t u t t t ⎧+-++-=⎪+⎪⎨+--⎪=⎪+⎩解得0,4u t ==-.10. 设()242(1)1x Ax Bx -++,求A 和B .解 用2(1)x -去除()f x 421Ax Bx =++,得余式1()(42)13r x A B x A B =++--,由题意要求知1()0r x =,即420,130,A B A B +=⎧⎨--=⎩解得1,2A B ==-.11. 证明:如果()(),()1f x g x =,()(),()1f x h x =,那么()(),()()1f x g x h x =. 证明 由条件可知,存在1()u x 和1()v x 使得11()()()()1u x f x v x g x +=,存在2()u x 和2()v x 使得22()()()()1u x f x v x h x +=.用()h x 乘以第一式得11()()()()()()()u x f x h x v x g x h x h x +=,代入第二式得[]2211()()()()()()()()()1u x f x v x u x f x h x v x g x h x ++=,即[]21212()()()()()[()()]()()1u x u x v x h x f x v x v x g x h x ++=,所以()(),()()1f x g x h x =.12. 证明:如果()f x 与()g x 不全为零,且()()()()()(),()u x f x v x g x f x g x +=,那么()(),()1u x v x =.证明 由于()()()()()(),()u x f x v x g x f x g x +=,()f x 与()g x 不全为零,所以()(),()0f x g x ≠.两边同时除以()(),()0f x g x ≠,有()()()()()()1(),()(),()f x g x u x v x f x g x f x g x +=,所以()(),()1u x v x =.13. 证明:如果()(),()()d x f x d x g x ,且()d x 为()f x 与()g x 的一个组合,那么()d x 是()f x 与()g x 的一个最大公因式.证明 由题意知()d x 是()f x 与()g x 的公因式.再由条件设()()()()()d x u x f x v x g x =+. 又设()h x 为()f x 与()g x 的任一公因式,即()(),()()h x f x h x g x ,则由上式有 ()()h x d x .故而()d x 是()f x 与()g x 的一个最大公因式.14. 证明:()()()(),()()(),()()f x h x g x h x f x g x h x =,其中()h x 的首项系数为1.证明 显然()(),()()f x g x h x 是()()f x h x 与()()g x h x 的一个公因式.下面来证明它是最大公因式. 设(),()u x v x 满足()()()()()(),()u x f x v x g x f x g x +=,则()()()()()()((),())()u x f x h x v x g x h x f x g x h x +=.由上题结果知,()(),()()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式,又首项系数为1,所以()()()(),()()(),()()f x h x g x h x f x g x h x =.15. 设多项式()f x 与()g x 不全为零,证明()()()(),1(),()(),()f x g x f x g x f x g x ⎛⎫=⎪ ⎪⎝⎭.证明 设()()(),()d x f x g x =,则存在多项式(),()u x v x ,使()()()()()d x u x f x v x g x =+.因为()f x 与()g x 不全为零,所以()0d x ≠.上式两边同时除以()d x ,有()()()()1()()(),()(),()f x g x u x v x f x g x f x g x =+,故()()()(),1(),()(),()f x g x f x g x f x g x ⎛⎫=⎪ ⎪⎝⎭成立.16.分别在复数域、实数域和有理数域上分解41x +为不可约因式之积. 解 在实数域上的分解式为()()4222221(1)211x x x x x +=+-=+++.在复数域上的分解式为4122222222x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=+-++---+ ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.在有理数域上41x +是不可约多项式.否则,若41x +可约,有以下两种可能. (1)41x +有一次因式,从而它有有理根,但(1)0f ±≠,所以41x +无有理根.(2)41x +无一次因式,设4221()()x x ax b x cx d +=++++,其中,,,a b c d 为整数.于是0a c +=,0b d ac ++=,0ad bc +=,1bd =,又分两种情况:①1b d ==,又 a c =-,从而由 0b d ac ++=,得22a =,矛盾;②1b d ==-,则22a =-,矛盾. 综合以上情况,即证.17. 求下列多项式的有理根: (1) 32()61514f x x x x =-+-; (2) 42()4751g x x x x =---;(3) 5432()614113h x x x x x x =+----.解 (1)由于()f x 是首项系数为1的整系数多项式,所以有理根必为整数根,且为14-的因数.14-的因数有:1,2,7,14±±±±,计算得到:(1)4,(1)36,(2)0,(2)72,(7)140,(7)756, (14)1764,(14)4144,f f f f f f f f =--=-=-=-=-=-=-=-故2x =是()f x 的有理根.再由多项式除法可知,2x =是()f x 的单根.(2) 类似(1)的讨论可知,()g x 的可能的有理根为:111,,24±±±,计算得到 111171111(1)9,(1)1,5,0,,22464464g g g g g g ⎛⎫⎛⎫⎛⎫⎛⎫=--==--==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故12x =-是()g x 的有理根.再由多项式除法可知,12x =-是()f x 的2重根. (3) 类似地,()h x 的可能的有理根为:1,3±±,计算得到(1)28,(1)0,(3)0,(3)96h h h h =--==-=-.故1x =-,3x =是()h x 的有理根.再由多项式除法可知,1x =-是()h x 的4重根,3x =是()h x 的单根.18.若实系数方程30x px q ++=有一根a bi +(,a b 为实数,0b ≠),则方程30x px q +-=有实根2a .证明 设原方程有三个根123,,ααα.不失一般性,令1a bi α=+,从而有 2a bi α=-,由根与系数的关系可知12330()()a bi a bi αααα=++=++-+,所以32a α=-,即3(2)(2)0a p a q -+-+=,故3(2)(2)0a p a q +-=.这说明30x px q +-=有实根2a .19. 证明:如果(1)()nx f x -,那么(1)()n n x f x -.证明 因为(1)()nx f x -,所以 (1)(1)0nf f ==.因此,令()(1)()f x xg x =-,则有()(1)()n n n f x x g x =-,即(1)()n n x f x -.20. 下列多项式在有理数域上是否可约(1) 21()1f x x =+;(2) 4322()8122f x x x x =-++; (3) 633()1f x x x =++;(4) 4()1pf x x px =++,p 为奇素数; (5) 45()41f x x kx =++,k 为整数.解 (1)1()f x 的可能的有理根为:1±,而(1)2f ±=,所以它在有理数域上不可约.(2)由Eisenstein 判别法,取素数2p =,则2不能整除1,而 2(8),212,22-,但是22不能整除2,所以该多项式在有理数域上不可约.(3)令1x y =+,代入633()1f x x x =++有654323()(1)615211893g y f y y y y y y y =+=++++++.取素数3p =,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以()f x 在有理数域上不可约.(4) 令1x y =-,代入4()1pf x x px =++,得11222214()(1)()p p p p p p p p p g y f y y C yC y C y C p y p ----=-=-+--++-L , 取素数p ,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以4()f x 在有理数域上不可约.(5) 令1x y =+,代入45()41f x x kx =++,得4325()(1)46(44)42g y f y y y y k y k =+=++++++,取素数2p =,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以5()f x 在有理数域上不可约.B 组1.设()f x ,()g x ,()h x 是实数域上的多项式,(1) 若222()()()f x xg x xh x =+,则()()()0f x g x h x ===.(2) 在复数域上,上述命题是否成立证明 (1)当()()0g x h x ==时,有2()0f x =,所以()0f x =,命题成立.如果()g x ,()h x 不全为零,不妨设()0g x ≠.当()0h x =时,()22()()12()xg x xh x g x ∂+=+∂为奇数;当()0h x ≠时,因为()g x ,()h x 都是实系数多项式,所以2()xg x 与2()xh x 都是首项系数为正实数的奇次多项式,于是也有22(()())xg x xh x ∂+为奇数.而这时均有2()0f x ≠,且2()2()f x f x ∂=∂为偶数,矛盾.因此有()()0g x h x ==,从而有()0f x =.(2) 在复数域上,上述命题不成立.例如,设()0f x =,()n g x x =,()i nh x x =,其中n 为自然数,有222()()()f x xg x xh x =+,但()0g x ≠,()0h x ≠.2. 设(),(),()[]f x g x h x P x ∈,满足 2(1)()(1)()(2)()0x h x x f x x g x ++-++=,2(1)()(1)()(2)()0x h x x f x x g x ++++-=.证明()2(1)(),()x f x g x +.证明 两式相加得到22(1)()2(()())0x h x x f x g x +++=.由2(1,)1x x +=可知 ()2(1)()()x f x g x ++.两式相减得到2()4()0,()2()f x g x f x g x -+==. 故()()221(),1()x f x x g x ++,即()()21(),()x f x g x +.3.设1212()()()()g x g x f x f x ,证明(1) 若11()()f x g x ,1()0f x ≠,则22()()g x f x ;(2) 若212()()()g x f x f x ,是否有22()()g x f x解 (1) 因为1212()()()()g x g x f x f x ,11()()f x g x ,故存在多项式()h x ,1()h x 使得1212111()()()()(),()()()f x f x g x g x h x g x f x h x ==.于是12112()()()()()()f x f x f x h x g x h x =.由于1()0f x ≠,故有212()()()()f x h x g x h x =,即22()()g x f x .(2) 否.例如取1()2g x x =-,22()1g x x =-,1()(1)(2)f x x x =--,2()(1)(2)f x x x =++.虽然1212()()()()g x g x f x f x 且212()()()g x f x f x ,但2()g x 不能整除2()f x .4.当k 为何值时,2()(6)42f x x k x k =++++和2()(2)2g x x k x k =+++的最大公因式是一次的并求出此时的最大公因式.解 显然()()(2)g x x k x =++.当()(),()2f x g x x =+时,(2)42(6)420f k k -=-+++=,则3k =.当()(),()f x g x x k =+时,2()(6)420f k k k k k -=-+++=,则1k =.这时()(),()1f x g x x =+. 5.证明:对于任意正整数n ,都有 ()()(),()(),()n n n f x g x f x g x =.证明 由题意可知()f x 与()g x 不全为零.令()(),()()f x g x d x =,则()0d x ≠,从而()(),1()()f x g x d x d x ⎛⎫= ⎪⎝⎭,所以对任意正整数n ,有()(),1()()n n f x g x d x d x ⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是有 ()()()()1()()n nf xg x u x v x d x d x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 即 ()()()()()n n n u x f x v x g x d x +=. 又由()()d x f x ,()()d x g x ,有()()n n d x f x ,()()n n d x g x ,因此()n d x 是()nf x 与()ng x 的首项系数为1的最大公因式,从而有()()(),()()(),()nn n n f x g x d x f x g x ==. 6. 设11()()(),()()(),f x af x bg x g x cf x dg x =+=+且0ad bc -≠,证明()()11(),()(),()f x g x f x g x =.证明 设()(),()()f x g x d x =,则()(),()()d x f x d x g x .由于1()()()f x af x bg x =+,1()()()g x cf x dg x =+, 故11()(),()()d x f x d x g x .又设11()(),()()h x f x h x g x ,由上式及0ad bc -≠,可得11()()()d b f x f x g x ad bc ad bc =---, 11()()()c a g x f x g x ad bc ad bc-=+--, 从而 ()(),()()h x f x h x g x ,于是 ()()h x d x ,即()d x 也是1()f x 和1()g x 的最大公因式,即()()11(),()(),()f x g x f x g x =.7.设1()()()f x d x f x =,1()()()g x d x g x =,且()f x 与()g x 不全为零,证明()d x 是()f x 与()g x 的一个最大公因式的充分必要条件是()11(),()1f x g x =.证明 必要性.若()d x 是()f x 与()g x 的一个最大公因式,则存在多项式(),()u x v x 使()()()()()u x f x v x g x d x +=,于是11()()()()()()()u x d x f x v x d x g x d x +=.由()f x 与()g x 不全为零知()0d x ≠,因此有11()()()()1u x f x v x g x +=,即()11(),()1f x g x =.充分性.若()11(),()1f x g x =,则存在多项式(),()u x v x ,使11()()()()1u x f x v x g x +=.两边同时乘()d x 有()()()()()u x f x v x g x d x +=.由()d x 是()f x 与()g x 的一个公因式知,()d x 是()f x 与()g x 的一个最大公因式.8.设()f x 和()g x 是两个多项式,证明()(),()1f x g x =当且仅当()()(),()()1f x g x f x g x +=. 证明 必要性.设()(),()1f x g x =,若()()f x g x +与()()f x g x 不互素,则有不可约公因式()p x ,使()()()p x f x g x , 所以()()p x f x 或()()p x g x .不妨设()()p x f x ,由()()()()p x f x g x +可知()()p x g x ,因此()p x 是()f x 和()g x 的公因式,与(),()f x g x 互素矛盾,故()()f x g x +与()()f x g x 互素.充分性.设(()(),()())1f x g x f x g x +=,则存在(),()u x v x 使()()()()()()()1f x g x u x f x g x v x ++=,()()()()()()()1f x u x g x u x f x v x ++=,上式说明()(),()1f x g x =.9. 如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x -.证明 21x x ++的两个根为1ε=和2ε=33121εε==. 因为()23312(1)()()x x f x xf x +++,所以331212()()()()x x f x xf x εε--+,故有33111213312222()()0,()()0,f f f f εεεεεε⎧+=⎪⎨+=⎪⎩ 即112122(1)(1)0,(1)(1)0.f f f f εε+=⎧⎨+=⎩ 解得12(1)(1)0f f ==,从而1(1)()x f x -,2(1)()x f x -.10. 若()()n f x f x ,则()f x 的根只能是零或单位根.证明 因为()()n f x f x ,故存在多项式()q x ,使()()()nf x f x q x =.设a 为()f x 的任一根,即()0f a =,则()()()0n f a f a q a ==.也就是说,当a 为()f x 的一根时,n a 也为()f x 的一根.依此类推,可知2,,,n n a a a L 也是()f x 的根.由于()f x 的根的个数有限,故必定存在正整数,s t (不妨设s t >),使得s t n n a a =,(1)0t s t n n n a a --=.于是有0t n a =即0a =,或者(1)0s t n n a --=,即a 为单位根.11. 设()f x 是一个整系数多项式,且(0),(1)f f 都是奇数,则()f x 没有整数根.证明 设10()n n f x a x a x a =+++L ,假设()f x 有整数根α,则x α-整除()f x ,即()()()f x x q x α=-,其中商式()q x 也是一个整系数多项式.事实上,设1110()n n q x b x b x b --=+++L ,代入上式并比较两端同次幂系数,得112110100,,,,n n n n n a b a b b a b b a b ααα----==-=-=-L ,因为()f x 是一个整系数多项式,所以,110,,,n b b b -L 也是整数,令0,1x x ==分别代入展开式,得(0)(0),(1)(1)(1)f q f q αα=-=-.由于(0),(1)f f 都是奇数,则α及1α-都必须是奇数,这是不可能的,所以,()f x 不能有整数根.12.证明对于任意非负整数n ,都有 ()()22211(1)n n x x x x ++++++. 证明 设α是21x x ++的任一根,即 210αα++=,21αα+=-,31α=.由此得221222123(1)()(1)0n n n n n n αααααα+++++++=+-=-=,即α也是221(1)n n x x ++++的根.又因为21x x ++无重根,因此()()22211(1)n n x x x x ++++++.13. 假设12,,,n a a a L 是两两不同的整数,证明:多项式12()()()()1n f x x a x a x a =----L 在有理数域上不可约.证明 用反证法.假设()f x 在有理数域上可约,则有整系数多项式12(),()g x g x ,使得12()()()f x g x g x =.于是12()()()i i i f a g a g a =,1,2,,i n =L .因此,12()1,()1i i g a g a ==-或12()1,()1i i g a g a =-=.这样总有12()()i i g a g a =-,从而由推论2知12()()g x g x =-,所以21()()f x g x =-.这与()f x 的首项系数为1相矛盾,故()f x 在有理数域上不可约.。
数学课程多项式运算练习题及答案1. 多项式的基本概念在数学中,多项式是由常数项、幂函数和系数的乘积相加而成的表达式。
多项式运算是数学的一个重要部分,它们在代数、几何等领域都具有广泛的应用。
接下来,我们将为你提供一些多项式运算的练习题及其答案。
2. 多项式的加减法练习题题目1:将多项式 P(x) = 2x^3 - 4x^2 + 5x + 3 与 Q(x) = -x^3 + 3x - 2 相加。
题目2:计算多项式 P(x) = x^4 - 2x^3 + 3x^2 - 4x + 5 和 Q(x) = -2x^4 + 4x^3 - 6x^2 + 8x - 10 之差。
答案1:P(x) + Q(x) = 2x^3 - 4x^2 + 5x + 3 - x^3 + 3x - 2 = x^3 - 4x^2 + 8x + 1答案2:P(x) - Q(x) = (x^4 - 2x^3 + 3x^2 - 4x + 5) - (-2x^4 + 4x^3 -6x^2 + 8x - 10) = 3x^4 - 6x^3 + 9x^2 - 12x + 153. 多项式的乘法练习题题目3:计算多项式 P(x) = 2x^2 - 3x + 1 和 Q(x) = x^3 - 2x + 3 的乘积。
题目4:将多项式 P(x) = (x^2 + 2x + 3)(2x^2 - x - 1) 展开并进行合并同类项。
答案3:P(x) * Q(x) = (2x^2 - 3x + 1) * (x^3 - 2x + 3) = 2x^5 - 4x^3 + 6x^2 - 3x^4 + 6x^2 - 9x + x^3 - 2x + 3 = 2x^5 - 3x^4 + x^3 + 12x^2 - 11x + 3答案4:(x^2 + 2x + 3)(2x^2 - x - 1) = 2x^4 - x^3 - x^2 + 4x^3 - 2x^2 - 2x + 6x^2 - 3x - 3 = 2x^4 + 3x^3 + 3x^2 - 5x - 34. 多项式的除法练习题题目5:将多项式 P(x) = 2x^3 - 5x^2 + 3x + 4 除以 Q(x) = x - 2,并求商和余数。
多项式(一)一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是cm 。
5.当x=3,y=1时,代数式(x +y )(x -y )+y 2的值是__________.6.若是同类项,则.7.计算:(x+7)(x-3)=__________,(2a-1)(-2a-1)=__________.8.将一个长为x ,宽为y 的长方形的长减少1,宽增加1,则面积增加________.二、选择题1. 化简)1()1(a a a a --+的结果是( )A .2a ;B . 22a ;C .0 ;D .a a 222-.2.下列计算中正确的是 ( )A.()a a a a +=+236222;B.()x x y x xy +=+23222;C.a a a +=10919;D.()a a =336. 3. 一个长方体的长、宽、高分别是x x -342、和x ,它的体积等于( ) A.x x -3234; B.x 2; C.x x -3268; D.x x -268.4.计算:ab b a ab 3)46(22•-的结果是( )A.23321218b a b a -;B.2331218b a ab -;C.22321218b a b a -;D.23221218b a b a -. 5.若且,,则的值为()A .B .1C .D .6.下列各式计算正确的是( )A .(x+5)(x-5)=x 2-10x+25B .(2x+3)(x-3)=2x 2-9C .(3x+2)(3x-1)=9x 2+3x-2D .(x-1)(x+7)=x 2-6x-77.已知(x+3)(x-2)=x 2+ax+b ,则a 、b 的值分别是( )A .a=-1,b=-6B .a=1,b=-6C .a=-1,b=6D .a=1,b=68.计算(a-b )(a 2+ab+b 2)的结果是( )A .a 3-b 3B .a 3-3a 2b+3ab 2-b 3C .a 3+b 3D .a 3-2a 2b+2ab 2-b3三、解答题1.计算: (1))2(222ab b a ab -•; (2))12()3161(23xy y x x -•-;(3))13()4(32-+•-b a ab a ;(4))84)(21(323xy y y x +-;(5))()(a b b b a a ---; (6))1(2)12(322--+-x x x x x .2.先化简,再求值:)22(32)231(2x x x x ----,其中2=x3.某同学在计算一个多项式乘以-3x 2时,因抄错符号,算成了加上-3x 2,得到的答案是x 2-0.5x+1,那么正确的计算结果是多少?4.已知:(),,A ab B ab a b C a b ab =-=+=-222323,且a b 、 异号,a 是绝对值最小的负整数,b =12,求3A ·B-21A ·C 的值.5.若(x 2+mx+8)(x 2-3x+n )的展开式中不含x 3和x 2项,求m 和n 的值参考答案一填空1.y x y x 3233+2.646-a ;3.-4.4.-325.-26.:37.x 2+4x-21;1-4a 28.x-y-1二选择1.B ;2.B ;3.C4.A.5.C6.C 7.B 8.A三解答1.(1)322342b a b a -;(2)23442y x y x +-; (3)a b a b a 4124422+--; (4)543342y x y x --; (5)22b a -; (6)x x x 3423+-.2.x x 38232+-,314. 3.23431512x x x -+-.4.解:由题意得11,2a b =-=,原式=32231621a b a b --,当11,2a b =-=时,原式=118. 5.m=3,n=1。
多项式的运算练习题及解析一、综合练习题1. 计算多项式 P(x) = 3x^3 - 2x^2 + 5x - 1 在 x = 2 时的值。
解析:将 x = 2 代入多项式 P(x) 中,得到:P(2) = 3(2)^3 - 2(2)^2 + 5(2) - 1= 3(8) - 2(4) + 10 - 1= 24 - 8 + 10 - 1= 25因此,在 x = 2 时,多项式 P(x) 的值为 25。
2. 将多项式 P(x) = 2x^4 + 3x^3 - 5x^2 + x + 6 与多项式 Q(x) = x^3 - 2x + 5 相加,并将结果化简。
解析:将 P(x) 和 Q(x) 相加,得到:P(x) + Q(x) = (2x^4 + 3x^3 - 5x^2 + x + 6) + (x^3 - 2x + 5)= 2x^4 + 3x^3 + x^3 - 5x^2 - 2x + x + 6 + 5= 2x^4 + 4x^3 - 5x^2 - 2x + 11因此,将多项式 P(x) 和 Q(x) 相加后化简后得到 2x^4 + 4x^3 - 5x^2 - 2x + 11。
3. 将多项式 P(x) = 4x^5 - 6x^4 + 2x^3 - x^2 + 8x - 3 与多项式 Q(x) = 2x^3 - 3x^2 + 5 相乘,并将结果化简。
解析:将 P(x) 和 Q(x) 相乘,得到:P(x) * Q(x) = (4x^5 - 6x^4 + 2x^3 - x^2 + 8x - 3) * (2x^3 - 3x^2 + 5)= 8x^8 - 12x^7 + 4x^6 - 2x^5 + 16x^4 - 6x^3 - 3x^5 + 4x^4 -x^3 + 5x^2 + 8x - 3化简后,将同类项合并得:P(x) * Q(x) = 8x^8 - 12x^7 + 4x^6 - 5x^5 + 20x^4 - 7x^3 + 5x^2 + 8x - 3因此,将多项式 P(x) 和 Q(x) 相乘并化简后得到 8x^8 - 12x^7 + 4x^6 - 5x^5 + 20x^4 - 7x^3 + 5x^2 + 8x - 3。
第一章多项式一 单选题1.在数域P 的一元多项式环P []x 中,能整除任意多项式的多项式是( B ).A. 不可约多项式; B . 零次多项式;C . 零多项式;D . 本原多项式.2.下列对于多项式的结论不正确的是( A ).A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么()[]h x P x ∀∈,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f3.设f (x ),g (x ),p (x )∈P [x ], 且p (x )在P 上不可约,如果)()()(x g x f x p ,则下列命题成立的是( C ).A .)()(x f x p 且)()(x g x p ;B .)()(x f x p 但p (x )g (x );C .)()(x f x p 或)()(x g x p ;D .p (x ) f (x ) 且p (x ) g (x ).4.设)(x p 是不可约多项式,][(x P x f ∈∀,则以下命题正确的是( D ).A .)(x p 不能整除)(x f ;B . ()1)(),(=x f x p ;C .)()(x f x p ;D . )()(x f x p 或()1)(),(=x f x p5. 若()()(),1f x g x =且()()()f x g x h x ,则( D ). A. ()()f x h x 且()()f x g x ;B. ()()f x h x 或()()f x g x ;C. ()()f x g x ;D. ()()f x h x . 6.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则k=( B ).A .1 ;B . 2 ;C . 3 ;D .4 .7.艾森斯坦因判别法是判断一个多项式在有理数域上不可约的( C ).A.必要非充分条件;B.必要且充分条件;C.充分非必要条件;D.既非充分条件又非必要条件. 8.设q p是整系数多项式01()n n f x a a x a x =+++的有理根,且(,)1q p =,则下列说法正确的是( C )A.|n p a ,|n q a ;B.0|p a ,0|q a ;C.|n p a ,0|q a ;D. 0|p a ,|n q a ;9.下列命题错误的是( C ).A.在有理数域上存在任意次不可约多项式B.在实数域上3次多项式一定可约C.在复数域上次数大于0的多项式都可约D.在实数域上不可约的多项式在复数域上没有重根10.下面论述中, 错误的是( D ) .A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=.二. 填空题1.设,))((,))((m x g n x f =∂=∂ 则≤+∂))()((x g x f ,=∂))()((x g x f 。
第一章 多项式习题解答1.用)(x g 除)(x f ,求商)(x q 与余式)(x r .1)123)(,13)(223+-=---=x x x g x x x x f9731929269791437134373132131232223232----+----+----+-x x x x x x x x x x x x x x 92926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f17525422225200222223232342342-++--+-+--+---+-+-+++-x x x x x x x xx x x x x x x x x x x x x x75)(,1)(2+-=-+=x x r x x x q .2.q p m ,,适合什么条件时,有1)q px x mx x ++-+32|1m x m q x p m mx m x m qx p mx x mx x q px x x mx x --++++--+++--++++-+)()1()1(01222223232 当且仅当m q p m ==++,012时q px x mx x ++-+32|1.本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323.因此有m q p m ==++,012.2)q px x mx x ++++242|1由带余除法可得)1()2()1)(1(2222224m p q x m p m m p mx x mx x q px x --++--++-+-++=++ 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即⎩⎨⎧=--+=--010)2(22m p q m p m ,即⎩⎨⎧=+=,1,0p q m 或⎩⎨⎧==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有)1)((2224++++=++mx x q ax x q px x.)()1()(234q x mq a x q ma x a m x ++++++++=比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得⎩⎨⎧=+=,1,0p q m 或⎩⎨⎧==+.1,22q m p 3.求)(x g 除)(x f 的商)(x q 与余式)(x r .1);3)(,852)(35+=--=x x g x x x x f解:运用综合除法可得327109391362327117083918605023---------商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r2)i x x g x x x x f 21)(,)(23+-=--=.解:运用综合除法得:ii ii i i i 892521892421011121+----+-------商为)25(22i ix x +--,余式为i 89+-. 4.把)(x f 表成0x x -的方幂和,即表示成 +-+-+202010)()(x x c x x c c 的形式.1)1,)(05==x x x f ;2);2,32)(024-=+-=x x x x f3).1,73)1(2)(0234-=++-+-+=x i x x i ix x x f分析:假设)(x f 为n 次多项式,令])()()[()()()()(10021000202010--++-+-+=-++-+-+=n n nn x x c x x c c x x c x x c x x c x x c c x f0c 即为0x x -除)(x f 所得的余式,商为10021)()()(--++-+=n n x x c x x c c x q .类似可得1c 为0x x -除商)(x q 所得的余式,依次继续即可求得展开式的各项系数.解:1)解法一:应用综合除法得.5110141110416311563143211143211111111111100000115)(x x f =1)1(5)1(10)1(10)1(5)1(2345+-+-+-+-+-=x x x x x .解法二:把x 表示成1)1(+-x ,然后用二项式展开1)1(5)1(10)1(10)1(5)1(]1)1[(234555+-+-+-+-+-=+-=x x x x x x x2)仿上可得812226122412210412112082422128442302012-----------------432)2()2(8)2(22)2(2411)(+++-+++-=x x x x x f . 3)因为i iii i i i i i i i i i ii ii i i 2111510157104141173121-----------+-------+---- .)()(2))(1()(5)57(73)1(2)(432234i x i x i i x i i x i ix x i ix x x f +++-++-+-+=++-+-+=5.求)(x f 与)(x g 的最大公因式1)1)(,143)(23234--+=---+=x x x x g x x x x x f解法一:利用因式分解),13)(1(143)(3234--+=---+=x x x x x x x x f).1()1(1)(223-+=--+=x x x x x x g因此最大公因式为1+x .解法二:运用辗转相除法得)(3438)(01122132)(1434343)(41432112321212314121)(3122123423422223232x q x x q x x x x x x x x r x x x x x x x x x x r x x x x x x x x x x x x q =+=---------=--+---+--=------++--++-= 因此最大公因式为1+x .2)13)(,14)(2334+-=+-=x x x g x x x f .解:运用辗转相除法得(注意缺项系数补零)2564411627)(125627)(2565391649216491633323)(10310031004911916)(920910310132310323110391031)(13221232323423422223232--=--=+-+-+-+--=-++-+-+-++-+++--=+--++--+++-+-=x x q x x r x x x x x x x r x x x x x x x x x x x x x x x x r x x x x x x x x x x x x q .1))(),((=x g x f3).124624)(,110)(23424+++-=+-=x x x x x g x x x f)()()22(24)()(123x r x f x x x x f x g +=---=,),()22)((241)122()22)(22()(21223x r x x r x x x x x x x f ++-=---+--= ,)()122(22)(24122231x x r x x x x x x x r -=--=--=- 因此.122))(),((2--=x x x g x f6.求)(),(x v x u 使:))(),(()()()()(x g x f x g x v x f x u =+1);22)(,242)(234234---+=---+=x x x x x g x x x x x f解:运用辗转相除法得:)()(1022)(222422)(222221)(3133123423422323242342x q x x q x x xx x r x x x x x x x x x x r xx x x x x x x x x x x x q ==--=---+---+-=--+----++= 因此2)())(),((22-==x x r x g x f .且有 )()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..2)()(1)(,1)()(212+=+=--=-=x x q x q x v x x q x u2);452)(,951624)(23234+--=++--=x x x x g x x x x x f解:运用辗转相除法得:)(96)(20999966936)(810249516241)(32422324523131)(3122123423422223232x q x x q x x x xx x x x r xx x x x x x x x x r x x x x x x x x x x x x q =+=+-+-+-+--=+--++--+-=+--+---++--+-= 因此1)())(),((2-=-=x x r x g x f .且有)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..13232)3131(21)()(1)(,3131)()(2212--=+---=--=+-==x x x x x q x q x v x x q x u 3).1)(,144)(2234--=++--=x x x g x x x x x f解:运用辗转相除法得:)(32)(3331431441)(21211)(121222342342222x q x x x r x x x x x x x x x x x x r x x xx x x x x q =--=++-++---++--=-----+= 因此.1)())(),((2==x r x g x f 且有)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..23)1)(3(1)()(1)(,1)()(232212--+=+-+=+=--=-=x x x x x x q x q x v x x q x u7.设u tx x x g u x x t x x f ++=++++=323)(,22)1()(的最大公因式是一个二次多项式,求u t ,的值.解:运用带余除法有),()()2()1(1)(22)1()(12323x r x g u x t x t u tx x u x x t x x f +=+--++⋅++=++++= 由题意可得,)(1x r 即为)(),(x g x f 的最大公因式.因此有01≠+t .进一步),(])1(211)[()(221x r t t x t x r x g ++-++= ])1(21[)1()2()1()1()(22222t t u x t t t u t t x r +--++-++-+=. 要使)(1x r 为)(),(x g x f 的最大公因式的充要条件是.0)(2=x r 即⎩⎨⎧=--+=-++-+,0)]2()1[(,0)2()1()1(222t t u t t u t t 解得⎪⎩⎪⎨⎧--=+-=⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧±==⎩⎨⎧-==.2111,117;2111,117;231,0;4,0i t i u i t i u i t u t u 8.证明:如果),(|)(),(|)(x g x d x f x d 且)(x d 为)(x f 与)(x g 的一个组合,那么)(x d 是)(x f 与)(x g 的一个最大公因式.证明:由)(|)(),(|)(x g x d x f x d 可知)(x d 是)(x f 与)(x g 的一个公因式.下证)(x f 与)(x g 的任意一个公因式是)(x d 的因式.由)(x d 为)(x f 与)(x g 的一个组合可知,存在多项式)(),(x v x u ,使得)()()()()(x g x v x f x u x d +=.设)(x ϕ是)(x f 与)(x g 的任意一个公因式,则)(|)(),(|)(x g x x f x ϕϕ.故)()()()(|)(x g x v x f x u x +ϕ即).(|)(x d x ϕ因此)(x d 是)(x f 与)(x g 的一个最大公因式.9.证明:)()(())(),(())()(),()((x h x h x g x f x h x g x h x f =的首项系数为1). 证明:存在多项式)(),(x v x u ,使得)()()()())(),((x g x v x f x u x g x f +=.所以有)()()()()()()())(),((x h x g x v x h x f x u x h x g x f +=.即)())(),((x h x g x f 是 )()(x h x f 与)()(x h x g 的一个组合.显然有)(|))(),((),(|))(),((x g x g x f x f x g x f .从而)()(|)())(),((),()(|)())(),((x h x g x h x g x f x h x f x h x g x f .由第8题结果)())(),((x h x g x f 是)()(x h x f 与)()(x h x g 的一个最大公因式.又)(x h 是首项系数为1的,因此).())(),(())()(),()((x h x g x f x h x g x h x f =10.如果)(x f ,)(x g 不全为零,证明1))(),(()(,)(),(()((=x g x f x g x g x f x f . 证明:由)(x f ,)(x g 不全为零可得其最大公因式不为零多项式,即.0))(),((≠x g x f 又存在多项式)(),(x v x u ,使得)()()()())(),((x g x v x f x u x g x f +=.于是))(),(()()())(),(()()(1x g x f x g x v x g x f x f x u +=. 因此1))(),(()(,)(),(()((=x g x f x g x g x f x f . 11.如果)(x f ,)(x g 不全为零,且))(),(()()()()(x g x f x g x v x f x u =+,那么1))(),((=x v x u .证明:由)(x f ,)(x g 不全为零可得.0))(),((≠x g x f 由))(),(()()()()(x g x f x g x v x f x u =+有.1))(),(()()())(),(()()(=+x g x f x g x v x g x f x f x u 于是1))(),((=x v x u .12.证明:如果,1))(),((,1))(),((==x h x f x g x f 那么.1))()(),((=x h x g x f 证法一、由条件1))(),((,1))(),((==x h x f x g x f 可得存在多项式)(),(11x v x u ; )(),(22x v x u 使得1)()()()(11=+x g x v x f x u ,1)()()()(22=+x h x v x f x u .两式相乘得1)()()()()()]()()()()()()()()([21211221=+++x h x g x v x v x f x h x v x u x g x v x u x f x u x u . 因此有.1))()(),((=x h x g x f证法二、反证法证明.显然.0))()(),((≠x h x g x f 若,1))()(),((≠x h x g x f 则存在不可约多项式)(x p ,使得)(x p 为)(x f 与)()(x h x g 的公因式.因此有)(|)(x f x p 且)()(|)(x h x g x p .由)(x p 的不可约性有)(|)(x g x p 或)(|)(x h x p .若)(|)(x g x p ,则)(x p 为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.若)(|)(x h x p ,则)(x p 为)(x f 与)(x h 的一个公因式,与1))(),((=x h x f 相矛盾.因此1))()(),((≠x h x g x f 不成立,即有.1))()(),((=x h x g x f13.设)(),(),(),(,),(),(2121x g x g x g x f x f x f n m 都是多项式,而且).,,2,1;,,2,1(,1))(),((n j m i x g x f j i ===求证:1))()()(),()()((2121=x g x g x g x f x f x f n m .证明:由),,2,1(1))(),((1n j x g x f j ==,反复利用第12题结果可得1))()()(),((211=x g x g x g x f n .类似可得.,,2,1))()()(),((21m i x g x g x g x f n i ==再反复利用12题结果可得1))()()(),()()((2121=x g x g x g x f x f x f n m .14.证明:如果,1))(),((=x g x f 那么.1))()(),()((=+x g x f x g x f 证明:方法一.由,1))(),((=x g x f 存在多项式)(),(x v x u 使得1)()()()(=+x g x v x f x u .从而有,1)())()(())()()((,1))()()(()())()((111111=+-++=++-x g x v x u x g x f x u x g x f x v x f x v x u 因此有.1))()(),((,1))()(),((=+=+x g x f x g x g x f x f 由12题结果结论成立.方法二:用反证法.若.1))()(),()((≠+x g x f x g x f 则存在不可约多项式)(x p ,使得)(x p 为)()(x g x f 与)()(x g x f +的公因式.即)()(|)(x g x f x p 且)()(|)(x g x f x p +.由)(x p 的不可约性及)()(|)(x g x f x p ,有)(|)(x f x p 或)(|)(x g x p .若)(|)(x f x p ,又)()(|)(x g x f x p +,因此有)]())()([(|)(x f x g x f x p -+,即)(|)(x g x p ,也即)(x p 为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.类似可得当)(|)(x g x p 时也与已知1))(),((=x g x f 矛盾.所以.1))()(),()((=+x g x f x g x f15.求下列多项式的公共根:.12)(;122)(23423++++=+++=x x x x x g x x x x f解法一:利用因式分解可得);1)(1(122)(223+++=+++=x x x x x x x f ).1)(1(12)(22234+++=++++=x x x x x x x x g因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2321i ±- 解法二:运用辗转相除法求出)(x f 与)(x g 的最大公因式,最大公因式的根即为所求的公共根.),1(2)1)(()(2++--=x x x x f x g ).1)(1()(2+++=x x x x f因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2321i ±- 16.判别下列多项式有无重因式: 1);84275)(2345-+-+-=x x x x x x f 解:,4421205)('234+-+-=x x x x x f运用辗转相除法可得.)2(44))('),((22-=+-=x x x x f x f 因此2-x 为)(x f 的三重因式.解法二:试根可得2为)(x f 的根)1()2()2()2()43)(2()(23232234++-=----=++--=x x x x x x x x x x x x f .因此2-x 为)(x f 的三重因式. 2).344)(24--+=x x x x f解:).12(4484)('33-+=-+=x x x x x f 1))('),((=x f x f .故)(x f 无重因式. 17.求t 值使13)(23-+-=tx x x x f 有重根.解法一:要使)(x f 有重根,则1))('),((≠x f x f ..63)('2t x x x f +-=),12(33)(')3131(13)(23+-+-=-+-=x t x f x tx x x x f .415)41523)(12(63)('2++-+=+-=t x x t x x x f当,033=-t 即3=t 时),(|)(',)1(3363)('22x f x f x x x x f -=+-=2)1())('),((-=x x f x f ,因此1为)(x f 的三重根. 当0415=+t ,即415-=t 时,21))('),((+=x x f x f ,21-为)(x f 的二重根.解法二:设b a x ab a x b a x b x a x x f 22232)2()2()()()(-+++-=--=. 因此有⎪⎩⎪⎨⎧==+=+.1,2,3222b a t ab a b a 由第一个方程有a b 26-=,代人第三个方程有,0132,1)23(232=+-=-a a a a 即0)12()1(2=+-a a .因此有⎪⎩⎪⎨⎧===,3,1,1t b a 或⎪⎪⎩⎪⎪⎨⎧-==-=.415,4,21t b a即当3=t 时1为)(x f 的三重根;当415-=t 时,21-为)(x f 的二重根.18.求多项式q px x ++3有重根的条件.解:令q px x x f ++=3)(.显然当0==q p 时,0为)(x f 的三重根.当0≠p 时, p x x f +=23)(',q x px xf q px x x f ++=++=32)('31)(3,)427()42729)(32()('222p q p p q x p q x p x f ++-+=. 要使)(x f 有重根,则1))('),((≠x f x f .即,042722=+pq p 即.027423=+q p 显然 0==q p 也满足.027423=+q p 因此)(x f 有重根的条件是.027423=+q p19.如果,1|)1(242++-Bx Ax x 求.,B A解法一:利用整除判定方法,1|)1(242++-Bx Ax x 的充要条件是用2)1(-x 除124++Bx Ax ,余式为零.)31()42()32()1(12224B A x A B A B Ax Ax x Bx Ax --++++++-=++.因此有0)31()42(=--++B A x A B ,即⎩⎨⎧-==⎩⎨⎧=--=+.2,1.031,042B A B A A B 解法二:要使1|)1(242++-Bx Ax x 成立,则1至少是124++Bx Ax 的二重根.因此1既是124++Bx Ax 的根,也是其导数的根.而Bx Ax Bx Ax 24)'1(324+=++.故有⎩⎨⎧-==⎩⎨⎧=+=++.2,1.024,01B A B A B A 解法三:利用待定系数法.令Dx D C x D C A x A C Ax D Cx Ax x Bx Ax +-++-+-+=++-=++)2()2()2()()1(12342224因此有⎪⎪⎩⎪⎪⎨⎧==-=+-=-.1,02,2,02D D C B D C A A C 解得⎪⎪⎩⎪⎪⎨⎧==-==.1,2,2,1D C B A 20.证明:!!212n x x x n++++ 不能有重根.证明:令,!!21)(2n x x x x f n++++= 则,)!1(!21)('12-++++=-n x x x x f n因此有,!)(')(n x x f x f n +=从而有)!),('())('),((n x x f x f x f n =.!n x n因式只有)0(≠c c 及)1,0(n k c cx k ≤≤≠.而)1,0(n k c cx k ≤≤≠显然不是)('x f 的因式.因此有1)!),('())('),((==n x x f x f x f n.所以)(x f 没有重根.21.如果a 是)('''x f 的一个k 重根,证明a 是)()()](')('[2)(a f x f a f x f ax x g +-+-=的一个3+k 重根. 证明:)],(')('[21)(''2)(')(''2)](')('[21)('a f x f x f a x x f x f a x a f x f x g ---=--++=).('''2)(''21)('''2)(''21)(''x f ax x f x f a x x f x g -=--+=显然有0)(")(')(===a g a g a g .由a 是)('''x f 的一个k 重根可得a 是)(''x g 的一个1+k 重根,设a 是)(x g 的s 重根,则3,12+=+=-k s k s .本题常见错误证法.错误证法一:由a 是)('''x f 的一个k 重根就得出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根,于是)(2)()()()](')('[2)(3x h a x a f x f a f x f a x x g k +-=+-+-=从而a 是)(x g 的3+k 重根.事实上,由a 是)('''x f 的一个k 重根推不出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根. 如3)()()()(23+-+-+-=+a x a x a x x f k ,则1)(2))(3()('2+-+-+=+a x a x k x f k ,2))(2)(3()(''1+-++=+k a x k k x f .a 既不是)(x f 的根,也不是)('x f 与)(''x f 的根.错误证法二:由)],(')('[21)(''2)(')(''2)](')('[21)('a f x f x f a x x f x f a x a f x f x g ---=--++=)('''2)(''21)('''2)(''21)(''x f ax x f x f a x x f x g -=--+=得出a 是)(''x g 的1+k 重根,直接得出a 是)(x g 的3+k 重根,缺了a 是)(x g 与)('x g 的根验证.22.证明:0x 是)(x f 的k 重根的充分必要条件是,0)()(')(0)1(00====-x f x f x f k 而.0)(0)(≠x f k证明:必要性.设0x 是)(x f 的k 重根,从而0x x -是)(x f 的k 重因式,从而是)('x f 的1-k 重因式,是)(''x f 的2-k 重因式,...,是)()1(x f k -的单因式,而不是)()(x f k 的因式.因此0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.故有,0)()(')(0)1(00====-x f x f x f k 而.0)(0)(≠x f k充分性.由,0)()(')(0)1(00====-x f x f x f k 而0)(0)(≠x f k 可知0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.因此0x 是)()1(x f k -的单根,是)()2(x f k -二重根,依此类推,是)(x f 的k 重根.23.举例说明断语“如果α是)('x f 的m 重根,那么α是)(x f 的1+m 重根”是不对的.解:例如2)()(1+-=+m x x f α,m x m x f ))(1()('α-+=.α是)('x f 的m 重根,但α不是)(x f 的根.24.证明:如果),(|)1(n x f x -那么)(|)1(n n x f x -.证明:由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 因此有),()1()(x h x x f -=从而有).()1()(n n n x h x x f -=即)(|)1(n n x f x -.证法二:要证)(|)1(n n x f x -,只要证1-n x 在复数域上的各个根都是)(n x f 的根.1-n x 的根为.1,,2,1,0,2sin 2cos-=+=n k nk i n k x k ππ由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 从而0)1()(==f x f nk .即,2sin 2cos nk i n k x k ππ+=1,,2,1,0-=n k 都是)(n x f 的根.因此有)(|)1(n n x f x -.25.证明:如果)()(|)1(32312x xf x f x x +++,那么).(|)1(),(|)1(21x f x x f x --证明:要证)(|)1(),(|)1(21x f x x f x --成立,只要证1是)(1x f 和)(2x f 的根.12++x x 的两个根为231,23121ii --=+-=εε.由)()(|)1(32312x xf x f x x +++可得)()1()()(23231x g x x x xf x f ++=+.于是,0)()1()()(,0)()1()()(2223222321112312131121=++=+=++=+εεεεεεεεεεεεg f f g f f即0)1(231)1(,0)1(231)1(2121=+-=--f if f i f .故有.0)1()1(21==f f 所以 )(|)1(),(|)1(21x f x x f x --.26.求多项式1-n x 在复数范围内和在实数范围内的因式分解. 解:1-n x 的根为.1,,2,1,0,2sin 2cos -=+=n k nk i n k k ππε故在复数范围内的分解式为)())()(1(112-----=-n n x x x x x εεε .在实数范围内,因k n k -=εε,)0(n k <<.当n 为奇数时,1-n x 的根中一个为实根,其余为虚根,其分解式为]1)([]1)(][1)()[1(12121222212++-++-++--=-+---x x x x x x x x n n n n nεεεεεε .当n 为偶数时,1-n x 的根中二个为实根,即,1±其余为虚根,其分解式为].1)([]1)(][1)()[1)(1(11212222212++-++-++-+-=-+---x x x x x x x x x n n n n nεεεεεε27.求下列多项式的有理根. 1);1415623-+-x x x解:多项式可能的有理根为.14,7,2,1±±±±由系数取值可知,x 取负数时,多项式的值均为负的,故该多项式没有负根.检验得2为其根,进一步运用综合除法可得074114821415612-----即)74)(2(14156223+--=-+-x x x x x x ,显然742+-x x 没有有理根.因此1415623-+-x x x 仅有一个有理根2,且为单根.2);157424---x x x解:多项式可能的有理根为.41,21,1±±±444222026242113121570421------------因此有)1()12()444()21(1574222224--+=--+=---x x x x x x x x x ,显然12--x x 没有有理根.因此21-为157424---x x x 的二重根.3).3111462345----+x x x x x解:多项式可能的有理根为.3,1±±检验得1-为其根,进一步运用综合除法可得1213630351133511038601138601311146111--------------故)3()1()12)(3()1(3111464222345-+=++-+=----+x x x x x x x x x x x .即1-为其四重跟,3为单根.28.下列多项式在有理数域上是否可约? 1);12+x解:显然12+x 无有理根,又为二次的,故在有理数域上不可约. 2);2128234++-x x x解:取素数2=p ,满足艾森斯坦判别法的条件,因此在有理数域上不可约. 3);136++x x 解:令,1+=y x).(3918211561)1()1(1)(234563636y g y y y y y y y y x x x f =++++++=++++=++=取素数,3=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.4)p px x p ,1++为奇素数;解:令1-=y x ,由p 为奇数可得1)1()1(1)(+-+-=++=y p y px x x f p p).()(1222211y g p y p C y C y C yC y p p p p p p p p p =-++--+-=---- 由组合数定义)11(-≤≤p k C kp 均为整数,且12)1()1()1(⋅-+--= k k k p p p C k p,分子中有因子p ,分母个各数均小于p ,又p 为素数,因此约分时p 不会被约去,因此有kpC p |,取素数为p ,)(y g 满足艾森斯坦判别式条件,因此)(y g 在有理数域上不可约,从而)(x f 在有理数域上不可约. 5)k kx x ,144++为整数. 解:令,1+=y x 则有).(2)1(4641)1(4)1(1423444y g y k y y y y k y kx x =+++++=++++=++取素数,2=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.。
第一章多项式习题解答P44. 1. 用)(x g 除•x f )(,求商)(x q 和余式)(x r .解: 1)17262()()()()3999f xg x x x =-+--. 92926)(,9731)(--=--=x x r x x q . 2)2()()(1)(57)f x g x x x x =+-+-+. 75)(,1)(2+-=-+=x x r x x x q .2. 求m , p ,q 适合什么条件时, 有1) q px x mx x ++-+32|1 2) q px x mx x ++++242|)1(.解: 1) 方法1.q px x mx x ++-+32|1 x-mx 3+mx 2-x-m x 2+(p +1)x +q-m x 2-m 2x +m2(1)()()p m x q m r x +++-=由余式2(1)()0p m x q m +++-=得:21m q p q =⎧⎨=-⎩. 方法2. 设))(1(23q x mx x q px x --+=++, 两个多项式相等当且仅当同次项系数对应相等, 于是⎩⎨⎧=--=-p mq q m 10, 即21m q p q =⎧⎨=-⎩. 2) 解: 假设))((,|)(q ax x 1mx x q px x q px x 1mx x 2224242++++=++++++则,展开右边与左边比较, 得⎪⎩⎪⎨⎧=++=+=+pma q a mq a m 100,消去a , 得⎩⎨⎧=+-=-p m q m mq 102 , 所以当m 0时, q=1, p=2-m 2; 当m=0时, p=q+1.3. 求g (x )除f (x )的商)(x q 和余式)(x r .解: 用综合除法求商和余式.1) 3)(,83552)(+=--=x x g x x x x f .解: 作综合除法算式:得:.327)3)(109391362()(234-++-+-=x x x x x x f商.327)(,109391362)(234-=+-+-=x r x x x x x q 余式为2) .21)(,23)(i x x g x x x x f +-=--=解: 商q(x)=22(52)x ix i --+, 余式r(x)=98i -+.4. 把f (x )表成(x-x 0)的方幂和.1) 50(),1f x x x ==.解: 用综合除法:155432()(1)5(1)10(1)10(1)5(1)1f x x x x x x ∴=-+-+-+-+-+.当然也可以55()[(1)1]f x x x ==-+=5432(1)5(1)10(1)10(1)5(1)1x x x x x -+-+-+-+-+. 2) 42432()23(2)8(2)22(2)24(2)11f x x x x x x x =-+=+-+++-++ 3) 432()2(1)37f x x ix i x x i =+-++++432432()2()(1)()3()7()2()(1)()5()75x i i i x i i i x i i x i i i x i i x i i x i x i i =+-++--++--+-++=+-++++-+++ 5. 求f (x ), g (x )的最大公因式.1) f (x )=x 4+x 33x 24x 1, g (x )=x 3+x 2x 1.解法1: 作辗转除法:f (x )g (x )q 1(x )=x x 4+x 33x 24x 1 x 3+x 2x 1–21x+41=q 2(x) x 4+x 3x 2 x x 3+(3/2)x 2 +(1/2) x 38x+34 r 1(x)= 2x 23x 1 (1/2) x 2(3/2) x 1 =q 3(x ) 2x 22x (1/2) x 2(3/4) x (1/4) x1 r 2(x)=(3/4) x (3/4) x10 ((),())1f x g x x =+.解法2: 由于最大公因式的常数倍仍然是最大公因式, 所以, 在辗转相除的过程中, 为了方便可以给多项式乘以一个非零常数.f (x )g (x )q 1(x )=x x 4+x 33x 24x1 x 3+x 2x 12x 3+2x 22x 2 –x +1=q 2(x )x 4+x 3 x 2 x 2x 3+3x 2 + x2x -1 r 1(x)= 2x 23x 1 x 23 x 22x 26 x 4=q 3(x ) 2x 22x 2 x 23 x 1x 1 3 x 3x 1 x +10 ((),())1f x g x x =+. 解法3: )13)(1()(3--+=x x x x f , 22()(1)(21)(1)(1)g x x x x x x =-++=-+,((),())f x g x x =+ 2)32()31g x x x =-+不可约, 14)(34+-=x x x f 不可约, ∴()(),()1f x g x =. 3))122)(122(110)(2224---+=+-=x x x x x x x f4323222()61,())(1)g x x x f x x x x =-+++=-++=--∴()2(),()1f x g x x =--6. 求u (x ), v (x )使u (x )f (x )+v (x )g (x )=(f (x ), g (x )).1) 242)(234---+=x x x x x f , 22)(234---+=x x x x x g解法1: )2()1()(22-+=x x x f , 22()(2)(1)g x x x x =-++.因为1)1,1(2=+++x x x , 所以(f (x ), g (x )) = x 2 2.因为[]22(1)(1)(1)(2)1x x x x x +-+++++=, 所以2)()()()(2-=+x x g x v x f x u , 即 []22222(1)(1)(2)(2)(1)(2)2x x x x x x x x -++-++++-=-.解法2:作辗转除法:g (x ) f (x )q 2(x )=x +1 22)(234---+=x x x x x g 242)(234---+=x x x x x f q 1(x )=1x 4-2x 2 22234---+x x x xx 3+x 2-2x -2 r 1(x )= x 3-2x q 3(x )=x x 3-2x x 3-2xr 2(x)=x 2-2 r 3=0因为r 2(x)| r 1(x ), 所以(f (x ), g (x )) = r 2(x) = x 2-2. 再由)()()()(),()()()(22111x r x q x r x g x r x q x g x f +=+=, 得)].()[())()(1)(()(),()]()()([)()()()()(221221212x q x f x q x q x g x r x q x q x g x f x g x q x r x g x r -++=--=-=令u (x )=-(x +1), v (x )=(x +2), 则2(2)(1)()(2)()x x f x x g x -=-+++.2) (f (x ), g (x )) = r 2(x) = x -1.21221(1)()(1)()333x x f x x x g x -=--+--. 3)144)(234++--=x x x x x f , 2()1g x x x =--∴2()()(3)(2)f x g x x x =-+-, ()(2)(1)1g x x x =-++∵21((3))(1)f g x x g =---++,132(1)()(32)()x f x x x x g x =-+++--.7. 如果f (x )和g (x )的公因式是一个二次多项式, 求t,u 的值. 其中u tx x x g u x x x x f ++=++++=223)(,22)41()(.解: 22()()1(1)(2),()(1)(2)f x g x t x t x u r x t x t x u =+++-+=++-+.2222212()(2)2()()()(1)1(1)(1)(1)t t t u t t g x r x x x u t t t t -+++--=+++-++++ 由题意()()()|()r x x r x g x 与g 的公因式应为二次所以. 得⎪⎪⎩⎪⎪⎨⎧=++++=-++-+0)1()3(t)(10)4()3(322223t u t t u t u t t . ⎪⎩⎪⎨⎧=++=-++-+-≠0)3(0)4()3(3 .)(,1223u t t u t u t t x r t 为一次的否则得 解出(ⅰ)当.0)1)(4(,04330223=+-+=+-+=t t t t t t u 时 ∴¡32¡314π±=±=-=e t t 或. (ⅱ)311,03,02t t t t u -=+=++≠只有时当. )433(31433)4()3(3233232+-+-=++-+=⇒-++-+t t t t t t t t u u t u t t . ∴)4(2]246)82)(3[(3122+-=++-+++-=t t t t t t u 即⎩⎨⎧=+++-=03)4(22t t t u , 2111i t ±-=, i u 117--=. 8. 证明: 如果()|(),()|()d x f x d x g x , 且()d x 是f(x)和g(x)的一个组合, 那么d(x)是f (x )和g (x )的一个最大公因式.证明: 因为()|(),()|()d x f x d x g x , 所以()d x 是f (x )和g (x )的一个公因式. 又已知:()()()d x f x g x 是与的组合, 所以存在u (x ), v (x )P[x ]使得u(x )f (x )+v (x )g(x )=d (x ).若()|(),()|(),()|()h x f x h x g x h x d x 得, 所以()d x 是一个最大的公因式.9. 证明(()(),()())((),())().f x h x g x h x f x g x h x =(()h x 的首系=1)证:设(()(),()())()f x h x g x h x m x =, ()((),())()()()().d x f x g x u x f x v x g x ==+ 由()()|()()d x h x f x h x , ()()|()()d x h x g x h x , 得()()d x h x 是f (x )h (x )和g (x )h (x )的一个公因式. 所以()()|()d x h x m x .考虑到()()()()(),d x u x f x v x g x =+()()((),())()()()()()()().d x h x f x g x h x u x f x h x v x g x h x ∴==+因为()|()(),()|()()m x f x h x m x g x h x , 所以由上式得, ()|()()m x d x h x . 而h (x )的首项系数为1,所以()()()m x d x h x =, 即((),())()(()(),()()).f x g x h x f x h x g x h x =10. 如果(),()f x g x 不全为0, 证明()()(,) 1.((),())((),())f xg x f x g x f x g x = 证: 设()((),()).d x f x g x = 由(),()f x g x 不全为0得()0.d x ≠设1()()(),f x d x f x = 1()()(),g x d x g x =及()()()()().d x u x f x v x g x =+则11()()()()()()().d x u x f x d x v x g x d x =+消去()0d x ≠得111()()()()u x f x v x g x =+. ()()(,) 1.((),())((),())f xg x f x g x f x g x = 11. 证明: 如果(),()f x g x 不全为0, 且()()()()((),())u x f x u x g x f x g x +=, 那么(u (x ), v (x ))=1.证:设()((),()).d x f x g x =由于(),()f x g x 不全为0, 所以d (x )0.11()()(),()()(),f x f x d x g x g x d x ==设 则1111()()()()()()(),()()()()1u x f x d x u x g x d x d x u x f x u x g x +=+=, (u (x ), v (x ))=1. 12. 如果1))(),((,1))(),((==x h x f x g x f , 那么1))()(),((=x h x g x f .证: 设21111111,1,1uf vg u f v h uu f ufv h vgu f vu gh +=+=+++=两式相乘得. ∴1111()()1(,)1uu f uv h vgu f v u gh f gh +++=⇒=.13. 设1212,,(,g )=1,=1,2,...,m;=1,2,...,n.m n i j f f f g g g f i j 都是多项式且求证 1212(,)1m n f f f g g g =.证: ∵ (,g )1i i f =,由12题, 固定12:(,)1i i f g g =,…, 12(,.)1i n f g g g =. 令12n g g g g =⋯,(,)1i i f g ∴=每个12(,)1,f f g ⇒= 123(,)1f f f g =, …,1212(,)1m n f f f g g g =. 推广若((),())1,f x g x =则∀m ,n N, 有((),())1m n f x g x =.14. 如果1))()(),((,1))(),((=+=x g x f x f x g x f 那么.证法1:(,)11()()1(,)1f g uf vg u v f v g f f g f =⇒+=⇒-++=⇒+= 同理(,)1g g f +=. 由12题(,)1fg f g +=.证法2:设d (x )是f 和f +g 的任一个公因式, ()|(),()|()()d x f x d x f x g x +, 所以 ()|()d x g x , 因为(f , g )=1, 所以d (x )=c (常数). 所以(f , f +g )=1. (,)1g g f +=. 由12题得(,)1fg f g +=.15 . 求下列多项式的公共根: f (x )=x 3+2x 2+2x +1, g (x )=x 4+x 3+2x 2+x +1解:g(x )=f (x )(x-1)+2(x 2+x +1), f (x )=(x 2+x +1)(x +1), 即(f (x ),g(x )) = x 2+x +1.令(x 2+x +1)=0得231,23121i i --=+-=εε ∴f (x )与g (x )的公共根为21,εε.16 判断下列多项式有无重因式:1)5432()57248f x x x x x x =-+++- 2)344)(24--+=x x x x f解: 1)4421205)('234+-+-=x x x x x f , 作辗转相除法:325()'()(1)3(25412)f x f x x x x x =---+. 23221549'()(25412)(5)(44)22f x x x x x x x =--+-+-+, )32)(44()12452(223++-=+--x x x x x x ,得22)2(44))('),((-=+-=x x x x f x f , 故)(x f 有重因式3)2(-x .2))12(4484)('3-+=-+=x x x x x f ,作辗转相除法:32()(21)(233)f x x x x x x =+-+-+.)1311()32)(332()('2-+++-=x x x x x f2661311(233)(1113)(2)(33)1111x x x x ⨯-+=--++ 1))(').((=∴x f x f .17. 求t 的值 13)(23-+-=tx x x x f 有重根.解法1:设f (x )有重根a , 则a 0,且)1()()(22ax a x x f +-=. 于是 1)2()12(13)(222323--++-+=-+-=x aa x a a x tx x x x f . 由多项式相等的概念, 得 ⎪⎪⎩⎪⎪⎨⎧=--=-t a a a a 232122 (*).解方程得t=3,415-. 解法2: t x x x f +-=63)('2, 作辗转相除法:)3()62()1)((')(3-+-+-=t x t x x f x f .当3=t , 3)1()(-=x x f 有三重根.当.3≠t 则)2152()2153)(22()('2++-+=t x x x f . 此时必须415-=t , 有重因式)4()21()(2-+=x x x f . 18. 求多项式q px x x f ++=3)(有重根因式的条件分析: 若q px x x f ++=3)(有重根, 则有二重根或三重根. 若有三重根, 则32233333)()(a x a ax x a x q px x x f -+-=-=++=.得: 0,0===q p a . 此时0为三重根. 如下只需考虑2重根的情形即可. 解法1: p x x f +='23)(, 利用辗转相除法:23()(3)23f x x p x px q =+++)0(≠p ,22223327(3)(23)()()244a q x p px q x p p p p +=+-++. 得324270p q +=.解法2: b a x a ab x a b x b x a x q px x x f 222323)2()2()()()(-+++-=--=++=.⎪⎩⎪⎨⎧=-+==+q b a a ab p a b 22202,⎪⎩⎪⎨⎧=-=3223aq a p , 得324270p q +=. 19. 如果2(1)|()x f x -,其中42()1f x Ax Bx =++,求A, B.解法1:设),1()1(1)(2224-+-=++=bx Ax x Bx Ax x f 展开右边并比较系数: 1)1()21()2(123424-++-+-+-+=++x b x b A x A b Ax Bx Ax得⎪⎩⎪⎨⎧=+=--=-011202b B b A A b , 于是2,1-==B A .解法2: 因为2(1)|()x f x -, 所以(1)|'()x f x -由)4)(1()24(24)('23d Ax x x B Ax x Bx Ax x f +-=+=+=, 于是比较两边系数得: 2A B =-.所以42()21f x Ax Ax =-+. 又)1)(1()(),()1(23-++-=-cx bx Ax x x f x f x 设, 于是4221Ax Ax -+=)1)(1(23-++-cx bx Ax x , 右边展开并比较系数:⎪⎩⎪⎨⎧=---=-=-0120c A b c A b .2,1-==∴B A .20证明2()12!!n x x f x x n =+++无重因式(重根). 证法1: '()()!nx f x f x n =- (',)(,)!yx f f f n ∴=. 因为1),(=x f , 所以(,)1()n f x f x =⇒无重因式. 证法2: 由于f (x )有重因式的充要条件是1))('),((=x f x f , 所以设)())('),((x d x f x f =, 我们证明d (x )=1.事实上, 由!|)()),(')((|)()("|)(),(|)(n x x d x f x f x d x f x d x f x d n即得-. 所以0,)(≥=k x x d k . 若k >0, 则x |f (x ), 矛盾. 所以k =1, d (x )=1.21. 如果a 是()f x '''的一个k 重根, 证明a 是)()()](')('[2)(x f x f a f x f a x x g +-+-=的一个k +3重根. 证明: 验证得g(a )=0, 设a 是g (x )的t 重根.g ′(x )=12[ f ′(x )+ f ′(a )]+()()2x a f x f x -'''-⇒ g ′(a )=0 . 111()''()()()()()()()02222x a g x f x f x f x f x x a f x g a -''''''''''''''=++-=-⇒= 由于a 是()f x '''的k 重根, 以及a 是(x-a )的根, 所以a 是()g x ''的k+1重根.再由假设a 是g(x)的t 重根, 则a 是()g x ''的t 2重根, 于是t 2=k +1, 得t =k +3, 即()a x 是g 的k+3重根.22. 证明0x 是f (x )的k 重根的充要条件是0)()(')(0)1(00====-x f x f x f k , 但是0)(0)(≠x f k .证明: 必要性显然(见定理6推论1).充分性: 若x 0是f (x )的t 重根,t >k ,由定理⇒0)()(')(0)1(00====-x f x f x f k , 且f (k)( x 0)=0.若t <k ⇒(1)0()0k f x -≠,所以矛盾. 所以t=k.23. 举例说明断语”如果a 是)('x f 的m 重根, 则a 是f (x )的m +1重根”是不对的. 例如1()1,0()(1)m m f x x x f x m x m +'=+==+则是的重根,0()x f x =但不是的根.24. 若(1)|(),(1)|()n n n x f x x f x --则.证法1: 因为(1)|(),n x f x -所以1是()n f x 的根, 即f (1)=0. 这样(1)|()x f x -. 存在g(x )使得()(1)()f x x g x =-. 于是()(1)()n n n f x x g x =-, 得)(|1n n x f x -.证法2:由条件知, f (1)=0. 设全体n 次单位根为1,121,...,,-n ξξξ. 对每一个:k ξ0)1()(==f f n k ξ, 所以.1,...,1,0),(|)(-=-n k x f x n k ξ 再由于,1-x ,1ξ-x ...,1--n x ξ两两互素, 所以)(|)1(),(|)())(1(11n n n n x f x x f x x x -----即ξξ .25 . 如果x 2+x +1|)()(3231x xf x f +, 那么12(1)|(),(1)|().x f x x f x --且 证法1:设x 2+x +1的两个根312,,1i εεε=, i =1,2. 2121()()x x x x εε++=--.33111213322222()()0()()0f f f f εεεεεε⎧+=⎪⎨+=⎪⎩,112122(1)(1)0(1)(1)0f f f f εε+=⎧⎨+=⎩即. 把上式看作是以⎪⎪⎭⎫ ⎝⎛2111εε为系数矩阵的齐次线性方程组, 则由于系数行列式非零, 所以12(1)(1)0f f ==. 即12(1)|(),(1)|().x f x x f x --且 证法2: 设111)()1()(r x q x x f +-=, 222)()1()(r x q x x f +-=, 则x r x q x x r x q x x xf x f 232313133231)()1()()1()()(+-++-=+. 对于x 2+x +1的两个根331212,: 1.εεεε== 所以121123123111311313121311)()1()()1()()(0εεεεεεεεεεr r r q r q f f +=+-++-=+=,221223223221321323221321)()1()()1()()(0εεεεεεεεεεr r r q r q f f +=+-++-=+=.于是⎩⎨⎧=+=+0221121εεr r r r .把上式看作是以⎪⎪⎭⎫⎝⎛2111εε为系数矩阵的齐次线性方程组, 则由于系数行列式非零, 所以只有零解: 021==r r . 即12(1)|(),(1)|().x f x x f x --且 证法3:设111)()1()(r x q x x f +-=,222)()1()(r x q x x f +-=, 由条件x 2+x +1|)()(3231x xf x f +, 而)()(3231x xf x f +=x r x q x x r x q x 23231313)()1()()1(+-++-, 考虑到x 2+x +1|(x 31),所以x 2+x +1|r 1+r 2x . 再由次数之关系得r 1=r 2=0. 所以12(1)|(),(1)|().x f x x f x --且26. 求多项式1n x -在复数范围内和实数范围内的因式分解. 解: 0221cossin ,0,1,2,1k k k i k n n nππεε==+=-设. 则121,...,,,1-n εεε是1n x -是全部根(n 次单位根全体).1112211211122(),1()(1)((cossin )).(),,21:21(1)()(1)()()(1)(2cos1).n n ni i k m m m nk k n k k k k k k i C x x x x i n nii R n n m k x x x x x x x x x nππεπεεε--==----===-=-=--+=--=--=---=--+∏∏∏∏∏在中在中若为奇数12122:1(1)(1)(2cos1).m nk k n m x x x x x nπ-==-=-+-+∏当时n 为偶数 n 为奇数 27. 求有理根: 1) f (x )=x 36x 2+15x14.解法1:有理根可能为±1、±2、±7、±14.∵当a <0时f (a )<0,所以f (x )的有理根是可能1,2,7,14. f (1)=40, f (2)=0, f (7)=1400, f (14)=17640, 只有一个x =2.解法2:有理根可能为±1、±2、±7、±14. f (1)=4, f (1)=36. 对于每一个可能的根, 考虑αα+--1)1(1)1(f f 及: 当=2时:121)1(421)1(-=+-=-αf f 及, 验证得f (2)=0. 作综合除法: 2 16 151428 142 1 4 7 02 41 2 30f (x )=(x2)(x 24x +7).令g(x )= x 24x +7, g(1)=4, g(1)=12. g(x )可能的有理根只有±7.71)1(±g 非整数, 所以±7都不是g(x )的根, 从而也不是f (x )的根. 2) f (x )=4x 47x 25x1 .解:f (x )有理根可能为±1、±21、±41,∵f (1)=-9≠0,f (-1)=1≠0,f (21)= 5, f (21)=0, f (41) = 26443, f (41) =6411. 所以f (x )只有一个有理根x = 21.3) f (x )=x 5+x 46x 314x 211x3解:可能有有理根为±1、±3、f (1)= 32, f (1)=0.作综合除法: 1 1 61411311 0 6 8 31 0 683 01 1 1 5 3 1 153 01 123 1 23 01 1 3 13 0f (x )=(x +1)4(x 3). f (x )的有理根为1,1,1,1,3.28. 下列多项式在有理数域上是否可约? 1) x 2+1解: 令 x=y +1, 则x 2+1=y 2+2y +2. 取p=2, 由Eisenstein 判别法可知它不可约. 2) 4328122x x x -++解: 取P=2,由Eisenstein 判别法,该多项式不可约. 3) x 6+x 3+1 解: 令x =y +1则x 6+x 3+1=y 6+6y 5+15y 4+21y 3+15y 2+9y +3取P=3, 则这个多项式不可约. 4) x p +px +1, p 为奇素数解:取y =x+1, x p+px +1=y p+1((1)(1)1pi p i i p i c y p y -=-+-+∑=y p+21((1)2p i i p i p i c y py p --=-+-∑取素数为p ,由于1,...,2,1,-=p j C j p 都是p 的倍数, 所以应用Eisenstein 判别法可知它不可约. 5) x 4+4kx +1, k 为整数解:令x =y +1,则f (x ) = x 4+4kx +1=y 4+4y 3+6y 2+(4+4k )y +(4k +2)取p =2,则p 可整除首相以外的所有系数, 但是p 2不整除常数项,由Eisenstein 判别法,f (x )于Q 上不可约.第一章 补充题1. 设0),()()(),()()(11≠-+=+=bc ad x dg x cf x g x bg x af x f 且, 证明11(()())((),())f x g x f x g x =,.证: 设).())(),((),())(),((111x d x g x f x d x g x f == 要证明d (x )|d 1(x )及d 1(x )|d(x ). 首先因为d (x )|f (x ), d (x )|g (x ), 所以由条件知d (x )|f 1(x ), d(x )|g 1(x ), 从而d (x )|d 1(x ).另一方面, 由于ad bc 0, 所以由条件知111111()(()()),()(()())f x df x bg x g x cf x ag x ad bc ad bc=--+--.于是由d 1(x )|f 1(x ), d 1(x )|g 1(x ), 得d 1(x )|f (x ), d 1(x )|g (x ), 从而d 1(x )|d (x ). 所以d 1(x )=d (x ). 2. 证明: 只要))(),(()(,))(),(()(x g x f x g x g x f x f 的次数都大于零, 就可适当地选择适等式u (x )f (x )+v (x )g(x )=d (x )中的u(x )和v(x )使得))(),(()())((0,))(),(()())((0x g x f x f x v x g x f x g x u <∂<<∂<.证明:设(f (x ),g(x ))=d (x ), 存在u 1(x ), v 1(x )使得u 1(x ) f (x )+v 1(x )g(x )=d (x )..1))(),(()()())(),(()()(11=+x g x f x g x v x g x f x f x u记f (x )=f i (x )d (x ), g(x )=g 1(x )d (x ), 则有u 1(x )f 1(x )+v 1(x )g 1(x )=1. (*)a)若∂(u 1(x ))<∂(g 1(x )), 由上式, ∂(u 1(x ))+∂(f 1(x ))=∂(v 1(x ))+∂(g 1(x )), 得∂(v 1(x ))<∂(f 1(x )). b) 若∂(u 1(x ))∂(g 1(x )), 令u 1 (x )=q 1(x )g 1(x )+u 2(x ), ∂(u 2)<∂(g 1(x ))=∂())(),(()(x g x f x g ).v 1(x )=q 2(x )f 1 (x )+v 2(x ), ∂(v 2)<∂(f 1(x ))=∂())(),(()(x g x f x f ). 代入(*)式: 得f 1(x )u 2(x )+g 1(x )v 2(x )+f 1(x )g 1(x )q 1(x )+f 1(x )g 1(x )q 2(x )=1,f 1(x )u 2(x )+g 1(x )[v 2(x )+f 1(x ) q 1(x )+f 1(x ) q 2(x )]=1.令u (x )=u 2 (x ), v (x )= v 2(x )+f 1(x ) q 1(x )+f 1(x ) q 2(x ), 则由于∂(u)= ∂(u 2)<∂(g 1(x )), 得∂(v)= ∂(v 2)<∂(f 1(x )), 且有u (x )f (x )+v (x )g(x )=d (x ).3. 证明: 如果()(),(()(1).m m f x x f x x m ≥与g 互素那么)与g 也互素 证:由于f (x )与g(x )互素, 所以存在u(x ), v(x )使得u (x )f (x )+v (x )g(x )=1. 于是有u (x m )f (x m )+v (x m )g(x m )=1. 即f (x m )与g(x m )互素.4. 证明: 如果)(),...,(),(121x f x f x f s -的最大公因式存在, 那么)(),...,(),(121x f x f x f s -,f s (x )的最大公因式也存在, 且当)(),...,(),(121x f x f x f s -, f s (x )全不为零时有1,211()((,,),).s s s f f f f f f -=再利用上式证明存在)(),...,(),(21x u x u x u s 使得),...,,(212211s s s f f f f u f u f u =++ . 证明:设d =(f 1,f 2…f s ),d 1=(f 1…f s-1), d ′=(d 1, f s ), 要证明d = d ′.一方面, s d f 及d |d 1⇒d |d ′.另一方面,d ′|d 1, 's d f ⇒d ′|f i (i ∀)⇒d ′|d. 又d, d ′都是首项系数为1的多项式, 所以d=d ′.为了证明第二个结论,应用数学归纳法. 当s=2时, 结论显然成立.假设对于s-1个多项式结论成立,考虑s 个多项式的情形:此时, 对于)(),...,(),(121x f x f x f s -,由归纳假设'∃i u (i =1,2,…,s-1),使'''111111,,s s s s u f u f d v u vd u f d --++=∃+=又使得′. 所以 ∴d =d ′=1s s vd u f + =v (1'1s i i i u f -=∑)+s s u f .令'i i u vu = i=1,2…,s-1, 则d =u 1f 1+…+u s-1f s-1+s s u f . 5. 多项式m (x )称为)(,)(x g x f 的一个最小公倍式, 如果 1) )(|)(,)(|)(x m x g x m x f ;2) )(,)(x g x f 的任一个公倍式都是m (x )的倍式.我们以[)(,)(x g x f ]表示首系数是1的那个最小公倍式, 证明如果)(,)(x g x f 的首系数都是1,那么[)(,)(x g x f ]=))(),(()()(x g x f x g x f .证明: 因为)(,)(x g x f 的首系数都是1,所以它们都是非零多项式, 于是它们的最大公因式不等于零. 设(f (x ),g (x ))=d (x ), f (x )=f 1(x )d (x ), g (x )=g 1(x )d (x ), 则(f 1(x ),g 1(x ))=1.设m (x )=f 1(x )g 1(x )d (x ), 则一方面显然有 f (x )|m (x ), g (x )|m (x ), 故m (x )是一个公倍式. 另一方面, 设l (x )是)(,)(x g x f 的任一个公倍式, 则)(|)(,)(|)(x l x g x l x f ,令l (x )=d (x )l 1(x ),则f 1(x )|l 1(x ), g 1(x )|l 1(x )∵(f 1(x ), g 1(x ))=1, ∴f 1(x )g 1(x )|l 1(x )⇒f 1(x )g 1(x )d (x )|l , 即m (x )|l (x ). 所以m (x )是f (x ), g (x )的一个最小公倍式. 即证得:[f (x ), g (x )]=f 1(x )g 1(x )d (x )=))()(()()(x g x f x g x f ⋅⋅.6. 证明:设p (x )是次数大于零的多项式,如果对于任何多项式f (x ), g (x ) ,由 p (x ) | f (x )g (x )可以推出p (x ) | f (x )或者p (x ) | g (x ), 那么p (x )是不可约多项式.证明: 采用反证法. 设p (x )可约,则有p (x ) = p 1(x ) p 2(x )且p 1(x )和p 2(x )的次数低于p (x )的次数. 那么由条件可得p (x ) | p 1 (x )或p (x ) | p 2(x ), 这是不可能的,因为后面两个多项式的次数低于 p (x )的次数.7. 证明:次数> 0且首项系数为1 的多项式f (x )是一个不可约多项式的方幂的充分必要条件是, 对任意的多项式g (x ), 或者(,)1f g =或者存在正整数m 使得).(|)(x g x f m证明: 必要性:设f (x ) = p s (x )(其中p (x )是不可约多项式),则对任意多项式g (x ),有 a) ( p (x ), g (x )) =1; 或b) p (x ) | g (x ).对于 a) 有( f (x ), g (x )) =1.对于b)有p s (x ) | g s (x ),此即f (x )|g s (x ).再令m = s ,即可.充分性:若 f (x )不是某一个不可约多项式的方幂,则f (x )有典型分解式:).0,2(),()()()(221>≥=i r k r k k k r x p x p x p x f取g (x )=p 1(x ),则( f (x ), g (x )) = p 1(x ), 且对任意的正整数m, f (x )不整除g m (x ). 与题设f (x )与g (x )应满足( f (x ), g (x )) =1或f (x ) | g m (x ),(m 为某一正整数)矛盾,即证. 8.证明:次数> 0且首项系数为1 的多项式f (x )是某一不可约多项式的方幂的充分必要条件是:对任意的多项式g (x ), h (x ),由f (x ) | g (x )h (x ),可以推出f (x ) | g (x ),或者对某一正整数m , f (x ) | h m (x ).证明: 必要性.设f (x )= p m (x )是某一不可约多项式p (x )的方幂, 则由于p (x )不可约,所以由f (x ) | g (x )h (x ),可推知p (x ) | g (x )h (x ),及p (x ) | g (x )或p (x ) | g (x ). 所以必存在正整数使得p m (x ) | h m (x ), 即f (x ) | h m (x ) .充分性. 若 f (x )不是某一个多项式的方幂,则f (x )有典型分解式:).0,2(),()()()(221>≥=r r k r k k k r x p x p x p x f取),()(1x p x g k= ),()()(22x p x p x h r kr k= 则 f (x ) | g (x )h (x ),但是出f (x )既不整除g (x ),也不能整除h (x )的任意方幂 h m (x ). 9. 证明:n n m x ax b -++没有重数>2的非零根证明:设 f (x ) = x n + ax n-m + b ,则f '′(x ) = x n-m-1[nx m + (n-m )a ].又因为 f (x )的非零根都是多项式g (x ) = nx m +(n −m )a 的根,而g (x )的m 个根都是单根,因而f '′(x )没有不为零且重数大于2的根.10. 证明: 如果f (x )| f (x n ), 那么f (x )的根只能是0或单位根.证明: 设a 是f (x )的任一个根,由f (x ) | f (x n )知,a 也是f (x n )的根,即f (a n ) = 0, 所以a n 也是f (x )的一个根. 以此类推下去,则,......,,2n n ααα都是 f (x )的根.f (x )是一个次数有限的多项式,所以f (x )最多只可能有限个相异的根,于是必有()i jn ni j αα=>不妨设,01)(=--jn i njn αα, 0,1m x αα==则或或是的根.11. 如果f (x ) | f (x ),证明f (x )有n 重根,其中n = ∂( f (x )).证明: 设a 1 , a 2,..., a s 是f ′(x )的s 个不同的根,且它们的重数分别为k 1 , k 2,..., k s ,由于f ′(x )是n −1次多项式,因而k 1 +k 2+...+ k s =n-1. 其次,由 f ′(x )|f (x ), a 1, a 2,..., a s 分别为f (x )的k 1 +1, k 2+1, ..., k s +1重根,但k 1 +1+k 2+1+...+ k s +1=n-1+s=n, 从而s =1. 这就是说,f ′(x )只可能有一个根1 a ,且重数为k 1= n −1.故f (x )有n 重根. 12. 设a 1, a 2,..., a n是n 个不同的数, 而).())(()(21n x x x x F ααα---=证明: 1);1)()()(1∑=='-ni ii F x x F αα2)对任意多项式f (x ),用F (x )除所得的余式为.)()()()(1∑='-ni ii i F x x F f ααα证明:1)∑=----='ni i n x x x x x F 121)()())(()(αααα ,所以)())(()()(111n i i i i i i i F ααααααααα----='+- .)())(()()())(()()()()(11111n i i i i i i n i i i i αααααααx αx x x F x x F --------='---- αααααα(=g i (x )). 则∂(g i (x ))≤ n −1, 且g i (a i )=1, g i (a j )=0, 当i j . 所以∑=='-ni ii F x x F 11)()()(αα.2) 对于任意的多项式f (x ),用F (x )除得f (x ) = q (x )F (x ) + r (x ) (r (x ) = 0或∂(r (x ))≤n −1).当r (x )=0时,结论显然成立. 当∂(r (x ))≤n −1时,若令k (x )=∑='-ni ii i F x x F f 1)()()()(ααα, 则∂(k (x ))≤n −1,于是r (a i ) =f (a i ) = k (a i ) (i =1,2,...,n ), 所以r (x )=k (x )=∑='-ni ii i F x x F f 1)()()()(ααα.13. a 1, a 2,..., a n 与上题相同, b 1, b 2,..., b n 是任意数,显然∑='-=ni ii i F x x F b x L 1)()()()(αα适合条件L (a i )=b i , i =1,2,…,n. 这称为Lagrange 插值公式, 利用上面的插值公式求: 1) 一个次数<4的多项式f (x ), 它适合条件f (2)=3, f (3)=-1, f (4)=0, f (5)=2. 2)一个二次多项式f (x ),它在0,2π, π处与函数sin x 有相同的值. 3)一个次数尽可能低的多项式f (x ),使f (0) =1, f (1)=2, f (2)=5, f (3)=10.解: 1) 由Lagrange 插值公式: 取321(3)(4)(5)1()(124760)(23)(24)(25)6x x x l x x x x ---==--+----322(2)(4)(5)111()1920(32)(34)(35)22x x x l x x x x ---==-+----323(2)(3)(5)131()515(42)(43)(45)22x x x l x x x x ---==+++---324(2)(3)(4)1313()4(52)(53)(54)623x x x l x x x x ---==++----43212341217203()(())()30242326i i i f x l x f a l l l l x x x =∴==-+⋅+=-+-+∑2) 已知f (0) =sin 0=0, f (2π)=sin 2π=1, f (π)sin π=0. 设F (x )=x (x-2π)(x-π), 则得到)(4)(2ππ--=x x x f .3) 同理可得321(1)(2)(3)111()1(01)(02)(03)66x x x l x x x x ---==-+-+---,32(0)(2)(3)15()3(10)(12)(13)22x x x l x x x x ---==-+---,323(0)(2)(3)()23(20)(21)(23)2x x x x l x x x ---==-++---,324(0)(2)(3)111()(30)(31)(32)623x x x l x x x x ---==-+---,21234()()2()5()10()1f x l x l x l x l x x ∴=+++=+14. 设f (x )是一个整系数多项式, 试证: 如果f (0)和f (1)都是奇数, 则f (x )不能有整数根.。
多项式练习题及答案1. 求解多项式的和与差(1) 已知多项式f(x) = 3x^3 - 2x^2 + 5x - 7,求f(x)与g(x) = x^3 - 5x + 9的和与差。
解答:f(x)与g(x)的和可以表示为:(f+g)(x) = f(x) + g(x) = (3x^3 - 2x^2 + 5x - 7) + (x^3 - 5x + 9)按照相同项合并的原则,将同次幂的项相加得到: (4x^3 - 2x^2 +5x + 2)f(x)与g(x)的差可以表示为:(f-g)(x) = f(x) - g(x) = (3x^3 - 2x^2 + 5x - 7) - (x^3 - 5x + 9)按照相同项合并的原则,将同次幂的项相减得到:(2x^3 - 2x^2 + 10x - 16)所以,f(x)与g(x)的和为:4x^3 - 2x^2 + 5x + 2,f(x)与g(x)的差为:2x^3 - 2x^2 + 10x - 16。
2. 求解多项式的乘积(2) 已知多项式f(x) = 2x^2 - 3x + 1,求f(x)与g(x) = x^3 - 5x + 9的乘积。
解答:f(x)与g(x)的乘积可以表示为:(f * g)(x) = f(x) * g(x) = (2x^2 - 3x + 1) * (x^3 - 5x + 9)按照多项式乘法分配律展开式,得到:(f * g)(x) = 2x^2 * (x^3 - 5x + 9) - 3x * (x^3 - 5x + 9) + 1 * (x^3 - 5x + 9)化简得:(f * g)(x) = 2x^5 - 10x^3 + 18x^2 - 3x^4 + 15x^2 - 27x + x^3 - 5x + 9合并同类项得:(f * g)(x) = 2x^5 - 3x^4 - 10x^3 + x^3 + 18x^2 + 15x^2 - 27x - 5x + 9(f * g)(x) = 2x^5 - 3x^4 - 9x^3 + 33x^2 - 32x + 9所以,f(x)与g(x)的乘积为2x^5 - 3x^4 - 9x^3 + 33x^2 - 32x + 9。
多项式加减练习题(解析)[题目一]计算多项式P(x) = 3x^4 + 5x^3 - 2x^2 + 4x - 7与Q(x) = 2x^3 - x^2 + 3x - 5的和。
[解析]要计算多项式的和,我们需要将相同项合并,然后将各项的系数相加。
首先,将P(x)和Q(x)按照指数从高到低排列:P(x) = 3x^4 + 5x^3 - 2x^2 + 4x - 7Q(x) = 2x^3 - x^2 + 3x - 5根据指数的高低,我们可以合并相同项:P(x) + Q(x) = (3x^4 + 2x^3) + (5x^3 + 3x^2) + (-2x^2 + 3x) + (4x - 5) + (-7)接下来,将各项的系数相加,我们得到:P(x) + Q(x) = 3x^4 + 2x^3 + 5x^3 + 3x^2 - 2x^2 + 3x + 4x - 5 - 7继续合并同类项和计算系数:P(x) + Q(x) = 3x^4 + (2x^3 + 5x^3) + (3x^2 - 2x^2) + (3x + 4x) + (-5 - 7)=> P(x) + Q(x) = 3x^4 + 7x^3 + x^2 + 7x - 12因此,多项式P(x)与Q(x)的和为3x^4 + 7x^3 + x^2 + 7x - 12。
[题目二]计算多项式R(x) = 2x^5 + 3x^4 - x^3 + 4x^2 - 6x + 10与S(x) = x^4 -2x^3 + 5x^2 - 3x + 7的差。
[解析]要计算多项式的差,我们需要将相同项合并,然后将各项的系数相减。
首先,将R(x)和S(x)按照指数从高到低排列:R(x) = 2x^5 + 3x^4 - x^3 + 4x^2 - 6x + 10S(x) = x^4 - 2x^3 + 5x^2 - 3x + 7根据指数的高低,我们可以合并相同项:R(x) - S(x) = (2x^5) + (3x^4 - x^4) + (-x^3 - 2x^3) + (4x^2 + 5x^2) + (-6x - 3x) + (10 - 7)接下来,将各项的系数相减,我们得到:R(x) - S(x) = 2x^5 + 2x^4 - 3x^3 + 9x^2 - 9x + 3因此,多项式R(x)与S(x)的差为2x^5 + 2x^4 - 3x^3 + 9x^2 - 9x + 3。
第一章多项式习题解答P44. 1. 用)(x g 除•x f )(,求商)(x q 和余式)(x r .解: 1)17262()()()()3999f xg x x x =-+--. 92926)(,9731)(--=--=x x r x x q . 2)2()()(1)(57)f x g x x x x =+-+-+. 75)(,1)(2+-=-+=x x r x x x q .2. 求m , p ,q 适合什么条件时, 有1) q px x mx x ++-+32|1 2) q px x mx x ++++242|)1(.解: 1) 方法1.q px x mx x ++-+32|1 x-mx 3+mx 2-x-m x 2+(p +1)x +q-m x 2-m 2x +m2(1)()()p m x q m r x +++-=由余式2(1)()0p m x q m +++-=得:21m q p q =⎧⎨=-⎩. 方法2. 设))(1(23q x mx x q px x --+=++, 两个多项式相等当且仅当同次项系数对应相等, 于是⎩⎨⎧=--=-p mq q m 10, 即21m q p q =⎧⎨=-⎩. 2) 解: 假设))((,|)(q ax x 1mx x q px x q px x 1mx x 2224242++++=++++++则,展开右边与左边比较, 得⎪⎩⎪⎨⎧=++=+=+pma q a mq a m 100,消去a , 得⎩⎨⎧=+-=-p m q m mq 102 , 所以当m 0时, q=1, p=2-m 2; 当m=0时, p=q+1.3. 求g (x )除f (x )的商)(x q 和余式)(x r .解: 用综合除法求商和余式.1) 3)(,83552)(+=--=x x g x x x x f .解: 作综合除法算式:得:.327)3)(109391362()(234-++-+-=x x x x x x f商.327)(,109391362)(234-=+-+-=x r x x x x x q 余式为2) .21)(,23)(i x x g x x x x f +-=--=解: 商q(x)=22(52)x ix i --+, 余式r(x)=98i -+.4. 把f (x )表成(x-x 0)的方幂和.1) 50(),1f x x x ==.解: 用综合除法:155432()(1)5(1)10(1)10(1)5(1)1f x x x x x x ∴=-+-+-+-+-+.当然也可以55()[(1)1]f x x x ==-+=5432(1)5(1)10(1)10(1)5(1)1x x x x x -+-+-+-+-+. 2) 42432()23(2)8(2)22(2)24(2)11f x x x x x x x =-+=+-+++-++ 3) 432()2(1)37f x x ix i x x i =+-++++432432()2()(1)()3()7()2()(1)()5()75x i i i x i i i x i i x i i i x i i x i i x i x i i =+-++--++--+-++=+-++++-+++ 5. 求f (x ), g (x )的最大公因式.1) f (x )=x 4+x 33x 24x 1, g (x )=x 3+x 2x 1.解法1: 作辗转除法:f (x )g (x )q 1(x )=x x 4+x 33x 24x 1 x 3+x 2x 1–21x+41=q 2(x) x 4+x 3x 2 x x 3+(3/2)x 2 +(1/2) x 38x+34 r 1(x)= 2x 23x 1 (1/2) x 2(3/2) x 1 =q 3(x ) 2x 22x (1/2) x 2(3/4) x (1/4) x1 r 2(x)=(3/4) x (3/4) x10 ((),())1f x g x x =+.解法2: 由于最大公因式的常数倍仍然是最大公因式, 所以, 在辗转相除的过程中, 为了方便可以给多项式乘以一个非零常数.f (x )g (x )q 1(x )=x x 4+x 33x 24x1 x 3+x 2x 12x 3+2x 22x 2 –x +1=q 2(x )x 4+x 3 x 2 x 2x 3+3x 2 + x2x -1 r 1(x)= 2x 23x 1 x 23 x 22x 26 x 4=q 3(x ) 2x 22x 2 x 23 x 1x 1 3 x 3x 1 x +10 ((),())1f x g x x =+. 解法3: )13)(1()(3--+=x x x x f , 22()(1)(21)(1)(1)g x x x x x x =-++=-+,((),())f x g x x =+ 2)32()31g x x x =-+不可约, 14)(34+-=x x x f 不可约, ∴()(),()1f x g x =. 3))122)(122(110)(2224---+=+-=x x x x x x x f4323222()61,())(1)g x x x f x x x x =-+++=-++=--∴()2(),()1f x g x x =--6. 求u (x ), v (x )使u (x )f (x )+v (x )g (x )=(f (x ), g (x )).1) 242)(234---+=x x x x x f , 22)(234---+=x x x x x g解法1: )2()1()(22-+=x x x f , 22()(2)(1)g x x x x =-++.因为1)1,1(2=+++x x x , 所以(f (x ), g (x )) = x 2 2.因为[]22(1)(1)(1)(2)1x x x x x +-+++++=, 所以2)()()()(2-=+x x g x v x f x u , 即 []22222(1)(1)(2)(2)(1)(2)2x x x x x x x x -++-++++-=-.解法2:作辗转除法:g (x ) f (x )q 2(x )=x +1 22)(234---+=x x x x x g 242)(234---+=x x x x x f q 1(x )=1x 4-2x 2 22234---+x x x xx 3+x 2-2x -2 r 1(x )= x 3-2x q 3(x )=x x 3-2x x 3-2xr 2(x)=x 2-2 r 3=0因为r 2(x)| r 1(x ), 所以(f (x ), g (x )) = r 2(x) = x 2-2. 再由)()()()(),()()()(22111x r x q x r x g x r x q x g x f +=+=, 得)].()[())()(1)(()(),()]()()([)()()()()(221221212x q x f x q x q x g x r x q x q x g x f x g x q x r x g x r -++=--=-=令u (x )=-(x +1), v (x )=(x +2), 则2(2)(1)()(2)()x x f x x g x -=-+++.2) (f (x ), g (x )) = r 2(x) = x -1.21221(1)()(1)()333x x f x x x g x -=--+--. 3)144)(234++--=x x x x x f , 2()1g x x x =--∴2()()(3)(2)f x g x x x =-+-, ()(2)(1)1g x x x =-++∵21((3))(1)f g x x g =---++,132(1)()(32)()x f x x x x g x =-+++--.7. 如果f (x )和g (x )的公因式是一个二次多项式, 求t,u 的值. 其中u tx x x g u x x x x f ++=++++=223)(,22)41()(.解: 22()()1(1)(2),()(1)(2)f x g x t x t x u r x t x t x u =+++-+=++-+.2222212()(2)2()()()(1)1(1)(1)(1)t t t u t t g x r x x x u t t t t -+++--=+++-++++ 由题意()()()|()r x x r x g x 与g 的公因式应为二次所以. 得⎪⎪⎩⎪⎪⎨⎧=++++=-++-+0)1()3(t)(10)4()3(322223t u t t u t u t t . ⎪⎩⎪⎨⎧=++=-++-+-≠0)3(0)4()3(3 .)(,1223u t t u t u t t x r t 为一次的否则得 解出(ⅰ)当.0)1)(4(,04330223=+-+=+-+=t t t t t t u 时 ∴¡32¡314π±=±=-=e t t 或. (ⅱ)311,03,02t t t t u -=+=++≠只有时当. )433(31433)4()3(3233232+-+-=++-+=⇒-++-+t t t t t t t t u u t u t t . ∴)4(2]246)82)(3[(3122+-=++-+++-=t t t t t t u 即⎩⎨⎧=+++-=03)4(22t t t u , 2111i t ±-=, i u 117--=. 8. 证明: 如果()|(),()|()d x f x d x g x , 且()d x 是f(x)和g(x)的一个组合, 那么d(x)是f (x )和g (x )的一个最大公因式.证明: 因为()|(),()|()d x f x d x g x , 所以()d x 是f (x )和g (x )的一个公因式. 又已知:()()()d x f x g x 是与的组合, 所以存在u (x ), v (x )P[x ]使得u(x )f (x )+v (x )g(x )=d (x ).若()|(),()|(),()|()h x f x h x g x h x d x 得, 所以()d x 是一个最大的公因式.9. 证明(()(),()())((),())().f x h x g x h x f x g x h x =(()h x 的首系=1)证:设(()(),()())()f x h x g x h x m x =, ()((),())()()()().d x f x g x u x f x v x g x ==+ 由()()|()()d x h x f x h x , ()()|()()d x h x g x h x , 得()()d x h x 是f (x )h (x )和g (x )h (x )的一个公因式. 所以()()|()d x h x m x .考虑到()()()()(),d x u x f x v x g x =+()()((),())()()()()()()().d x h x f x g x h x u x f x h x v x g x h x ∴==+因为()|()(),()|()()m x f x h x m x g x h x , 所以由上式得, ()|()()m x d x h x . 而h (x )的首项系数为1,所以()()()m x d x h x =, 即((),())()(()(),()()).f x g x h x f x h x g x h x =10. 如果(),()f x g x 不全为0, 证明()()(,) 1.((),())((),())f xg x f x g x f x g x = 证: 设()((),()).d x f x g x = 由(),()f x g x 不全为0得()0.d x ≠设1()()(),f x d x f x = 1()()(),g x d x g x =及()()()()().d x u x f x v x g x =+则11()()()()()()().d x u x f x d x v x g x d x =+消去()0d x ≠得111()()()()u x f x v x g x =+. ()()(,) 1.((),())((),())f xg x f x g x f x g x = 11. 证明: 如果(),()f x g x 不全为0, 且()()()()((),())u x f x u x g x f x g x +=, 那么(u (x ), v (x ))=1.证:设()((),()).d x f x g x =由于(),()f x g x 不全为0, 所以d (x )0.11()()(),()()(),f x f x d x g x g x d x ==设 则1111()()()()()()(),()()()()1u x f x d x u x g x d x d x u x f x u x g x +=+=, (u (x ), v (x ))=1. 12. 如果1))(),((,1))(),((==x h x f x g x f , 那么1))()(),((=x h x g x f .证: 设21111111,1,1uf vg u f v h uu f ufv h vgu f vu gh +=+=+++=两式相乘得. ∴1111()()1(,)1uu f uv h vgu f v u gh f gh +++=⇒=.13. 设1212,,(,g )=1,=1,2,...,m;=1,2,...,n.m n i j f f f g g g f i j 都是多项式且求证 1212(,)1m n f f f g g g =.证: ∵ (,g )1i i f =,由12题, 固定12:(,)1i i f g g =,…, 12(,.)1i n f g g g =. 令12n g g g g =⋯,(,)1i i f g ∴=每个12(,)1,f f g ⇒= 123(,)1f f f g =, …,1212(,)1m n f f f g g g =. 推广若((),())1,f x g x =则∀m ,n N, 有((),())1m n f x g x =.14. 如果1))()(),((,1))(),((=+=x g x f x f x g x f 那么.证法1:(,)11()()1(,)1f g uf vg u v f v g f f g f =⇒+=⇒-++=⇒+= 同理(,)1g g f +=. 由12题(,)1fg f g +=.证法2:设d (x )是f 和f +g 的任一个公因式, ()|(),()|()()d x f x d x f x g x +, 所以 ()|()d x g x , 因为(f , g )=1, 所以d (x )=c (常数). 所以(f , f +g )=1. (,)1g g f +=. 由12题得(,)1fg f g +=.15 . 求下列多项式的公共根: f (x )=x 3+2x 2+2x +1, g (x )=x 4+x 3+2x 2+x +1解:g(x )=f (x )(x-1)+2(x 2+x +1), f (x )=(x 2+x +1)(x +1), 即(f (x ),g(x )) = x 2+x +1.令(x 2+x +1)=0得231,23121i i --=+-=εε ∴f (x )与g (x )的公共根为21,εε.16 判断下列多项式有无重因式:1)5432()57248f x x x x x x =-+++- 2)344)(24--+=x x x x f解: 1)4421205)('234+-+-=x x x x x f , 作辗转相除法:325()'()(1)3(25412)f x f x x x x x =---+. 23221549'()(25412)(5)(44)22f x x x x x x x =--+-+-+, )32)(44()12452(223++-=+--x x x x x x ,得22)2(44))('),((-=+-=x x x x f x f , 故)(x f 有重因式3)2(-x .2))12(4484)('3-+=-+=x x x x x f ,作辗转相除法:32()(21)(233)f x x x x x x =+-+-+.)1311()32)(332()('2-+++-=x x x x x f2661311(233)(1113)(2)(33)1111x x x x ⨯-+=--++ 1))(').((=∴x f x f .17. 求t 的值 13)(23-+-=tx x x x f 有重根.解法1:设f (x )有重根a , 则a 0,且)1()()(22ax a x x f +-=. 于是 1)2()12(13)(222323--++-+=-+-=x aa x a a x tx x x x f . 由多项式相等的概念, 得 ⎪⎪⎩⎪⎪⎨⎧=--=-t a a a a 232122 (*).解方程得t=3,415-. 解法2: t x x x f +-=63)('2, 作辗转相除法:)3()62()1)((')(3-+-+-=t x t x x f x f .当3=t , 3)1()(-=x x f 有三重根.当.3≠t 则)2152()2153)(22()('2++-+=t x x x f . 此时必须415-=t , 有重因式)4()21()(2-+=x x x f . 18. 求多项式q px x x f ++=3)(有重根因式的条件分析: 若q px x x f ++=3)(有重根, 则有二重根或三重根. 若有三重根, 则32233333)()(a x a ax x a x q px x x f -+-=-=++=.得: 0,0===q p a . 此时0为三重根. 如下只需考虑2重根的情形即可. 解法1: p x x f +='23)(, 利用辗转相除法:23()(3)23f x x p x px q =+++)0(≠p ,22223327(3)(23)()()244a q x p px q x p p p p +=+-++. 得324270p q +=.解法2: b a x a ab x a b x b x a x q px x x f 222323)2()2()()()(-+++-=--=++=.⎪⎩⎪⎨⎧=-+==+q b a a ab p a b 22202,⎪⎩⎪⎨⎧=-=3223aq a p , 得324270p q +=. 19. 如果2(1)|()x f x -,其中42()1f x Ax Bx =++,求A, B.解法1:设),1()1(1)(2224-+-=++=bx Ax x Bx Ax x f 展开右边并比较系数: 1)1()21()2(123424-++-+-+-+=++x b x b A x A b Ax Bx Ax得⎪⎩⎪⎨⎧=+=--=-011202b B b A A b , 于是2,1-==B A .解法2: 因为2(1)|()x f x -, 所以(1)|'()x f x -由)4)(1()24(24)('23d Ax x x B Ax x Bx Ax x f +-=+=+=, 于是比较两边系数得: 2A B =-.所以42()21f x Ax Ax =-+. 又)1)(1()(),()1(23-++-=-cx bx Ax x x f x f x 设, 于是4221Ax Ax -+=)1)(1(23-++-cx bx Ax x , 右边展开并比较系数:⎪⎩⎪⎨⎧=---=-=-0120c A b c A b .2,1-==∴B A .20证明2()12!!n x x f x x n =+++无重因式(重根). 证法1: '()()!nx f x f x n =- (',)(,)!yx f f f n ∴=. 因为1),(=x f , 所以(,)1()n f x f x =⇒无重因式. 证法2: 由于f (x )有重因式的充要条件是1))('),((=x f x f , 所以设)())('),((x d x f x f =, 我们证明d (x )=1.事实上, 由!|)()),(')((|)()("|)(),(|)(n x x d x f x f x d x f x d x f x d n即得-. 所以0,)(≥=k x x d k . 若k >0, 则x |f (x ), 矛盾. 所以k =1, d (x )=1.21. 如果a 是()f x '''的一个k 重根, 证明a 是)()()](')('[2)(x f x f a f x f a x x g +-+-=的一个k +3重根. 证明: 验证得g(a )=0, 设a 是g (x )的t 重根.g ′(x )=12[ f ′(x )+ f ′(a )]+()()2x a f x f x -'''-⇒ g ′(a )=0 . 111()''()()()()()()()02222x a g x f x f x f x f x x a f x g a -''''''''''''''=++-=-⇒= 由于a 是()f x '''的k 重根, 以及a 是(x-a )的根, 所以a 是()g x ''的k+1重根.再由假设a 是g(x)的t 重根, 则a 是()g x ''的t 2重根, 于是t 2=k +1, 得t =k +3, 即()a x 是g 的k+3重根.22. 证明0x 是f (x )的k 重根的充要条件是0)()(')(0)1(00====-x f x f x f k , 但是0)(0)(≠x f k .证明: 必要性显然(见定理6推论1).充分性: 若x 0是f (x )的t 重根,t >k ,由定理⇒0)()(')(0)1(00====-x f x f x f k , 且f (k)( x 0)=0.若t <k ⇒(1)0()0k f x -≠,所以矛盾. 所以t=k.23. 举例说明断语”如果a 是)('x f 的m 重根, 则a 是f (x )的m +1重根”是不对的. 例如1()1,0()(1)m m f x x x f x m x m +'=+==+则是的重根,0()x f x =但不是的根.24. 若(1)|(),(1)|()n n n x f x x f x --则.证法1: 因为(1)|(),n x f x -所以1是()n f x 的根, 即f (1)=0. 这样(1)|()x f x -. 存在g(x )使得()(1)()f x x g x =-. 于是()(1)()n n n f x x g x =-, 得)(|1n n x f x -.证法2:由条件知, f (1)=0. 设全体n 次单位根为1,121,...,,-n ξξξ. 对每一个:k ξ0)1()(==f f n k ξ, 所以.1,...,1,0),(|)(-=-n k x f x n k ξ 再由于,1-x ,1ξ-x ...,1--n x ξ两两互素, 所以)(|)1(),(|)())(1(11n n n n x f x x f x x x -----即ξξ .25 . 如果x 2+x +1|)()(3231x xf x f +, 那么12(1)|(),(1)|().x f x x f x --且 证法1:设x 2+x +1的两个根312,,1i εεε=, i =1,2. 2121()()x x x x εε++=--.33111213322222()()0()()0f f f f εεεεεε⎧+=⎪⎨+=⎪⎩,112122(1)(1)0(1)(1)0f f f f εε+=⎧⎨+=⎩即. 把上式看作是以⎪⎪⎭⎫ ⎝⎛2111εε为系数矩阵的齐次线性方程组, 则由于系数行列式非零, 所以12(1)(1)0f f ==. 即12(1)|(),(1)|().x f x x f x --且 证法2: 设111)()1()(r x q x x f +-=, 222)()1()(r x q x x f +-=, 则x r x q x x r x q x x xf x f 232313133231)()1()()1()()(+-++-=+. 对于x 2+x +1的两个根331212,: 1.εεεε== 所以121123123111311313121311)()1()()1()()(0εεεεεεεεεεr r r q r q f f +=+-++-=+=,221223223221321323221321)()1()()1()()(0εεεεεεεεεεr r r q r q f f +=+-++-=+=.于是⎩⎨⎧=+=+0221121εεr r r r .把上式看作是以⎪⎪⎭⎫⎝⎛2111εε为系数矩阵的齐次线性方程组, 则由于系数行列式非零, 所以只有零解: 021==r r . 即12(1)|(),(1)|().x f x x f x --且 证法3:设111)()1()(r x q x x f +-=,222)()1()(r x q x x f +-=, 由条件x 2+x +1|)()(3231x xf x f +, 而)()(3231x xf x f +=x r x q x x r x q x 23231313)()1()()1(+-++-, 考虑到x 2+x +1|(x 31),所以x 2+x +1|r 1+r 2x . 再由次数之关系得r 1=r 2=0. 所以12(1)|(),(1)|().x f x x f x --且26. 求多项式1n x -在复数范围内和实数范围内的因式分解. 解: 0221cossin ,0,1,2,1k k k i k n n nππεε==+=-设. 则121,...,,,1-n εεε是1n x -是全部根(n 次单位根全体).1112211211122(),1()(1)((cossin )).(),,21:21(1)()(1)()()(1)(2cos1).n n ni i k m m m nk k n k k k k k k i C x x x x i n nii R n n m k x x x x x x x x x nππεπεεε--==----===-=-=--+=--=--=---=--+∏∏∏∏∏在中在中若为奇数12122:1(1)(1)(2cos1).m nk k n m x x x x x nπ-==-=-+-+∏当时n 为偶数 n 为奇数 27. 求有理根: 1) f (x )=x 36x 2+15x14.解法1:有理根可能为±1、±2、±7、±14.∵当a <0时f (a )<0,所以f (x )的有理根是可能1,2,7,14. f (1)=40, f (2)=0, f (7)=1400, f (14)=17640, 只有一个x =2.解法2:有理根可能为±1、±2、±7、±14. f (1)=4, f (1)=36. 对于每一个可能的根, 考虑αα+--1)1(1)1(f f 及: 当=2时:121)1(421)1(-=+-=-αf f 及, 验证得f (2)=0. 作综合除法: 2 16 151428 142 1 4 7 02 41 2 30f (x )=(x2)(x 24x +7).令g(x )= x 24x +7, g(1)=4, g(1)=12. g(x )可能的有理根只有±7.71)1(±g 非整数, 所以±7都不是g(x )的根, 从而也不是f (x )的根. 2) f (x )=4x 47x 25x1 .解:f (x )有理根可能为±1、±21、±41,∵f (1)=-9≠0,f (-1)=1≠0,f (21)= 5, f (21)=0, f (41) = 26443, f (41) =6411. 所以f (x )只有一个有理根x = 21.3) f (x )=x 5+x 46x 314x 211x3解:可能有有理根为±1、±3、f (1)= 32, f (1)=0.作综合除法: 1 1 61411311 0 6 8 31 0 683 01 1 1 5 3 1 153 01 123 1 23 01 1 3 13 0f (x )=(x +1)4(x 3). f (x )的有理根为1,1,1,1,3.28. 下列多项式在有理数域上是否可约? 1) x 2+1解: 令 x=y +1, 则x 2+1=y 2+2y +2. 取p=2, 由Eisenstein 判别法可知它不可约. 2) 4328122x x x -++解: 取P=2,由Eisenstein 判别法,该多项式不可约. 3) x 6+x 3+1 解: 令x =y +1则x 6+x 3+1=y 6+6y 5+15y 4+21y 3+15y 2+9y +3取P=3, 则这个多项式不可约. 4) x p +px +1, p 为奇素数解:取y =x+1, x p+px +1=y p+1((1)(1)1pi p i i p i c y p y -=-+-+∑=y p+21((1)2p i i p i p i c y py p --=-+-∑取素数为p ,由于1,...,2,1,-=p j C j p 都是p 的倍数, 所以应用Eisenstein 判别法可知它不可约. 5) x 4+4kx +1, k 为整数解:令x =y +1,则f (x ) = x 4+4kx +1=y 4+4y 3+6y 2+(4+4k )y +(4k +2)取p =2,则p 可整除首相以外的所有系数, 但是p 2不整除常数项,由Eisenstein 判别法,f (x )于Q 上不可约.第一章 补充题1. 设0),()()(),()()(11≠-+=+=bc ad x dg x cf x g x bg x af x f 且, 证明11(()())((),())f x g x f x g x =,.证: 设).())(),((),())(),((111x d x g x f x d x g x f == 要证明d (x )|d 1(x )及d 1(x )|d(x ). 首先因为d (x )|f (x ), d (x )|g (x ), 所以由条件知d (x )|f 1(x ), d(x )|g 1(x ), 从而d (x )|d 1(x ).另一方面, 由于ad bc 0, 所以由条件知111111()(()()),()(()())f x df x bg x g x cf x ag x ad bc ad bc=--+--.于是由d 1(x )|f 1(x ), d 1(x )|g 1(x ), 得d 1(x )|f (x ), d 1(x )|g (x ), 从而d 1(x )|d (x ). 所以d 1(x )=d (x ). 2. 证明: 只要))(),(()(,))(),(()(x g x f x g x g x f x f 的次数都大于零, 就可适当地选择适等式u (x )f (x )+v (x )g(x )=d (x )中的u(x )和v(x )使得))(),(()())((0,))(),(()())((0x g x f x f x v x g x f x g x u <∂<<∂<.证明:设(f (x ),g(x ))=d (x ), 存在u 1(x ), v 1(x )使得u 1(x ) f (x )+v 1(x )g(x )=d (x )..1))(),(()()())(),(()()(11=+x g x f x g x v x g x f x f x u记f (x )=f i (x )d (x ), g(x )=g 1(x )d (x ), 则有u 1(x )f 1(x )+v 1(x )g 1(x )=1. (*)a)若∂(u 1(x ))<∂(g 1(x )), 由上式, ∂(u 1(x ))+∂(f 1(x ))=∂(v 1(x ))+∂(g 1(x )), 得∂(v 1(x ))<∂(f 1(x )). b) 若∂(u 1(x ))∂(g 1(x )), 令u 1 (x )=q 1(x )g 1(x )+u 2(x ), ∂(u 2)<∂(g 1(x ))=∂())(),(()(x g x f x g ).v 1(x )=q 2(x )f 1 (x )+v 2(x ), ∂(v 2)<∂(f 1(x ))=∂())(),(()(x g x f x f ). 代入(*)式: 得f 1(x )u 2(x )+g 1(x )v 2(x )+f 1(x )g 1(x )q 1(x )+f 1(x )g 1(x )q 2(x )=1,f 1(x )u 2(x )+g 1(x )[v 2(x )+f 1(x ) q 1(x )+f 1(x ) q 2(x )]=1.令u (x )=u 2 (x ), v (x )= v 2(x )+f 1(x ) q 1(x )+f 1(x ) q 2(x ), 则由于∂(u)= ∂(u 2)<∂(g 1(x )), 得∂(v)= ∂(v 2)<∂(f 1(x )), 且有u (x )f (x )+v (x )g(x )=d (x ).3. 证明: 如果()(),(()(1).m m f x x f x x m ≥与g 互素那么)与g 也互素 证:由于f (x )与g(x )互素, 所以存在u(x ), v(x )使得u (x )f (x )+v (x )g(x )=1. 于是有u (x m )f (x m )+v (x m )g(x m )=1. 即f (x m )与g(x m )互素.4. 证明: 如果)(),...,(),(121x f x f x f s -的最大公因式存在, 那么)(),...,(),(121x f x f x f s -,f s (x )的最大公因式也存在, 且当)(),...,(),(121x f x f x f s -, f s (x )全不为零时有1,211()((,,),).s s s f f f f f f -=再利用上式证明存在)(),...,(),(21x u x u x u s 使得),...,,(212211s s s f f f f u f u f u =++ . 证明:设d =(f 1,f 2…f s ),d 1=(f 1…f s-1), d ′=(d 1, f s ), 要证明d = d ′.一方面, s d f 及d |d 1⇒d |d ′.另一方面,d ′|d 1, 's d f ⇒d ′|f i (i ∀)⇒d ′|d. 又d, d ′都是首项系数为1的多项式, 所以d=d ′.为了证明第二个结论,应用数学归纳法. 当s=2时, 结论显然成立.假设对于s-1个多项式结论成立,考虑s 个多项式的情形:此时, 对于)(),...,(),(121x f x f x f s -,由归纳假设'∃i u (i =1,2,…,s-1),使'''111111,,s s s s u f u f d v u vd u f d --++=∃+=又使得′. 所以 ∴d =d ′=1s s vd u f + =v (1'1s i i i u f -=∑)+s s u f .令'i i u vu = i=1,2…,s-1, 则d =u 1f 1+…+u s-1f s-1+s s u f . 5. 多项式m (x )称为)(,)(x g x f 的一个最小公倍式, 如果 1) )(|)(,)(|)(x m x g x m x f ;2) )(,)(x g x f 的任一个公倍式都是m (x )的倍式.我们以[)(,)(x g x f ]表示首系数是1的那个最小公倍式, 证明如果)(,)(x g x f 的首系数都是1,那么[)(,)(x g x f ]=))(),(()()(x g x f x g x f .证明: 因为)(,)(x g x f 的首系数都是1,所以它们都是非零多项式, 于是它们的最大公因式不等于零. 设(f (x ),g (x ))=d (x ), f (x )=f 1(x )d (x ), g (x )=g 1(x )d (x ), 则(f 1(x ),g 1(x ))=1.设m (x )=f 1(x )g 1(x )d (x ), 则一方面显然有 f (x )|m (x ), g (x )|m (x ), 故m (x )是一个公倍式. 另一方面, 设l (x )是)(,)(x g x f 的任一个公倍式, 则)(|)(,)(|)(x l x g x l x f ,令l (x )=d (x )l 1(x ),则f 1(x )|l 1(x ), g 1(x )|l 1(x )∵(f 1(x ), g 1(x ))=1, ∴f 1(x )g 1(x )|l 1(x )⇒f 1(x )g 1(x )d (x )|l , 即m (x )|l (x ). 所以m (x )是f (x ), g (x )的一个最小公倍式. 即证得:[f (x ), g (x )]=f 1(x )g 1(x )d (x )=))()(()()(x g x f x g x f ⋅⋅.6. 证明:设p (x )是次数大于零的多项式,如果对于任何多项式f (x ), g (x ) ,由 p (x ) | f (x )g (x )可以推出p (x ) | f (x )或者p (x ) | g (x ), 那么p (x )是不可约多项式.证明: 采用反证法. 设p (x )可约,则有p (x ) = p 1(x ) p 2(x )且p 1(x )和p 2(x )的次数低于p (x )的次数. 那么由条件可得p (x ) | p 1 (x )或p (x ) | p 2(x ), 这是不可能的,因为后面两个多项式的次数低于 p (x )的次数.7. 证明:次数> 0且首项系数为1 的多项式f (x )是一个不可约多项式的方幂的充分必要条件是, 对任意的多项式g (x ), 或者(,)1f g =或者存在正整数m 使得).(|)(x g x f m证明: 必要性:设f (x ) = p s (x )(其中p (x )是不可约多项式),则对任意多项式g (x ),有 a) ( p (x ), g (x )) =1; 或b) p (x ) | g (x ).对于 a) 有( f (x ), g (x )) =1.对于b)有p s (x ) | g s (x ),此即f (x )|g s (x ).再令m = s ,即可.充分性:若 f (x )不是某一个不可约多项式的方幂,则f (x )有典型分解式:).0,2(),()()()(221>≥=i r k r k k k r x p x p x p x f取g (x )=p 1(x ),则( f (x ), g (x )) = p 1(x ), 且对任意的正整数m, f (x )不整除g m (x ). 与题设f (x )与g (x )应满足( f (x ), g (x )) =1或f (x ) | g m (x ),(m 为某一正整数)矛盾,即证. 8.证明:次数> 0且首项系数为1 的多项式f (x )是某一不可约多项式的方幂的充分必要条件是:对任意的多项式g (x ), h (x ),由f (x ) | g (x )h (x ),可以推出f (x ) | g (x ),或者对某一正整数m , f (x ) | h m (x ).证明: 必要性.设f (x )= p m (x )是某一不可约多项式p (x )的方幂, 则由于p (x )不可约,所以由f (x ) | g (x )h (x ),可推知p (x ) | g (x )h (x ),及p (x ) | g (x )或p (x ) | g (x ). 所以必存在正整数使得p m (x ) | h m (x ), 即f (x ) | h m (x ) .充分性. 若 f (x )不是某一个多项式的方幂,则f (x )有典型分解式:).0,2(),()()()(221>≥=r r k r k k k r x p x p x p x f取),()(1x p x g k= ),()()(22x p x p x h r kr k= 则 f (x ) | g (x )h (x ),但是出f (x )既不整除g (x ),也不能整除h (x )的任意方幂 h m (x ). 9. 证明:n n m x ax b -++没有重数>2的非零根证明:设 f (x ) = x n + ax n-m + b ,则f '′(x ) = x n-m-1[nx m + (n-m )a ].又因为 f (x )的非零根都是多项式g (x ) = nx m +(n −m )a 的根,而g (x )的m 个根都是单根,因而f '′(x )没有不为零且重数大于2的根.10. 证明: 如果f (x )| f (x n ), 那么f (x )的根只能是0或单位根.证明: 设a 是f (x )的任一个根,由f (x ) | f (x n )知,a 也是f (x n )的根,即f (a n ) = 0, 所以a n 也是f (x )的一个根. 以此类推下去,则,......,,2n n ααα都是 f (x )的根.f (x )是一个次数有限的多项式,所以f (x )最多只可能有限个相异的根,于是必有()i jn ni j αα=>不妨设,01)(=--jn i njn αα, 0,1m x αα==则或或是的根.11. 如果f (x ) | f (x ),证明f (x )有n 重根,其中n = ∂( f (x )).证明: 设a 1 , a 2,..., a s 是f ′(x )的s 个不同的根,且它们的重数分别为k 1 , k 2,..., k s ,由于f ′(x )是n −1次多项式,因而k 1 +k 2+...+ k s =n-1. 其次,由 f ′(x )|f (x ), a 1, a 2,..., a s 分别为f (x )的k 1 +1, k 2+1, ..., k s +1重根,但k 1 +1+k 2+1+...+ k s +1=n-1+s=n, 从而s =1. 这就是说,f ′(x )只可能有一个根1 a ,且重数为k 1= n −1.故f (x )有n 重根. 12. 设a 1, a 2,..., a n是n 个不同的数, 而).())(()(21n x x x x F ααα---=证明: 1);1)()()(1∑=='-ni ii F x x F αα2)对任意多项式f (x ),用F (x )除所得的余式为.)()()()(1∑='-ni ii i F x x F f ααα证明:1)∑=----='ni i n x x x x x F 121)()())(()(αααα ,所以)())(()()(111n i i i i i i i F ααααααααα----='+- .)())(()()())(()()()()(11111n i i i i i i n i i i i αααααααx αx x x F x x F --------='---- αααααα(=g i (x )). 则∂(g i (x ))≤ n −1, 且g i (a i )=1, g i (a j )=0, 当i j . 所以∑=='-ni ii F x x F 11)()()(αα.2) 对于任意的多项式f (x ),用F (x )除得f (x ) = q (x )F (x ) + r (x ) (r (x ) = 0或∂(r (x ))≤n −1).当r (x )=0时,结论显然成立. 当∂(r (x ))≤n −1时,若令k (x )=∑='-ni ii i F x x F f 1)()()()(ααα, 则∂(k (x ))≤n −1,于是r (a i ) =f (a i ) = k (a i ) (i =1,2,...,n ), 所以r (x )=k (x )=∑='-ni ii i F x x F f 1)()()()(ααα.13. a 1, a 2,..., a n 与上题相同, b 1, b 2,..., b n 是任意数,显然∑='-=ni ii i F x x F b x L 1)()()()(αα适合条件L (a i )=b i , i =1,2,…,n. 这称为Lagrange 插值公式, 利用上面的插值公式求: 1) 一个次数<4的多项式f (x ), 它适合条件f (2)=3, f (3)=-1, f (4)=0, f (5)=2. 2)一个二次多项式f (x ),它在0,2π, π处与函数sin x 有相同的值. 3)一个次数尽可能低的多项式f (x ),使f (0) =1, f (1)=2, f (2)=5, f (3)=10.解: 1) 由Lagrange 插值公式: 取321(3)(4)(5)1()(124760)(23)(24)(25)6x x x l x x x x ---==--+----322(2)(4)(5)111()1920(32)(34)(35)22x x x l x x x x ---==-+----323(2)(3)(5)131()515(42)(43)(45)22x x x l x x x x ---==+++---324(2)(3)(4)1313()4(52)(53)(54)623x x x l x x x x ---==++----43212341217203()(())()30242326i i i f x l x f a l l l l x x x =∴==-+⋅+=-+-+∑2) 已知f (0) =sin 0=0, f (2π)=sin 2π=1, f (π)sin π=0. 设F (x )=x (x-2π)(x-π), 则得到)(4)(2ππ--=x x x f .3) 同理可得321(1)(2)(3)111()1(01)(02)(03)66x x x l x x x x ---==-+-+---,32(0)(2)(3)15()3(10)(12)(13)22x x x l x x x x ---==-+---,323(0)(2)(3)()23(20)(21)(23)2x x x x l x x x ---==-++---,324(0)(2)(3)111()(30)(31)(32)623x x x l x x x x ---==-+---,21234()()2()5()10()1f x l x l x l x l x x ∴=+++=+14. 设f (x )是一个整系数多项式, 试证: 如果f (0)和f (1)都是奇数, 则f (x )不能有整数根.。