(完整word版)多项式练习题及答案
- 格式:doc
- 大小:128.44 KB
- 文档页数:12
多项式练习题带答案一、选择题1. 下列哪个表达式不是多项式?A. \( x^2 + 3x + 2 \)B. \( 5x - 3 \)C. \( \frac{x}{2} \)D. \( 2x^3 - 4x^2 + 7 \)答案:C2. 多项式 \( P(x) = ax^3 + bx^2 + cx + d \) 中,如果 \( a = 1 \),\( b = -1 \),\( c = 0 \),\( d = 2 \),则 \( P(x) \) 可以表示为:A. \( x^3 - x^2 + 2 \)B. \( x^3 - x^2 - 2 \)C. \( x^3 + x^2 + 2 \)D. \( x^3 - x^2 + 2x \)答案:A3. 如果 \( f(x) = x^3 - 6x^2 + 11x - 6 \),那么 \( f(1) \) 的值是:A. 0B. 1C. 2D. 3答案:B二、填空题1. 多项式 \( 2x^3 - 5x^2 + 3x - 4 \) 的次数是 ______ 。
答案:32. 如果 \( g(x) = x^4 - 3x^3 + 5x^2 - 2x + 1 \),那么 \( g(0) \) 的值是 ______ 。
答案:13. 多项式 \( h(x) = 4x^2 - 7x + 2 \) 与 \( x - 3 \) 的乘积是\( 4x^3 - \) ______ 。
答案:7x^2 + 10x - 6三、解答题1. 给定多项式 \( f(x) = 3x^3 - 2x^2 + 5x - 1 \),求 \( f(-1) \) 的值。
解:将 \( x = -1 \) 代入 \( f(x) \) 中,得到\( f(-1) = 3(-1)^3 - 2(-1)^2 + 5(-1) - 1 = -3 - 2 - 5 - 1 = -11 \)。
2. 已知 \( p(x) = 2x^3 + ax^2 + bx + c \),其中 \( p(1) = 5 \),\( p(-1) = -1 \),求 \( a \),\( b \),\( c \) 的值。
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2?3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)?(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)?(﹣2ab2)=_________.5.计算:﹣6a?(﹣﹣a+2)6.﹣3x?(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是 cm 。
一、概念考察:1. 叫做多项式. 叫做多项式的项. , 叫做常数项2. 叫做多项式的次数, 统称整式.二、实践应用:1.式子 m−n 5, −8 ,−119ab , y x −2 , 1a , 1m−n 中,多项式有哪几个?2.多项式x 2y 3−2xy 3−8的各项分别是: 。
3.多项式x 2y 3−2xy 3−8的项数和次数分别是 。
4.多项式3x y 2−8x 3y 3−6x 3y −5是 次 项式,其中最高次项是 ,常数项是 。
5.一个只含字母x 的二次三项式,二次项系数是3,一次项系数是-1,常数项是8,则这个多项式是 。
6.若多项式(m −3)x 2−4x −(m +2)是关于x 的一次多项式,则m = ,若它是关于x 的二次二项式,则m= 。
7.已知a 是两位数,b 是一位数,把a 写在b 的前面,就成为一个三位数,则这个三位数可表示为: 。
8.有一组多项式:m −n 2 , m 2+n 4 , m 3−n 6 , m 4+n 8 ,⋯,请观察它们的构成规律,用你发现的规律写出第9个多项式为 。
一、概念考察:1. 几个单项式的和 叫做多项式. 每个单项式 叫做多项式的项. , 不含字母的项 叫做常数项2. 多项式里,次数最高项的次数 叫做多项式的次数, 单项式和多项式 统称整式.二、实践应用:1.式子m−n 5, −8 ,−119ab , y x −2 , 1a , 1m−n 中,单项式和多项式各有哪几个?答:单项式:−8 ,−119ab , 多项式:m−n 5 2.多项式x 2y 3−2xy 3−8的各项分别是: x 2y 3,−2xy 3, −8共三项 。
3.多项式x 2y 3−2xy 3−8的项数和次数分别是 项数为3,次数为5 。
4.多项式3x y 2−8x 3y 3−6x 3y −5是 六 次 四 项式,其中最高次项是−8x 3y 3,常数项是 −5 。
5.一个只含字母x 的二次三项式,二次项系数是3,一次项系数是-1,常数项是8,则这个多项式是 3x 2−x +8 。
数学课程多项式运算练习题及答案1. 多项式的基本概念在数学中,多项式是由常数项、幂函数和系数的乘积相加而成的表达式。
多项式运算是数学的一个重要部分,它们在代数、几何等领域都具有广泛的应用。
接下来,我们将为你提供一些多项式运算的练习题及其答案。
2. 多项式的加减法练习题题目1:将多项式 P(x) = 2x^3 - 4x^2 + 5x + 3 与 Q(x) = -x^3 + 3x - 2 相加。
题目2:计算多项式 P(x) = x^4 - 2x^3 + 3x^2 - 4x + 5 和 Q(x) = -2x^4 + 4x^3 - 6x^2 + 8x - 10 之差。
答案1:P(x) + Q(x) = 2x^3 - 4x^2 + 5x + 3 - x^3 + 3x - 2 = x^3 - 4x^2 + 8x + 1答案2:P(x) - Q(x) = (x^4 - 2x^3 + 3x^2 - 4x + 5) - (-2x^4 + 4x^3 -6x^2 + 8x - 10) = 3x^4 - 6x^3 + 9x^2 - 12x + 153. 多项式的乘法练习题题目3:计算多项式 P(x) = 2x^2 - 3x + 1 和 Q(x) = x^3 - 2x + 3 的乘积。
题目4:将多项式 P(x) = (x^2 + 2x + 3)(2x^2 - x - 1) 展开并进行合并同类项。
答案3:P(x) * Q(x) = (2x^2 - 3x + 1) * (x^3 - 2x + 3) = 2x^5 - 4x^3 + 6x^2 - 3x^4 + 6x^2 - 9x + x^3 - 2x + 3 = 2x^5 - 3x^4 + x^3 + 12x^2 - 11x + 3答案4:(x^2 + 2x + 3)(2x^2 - x - 1) = 2x^4 - x^3 - x^2 + 4x^3 - 2x^2 - 2x + 6x^2 - 3x - 3 = 2x^4 + 3x^3 + 3x^2 - 5x - 34. 多项式的除法练习题题目5:将多项式 P(x) = 2x^3 - 5x^2 + 3x + 4 除以 Q(x) = x - 2,并求商和余数。
多项式练习题参考答案一、填空题1.f(x) = X4 -4x3 -l,g(x) = x2 -3x-l.则y(x)被g(x)除所得的商式为亍—X —2 ,余式为-7x - 3 .2 • f(x),g(x),u(x),v(x)e P[x],若“(x)f (x) + v(x)g(x) = 2,则(f(x),g(x))= _L(w(x),v(x))=—・L 13. f (x) = a n x n+■■■ + a l x + a0 e P[x]且*0,/(x) I g(x), (/(x),g(x)) = —/(x).a n4.尸+2,(x —1)(X +3),0,2X +4,X3 —1 中是本原多项式的为尸+2,(x —l)(x +3), .r3 -1.5.多项式/(x) = [4(5x-4)2000X2-2X-1]2°01(8 X3-11X2 + 2) 2002的所有系数之和= 1_ (取X = 1得到),常数项=-22。
2 (取》=0得到).6.能被任一多项式整除的式项式是零多项式;能整除任意多项式的多项式一定是零次多项式.7.多项式f⑴除以ax-b(a^O)的余式为/(-).a8.设2%3— %2 + 3x — 5 =。
(尤一2)3 + Z?(x — 2)2 + c(x — 2) + 6?,则ci,b,c,d的值为2, 9, 23,13 .9.f⑴=营+ 4x4 +X3-10X2-4X +8在有理数上的标准分解式是(x-l)2(x + 2)3.10.x2 +3x + 2|x4 +mx2- px+ 2 ,贝ll m = -6 , p = 3二、判断说明题(先判断正确与错误,再简述理由)1.若心)f(x) + v(x)g(x)=』3),则必为/(X)与g(x)的最大公因式.错.如/(x) = x-l,g(x) = x + l,w(x) = x + l,v(x) = -x ,贝!J d(x) = -x-l,但/(x)与g(x)互素.2.若p(x) I /(x)g(x),p(x)在P 上不可约,且p(x) I [/(x) + g(x)],则p(x) I /(x)且p(x) I g(x).对.由p(x)I /(x)g(x),p(x)在P 上不可约可得p(x)I /(x)或p(x)I g(x).若p(x) I /(x),又p(x) I [/(x) + g(x)],因此p(x)l[/(x) + g(x)]-/(x),即p(x)lg(x).3.设p(x),f(x)为P上的多项式,且p(x)不可约.若p(x)为f'(x)的*重因式, 则p(x)必为/(X)的)+ 1重因式.错.如/(x) = (x2+2)5+5, x2 +2是广⑴在Q上的4重因式,但尸+2不是了(x)的因式.4.有理系数多项式/(%)在Q上可约,则f(x)有有理根.错.如f(x)=x4-4 = (x2+2)(x2-2)在Q上可约,但f(x)没有有理根.5.若"是整系数多项式f(x)的根,p,q为互素的整数,则⑴.P对.由里是整系数多项式f(x)的根可得px-q为f(x)的因式,艮口Pf (%) = (px-q)g(x),且g(x)是整系数的,取x = l可得(p-q)|f ⑴.6.奇数次实系数多项式在实数域上一定有实根,因此在实数域上一定可约. 错.一次实系数多项式有实根但不可约.7.若f(x)|/z(x)且g(x)|/z(x),则f(x)g(x)|/z(x).错.缺f(x),g(x)互素.8.若g(x) + f(x)则(f(x),g(x)) = l.错.如 %2 -1 / %3 -1,但(x2 - l,x3 -1) = x-19.数域P上的任意一个不可约多项式p(x)在复数域内没有重根.正确.10.多项式f(x)有重根当且仅当f(x)有重因式.与所考虑的范围有关,在复数域上正确,在其它数域上有重因式未必有重根.三、计算题1.设f (x) = x4 -x3 -x2 +2x-l,g(x) = X3— 2x + l,求(f (x),g(x))以及w(x),v(x),使w(x)f(x) +v(x)g(x) = (f(x),g(x)).解:利用辗转相除法得/■(x) = g(x)0i (x) + * (x) = g(x)(x T) + -X, g(x) = ^(x)^2(x) + ^(x)= (x2 - x)(x +1) - X +1, r^x) = r2 (x)q3 (x) = (-x + l)(-x).因此(f (x), g ⑴)=x — 1.又r(X)= g(X)- * (x)02 (x) = g (x) - (f (x) - g(X)01 (x))02 (x) =-<112(x)f (x) + (1 + 01 (x)02 (x)) .g (x)) = -r(x) = q, (x)/(x) - (1 + (x)^2 (x))g (x) .2所以i/(x) = q2 (x) = x + l,v(x) = —1 —0(x)02(x)= —l-(x — l)(x + l) = -x2.2./(x) = x5 - x3 + 4x2 - 3x + 2(1)判断f(x)在R上有无重因式?如果有,求出所有的重因式及重数;(2)求f(x)在R上的标准分解式.解:(1) f,(x) = 5x4-3x2+8x-3.运用辗转相除法可得:(f(x),f'(x)) = x2—x + 1.r —x + 1为f (x)在R上二重因式.(2)由⑴可得/Xx)在R上的标准分解式为/(x) = (x2 - x + l)2(x + 2).解法2: f(x)的可能有理根为±1,±2,经检验-2为f(x)的有理根,由综合除法可得-210-14-32-2 4 -6 4 -21-23-210因此有f(x) = (x4- 2W + 3x2 — 2% +1)(》+2)=(若 _ * +1)2 (x + 2).若一》+1 为f(x)在R上二重因式.f(x)在R上的标准分解式为f(x) = (x2-x + l)2(x + 2).3.已知f (x) = x3 +6x2 + 3px + 8 ,试确定p的值,使/'(x)有重根,并求其根.解:若f (x)有重根,则/(x) = (x — a)2(x-幻=x3~(2a + b)x2 +(a2 + 2ab)x-a2b.因此有2Q + b =—6, Q = —2,a2 + 2ab = 3p,解得,b = -2,或<a2b = -8. p = 4.当p = 4时-2为f (x)的3重根;当p = -5时1为f⑴的2重根,-8为单根.解法2:若f(x)有重根,贝I] (f (%),广⑴)丰1.f\x) = 3x2 +12x + 3p =3(x2 +4i + p).f(X)= ! f '(x)(x + 2) + (2p - 8)x + (8 - 2p)=(x2 + 4x + p)(x + 2) + (2p — 8)(x -1),'(-Y)= (x-l)(x + 5) + (p + 5) •当p = 4 时,f (x) = (x + 2)3, 一2 为f(x)的 3 重根;当p = —5 时,(y(w,广⑴) =x-1,1 为/(x)的2 重根,此时/(x) = (x-l)2(x + 8),-8 为单根.4.已知1 -z•是多项式X4-4X3+5X2-2X-2的一个根,求其所有的根.解:由实系数多项式虚根成对性,1 +,也是¥ —4F +5亍_2》一2的根./(x) = x4 -4x3 +5x2 - 2x-2 = (x2 -2x + 2)(x2 -2x-l).因此f(x)的所有根为l-i,l + z,l + V2,l-V2.5.当a,。
多项式的运算练习题及解析一、综合练习题1. 计算多项式 P(x) = 3x^3 - 2x^2 + 5x - 1 在 x = 2 时的值。
解析:将 x = 2 代入多项式 P(x) 中,得到:P(2) = 3(2)^3 - 2(2)^2 + 5(2) - 1= 3(8) - 2(4) + 10 - 1= 24 - 8 + 10 - 1= 25因此,在 x = 2 时,多项式 P(x) 的值为 25。
2. 将多项式 P(x) = 2x^4 + 3x^3 - 5x^2 + x + 6 与多项式 Q(x) = x^3 - 2x + 5 相加,并将结果化简。
解析:将 P(x) 和 Q(x) 相加,得到:P(x) + Q(x) = (2x^4 + 3x^3 - 5x^2 + x + 6) + (x^3 - 2x + 5)= 2x^4 + 3x^3 + x^3 - 5x^2 - 2x + x + 6 + 5= 2x^4 + 4x^3 - 5x^2 - 2x + 11因此,将多项式 P(x) 和 Q(x) 相加后化简后得到 2x^4 + 4x^3 - 5x^2 - 2x + 11。
3. 将多项式 P(x) = 4x^5 - 6x^4 + 2x^3 - x^2 + 8x - 3 与多项式 Q(x) = 2x^3 - 3x^2 + 5 相乘,并将结果化简。
解析:将 P(x) 和 Q(x) 相乘,得到:P(x) * Q(x) = (4x^5 - 6x^4 + 2x^3 - x^2 + 8x - 3) * (2x^3 - 3x^2 + 5)= 8x^8 - 12x^7 + 4x^6 - 2x^5 + 16x^4 - 6x^3 - 3x^5 + 4x^4 -x^3 + 5x^2 + 8x - 3化简后,将同类项合并得:P(x) * Q(x) = 8x^8 - 12x^7 + 4x^6 - 5x^5 + 20x^4 - 7x^3 + 5x^2 + 8x - 3因此,将多项式 P(x) 和 Q(x) 相乘并化简后得到 8x^8 - 12x^7 + 4x^6 - 5x^5 + 20x^4 - 7x^3 + 5x^2 + 8x - 3。
多项式的练习题1、下列代数式中,哪些是单项式?哪些是多项式?哪些是整式?。
,,,,,π22223111r R n m y x x b a -----2、指出下列多项式是几次几项式,并写出每一项。
① ;x x 3122-+ ②;245223+-+-ab b a b a ③443223464214y xy y x y x y x +--+ 3、若()12322+---x n y x m 是关于y x 、的三次二项式,求()2n m +的值。
4、多项式()7221++-x m x m是关于x 的二次三项式,则m= 。
5、已知675333212--++xy y x y x m m 是七次四项式,求12-+m m 的值。
6、若单项式48-m xy 的次数为3次,多项式356-+b an 的次数为8,求n m 的值。
7、若多项式236721+---+x y x y x m m 是关于y x 、的五次四项式,求()1542+--m m 的值。
8、多项式()()433323++-+-x m x x m 是关于x 的二次三项式,则m= 。
9、如果()112+-+x m x n为三次二项式,求22n m -的值。
10、已知关于x 的多项式()()()3122234-+---++ax x a x b x b a 不含23x x 和项,试求当1-=x 时这个多项式的值。
11、若多项式()k y xy k x -+-+2212不含xy 的值,求k 的值。
12、一个只含字母a 的二次三项式,它的二次项、一次项的系数都是-1,常数项是2,你能写出这个二次三项式吗?当21-=a 时,这个二次三项式的值为多少?13、一个关于y x 、的二次三项式,除常数项-2外,其余各项的系数都是1,你能写出这个二次三项式吗?14、一个只含字母x 的三次四项式,它的三次项系数为-2,一次项和二次项的系数都是-1,常数项为9,你能写出这个三次四项式吗?。
多项式练习题及答案1. 求解多项式的和与差(1) 已知多项式f(x) = 3x^3 - 2x^2 + 5x - 7,求f(x)与g(x) = x^3 - 5x + 9的和与差。
解答:f(x)与g(x)的和可以表示为:(f+g)(x) = f(x) + g(x) = (3x^3 - 2x^2 + 5x - 7) + (x^3 - 5x + 9)按照相同项合并的原则,将同次幂的项相加得到: (4x^3 - 2x^2 +5x + 2)f(x)与g(x)的差可以表示为:(f-g)(x) = f(x) - g(x) = (3x^3 - 2x^2 + 5x - 7) - (x^3 - 5x + 9)按照相同项合并的原则,将同次幂的项相减得到:(2x^3 - 2x^2 + 10x - 16)所以,f(x)与g(x)的和为:4x^3 - 2x^2 + 5x + 2,f(x)与g(x)的差为:2x^3 - 2x^2 + 10x - 16。
2. 求解多项式的乘积(2) 已知多项式f(x) = 2x^2 - 3x + 1,求f(x)与g(x) = x^3 - 5x + 9的乘积。
解答:f(x)与g(x)的乘积可以表示为:(f * g)(x) = f(x) * g(x) = (2x^2 - 3x + 1) * (x^3 - 5x + 9)按照多项式乘法分配律展开式,得到:(f * g)(x) = 2x^2 * (x^3 - 5x + 9) - 3x * (x^3 - 5x + 9) + 1 * (x^3 - 5x + 9)化简得:(f * g)(x) = 2x^5 - 10x^3 + 18x^2 - 3x^4 + 15x^2 - 27x + x^3 - 5x + 9合并同类项得:(f * g)(x) = 2x^5 - 3x^4 - 10x^3 + x^3 + 18x^2 + 15x^2 - 27x - 5x + 9(f * g)(x) = 2x^5 - 3x^4 - 9x^3 + 33x^2 - 32x + 9所以,f(x)与g(x)的乘积为2x^5 - 3x^4 - 9x^3 + 33x^2 - 32x + 9。
四道多项式计算练习题及其参考步骤1.已知(34x+21)(6x ²+mx+n)结果不含x ²项和x 项,求m,n 的值. 解:由多项式展开性质可知,先考虑x ²的项,有:34x*mx+21*6x ²=(34m+126)x ²;再考虑x 的项,有:34x*n+21*mx=(34n+21m)x.根据题意,不含x ²和x 项,则其系数为0,有:34m+126=0且34n+21m=0,即可求出m=-6317,n=1323578.2.若(5x-14)²=63,则代数式25x²-140x+78的值是多少?解:对已知条件进行平方展开,再根据所求表达式与条件的特征关系,有:25x²-140x+196=63,即25x²-140x=-133,所求代数式=25x²-140x+78=-133+78=-55.3.已知2x²-4x-13=0,求代数式-2x³+21x+1974的值.解:已知2x²-4x-13=0,则2x²=4x+13,此时所求代数式有:-2x³+21x+1974=-x(2x²)+21x+1974,=-x(4x+13)+21x+1974,=-4x²+(21-13)x+1974,=-(4x²-8x)+ 1974,=-2*13+1974,=1948.4.已知x²-17x-15=0,求代数式19x³-326x²-234x+47的值.解:使用多项式除法,来计算多项式在给定条件的值。
设19x³-326x²-234x+47=(x²-17x-15)(19x-m)+n,通过右边展开,对应项系数相等,可得:m=3,n=2,所以19x³-326x²-234x+47=(x²-17x-15)( 19x-3)+2,即:19x³-326x²-234x+47=0*(19x-3)+2=2.。
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是 cm 。
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是 cm 。
5.当x=3,y=1时,代数式(x +y )(x -y )+y 2的值是__________.6.若是同类项,则.7.计算:(x+7)(x-3)=__________,(2a-1)(-2a-1)=__________. 8.将一个长为x ,宽为y 的长方形的长减少1,宽增加1,则面积增加________.二、选择题1. 化简)1()1(a a a a --+的结果是( )A .2a ;B . 22a ;C .0 ;D .a a 222-. 2.下列计算中正确的是 ( ) A.()aaa a +=+236222 ; B.()x x y x xy +=+23222;C.a a a +=10919; D.()aa =336.3. 一个长方体的长、宽、高分别是x x -342、和x ,它的体积等于 ( ) A.x x -3234; B.x 2 ; C.x x -3268; D.x x -268. 4. 计算:ab b a ab 3)46(22•-的结果是( )A.23321218b a b a -;B.2331218b a ab -;C.22321218b a b a -;D.23221218b a b a -.5.若且,,则的值为( )A .B .1C .D .6.下列各式计算正确的是( )A .(x+5)(x-5)=x 2-10x+25 B .(2x+3)(x-3)=2x 2-9 C .(3x+2)(3x-1)=9x 2+3x-2 D .(x-1)(x+7)=x 2-6x-77.已知(x+3)(x-2)=x 2+ax+b ,则a 、b 的值分别是( )A .a=-1,b=-6B .a=1,b=-6C .a=-1,b=6D .a=1,b=6 8.计算(a-b )(a 2+ab+b 2)的结果是( )A .a 3-b 3B .a 3-3a 2b+3ab 2-b 3C .a 3+b 3D .a 3-2a 2b+2ab 2-b 3三、解答题 1.计算:(1) )2(222ab b a ab -•; (2))12()3161(23xy y x x -•-;(3))13()4(32-+•-b a ab a ; (4) )84)(21(323xy y y x +-;(5))()(a b b b a a ---; (6) )1(2)12(322--+-x x x x x .2.先化简,再求值:)22(32)231(2xx x x ----,其中2=x3.某同学在计算一个多项式乘以-3x 2时,因抄错符号,算成了加上-3x 2,得到的答案是x 2-0.5x+1,那么正确的计算结果是多少?4.已知:(),,A ab B ab a b C a b ab =-=+=-222323,且a b 、 异号,a 是绝对值最小的负整数,b =12,求3A ·B-21A ·C 的值.5.若(x 2+mx+8)(x 2-3x+n )的展开式中不含x 3和x 2项,求m 和n 的值参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.多项式参考答案一填空1.y x y x 3233+2. 646-a ;3.-4.4.-325.-26.:37.x 2+4x-21;1-4a 28.x-y-1二选择1.B ;2.B ;3.C4.A.5.C 6.C 7.B 8.A三解答1.(1) 322342b a b a -; (2)23442y x y x +-; (3)a b a b a 4124422+--; (4) 543342y x y x --; (5)22b a -; (6) x x x 3423+-.2.x x 38232+-,314. 3. 23431512x x x -+-.4.解:由题意得11,2a b =-=,原式=32231621a b a b --,当11,2a b =-=时,原式=118. 5.m=3,n=1。