Weak corrections to gluon-induced top-antitop hadro-production
- 格式:pdf
- 大小:335.42 KB
- 文档页数:17
临床医学西医学生物化学模拟题与参考答案一、单选题(共74题,每题1分,共74分)1.肌糖原不能分解为葡萄糖直接补充血糖是因为( )。
A、肌肉组织缺乏葡萄糖-6-磷酸酶B、肌肉组织是储存糖原的器官C、肌肉组织缺乏葡萄糖激酶D、肌糖原分解的产物是乳酸正确答案:A2.基因表达调控是多级的,其主要环节是( )。
A、基因活化B、转录起始C、翻译D、转录后加工正确答案:B3.下列反应中不能被6-巯基嘌呤抑制的是( )。
A、AMP→ADPB、G→GMPC、IMP→AMPD、IMP→GMP正确答案:A4.下列哪一种氨基酸是亚氨基酸?( )A、脯氨酸B、组氨酸C、赖氨酸D、谷氨酸正确答案:A5.基因工程的特点是( )。
A、在分子水平上操作,在分子水平上表达B、在分子水平上操作,回到细胞水平上表达C、在细胞水平上操作,在分子水平上表达D、在细胞水平上操作,在细胞水平上表达正确答案:B6.真核生物染色质DNA的三级结构是( )。
A、超螺旋B、结构域C、锌指结构D、核小体正确答案:D7.胆固醇可以转变成( )。
A、胆红素B、CO2和H2OC、胆汁酸D、甲状腺素正确答案:C8.真核生物转录调控占主导地位的是( )。
A、负反馈调节B、阻遏调节C、正性调节D、负性调节正确答案:C9.蛋白质生物合成的部位是( )。
A、内质网B、细胞核C、核糖体D、线粒体正确答案:C10.肝中与胆红素结合的最主要基团是( )。
A、硫酸根B、葡萄糖醛酸基C、甲基D、乙酰基正确答案:B11.下列关于DNA结构的不正确叙述是( )。
A、碱基配对发生在嘌呤和嘧啶之间B、鸟嘌呤和胞嘧啶形成3个氢键C、DNA两条多聚核苷酸链的方向相反D、腺嘌呤与胸腺嘧啶之间形成3个氢键正确答案:D12.可导致体内胆固醇合成增加的因素为( )A、饥饿B、乙酰CoA减少C、甲状腺素D、胆固醇正确答案:C13.目前下列哪类疾病基因治疗效果最确切?( )A、多基因遗传病B、单基因遗传病C、感染性疾病D、恶性肿瘤正确答案:B14.下列关于间接胆红素的叙述,正确的是( )。
中国药科大学《生物化学与分子生物学》2008-2009学年第一学期模拟试卷一判断题(每题1分,共10分,正确与否请在括号内打“√”或“×”)()1.已知有一个重组DNA只带有一种抗药性基因,那么可以通过在含有相应药物的琼脂平板上是否能正常生长判断哪一些菌落含有该重组DNA。
()2.磷酸化可以使类固醇类激素受体无力与其配体结合,这说明磷酸化的功能并不是绝对的。
()3.为了获得互补的粘性末端,常使用同一种限制性内切酶来切割目的基因和载体基因。
()4.在蛋白质合成过程中,转肽酶是构成核糖体中蛋白质的重要部分,是成肽的关键酶。
()5.在大肠杆菌的DNA复制过程中,DNA聚合酶Ⅲ的聚合活性最强。
()6.尿素是人类以及灵长类动物嘌呤代谢的最终产物,随尿排出体外。
()7.从乙酰CoA开始合成一分子软脂酸需要消耗8分子的A TP。
()8.在糖酵解代谢的调节中,6-磷酸果糖激酶-1的产物1-6二磷酸果糖是该酶的变构抑制剂。
()9.有活性的蛋白质都具有四级结构。
()10.缺乏维生素C容易患坏血病。
二选择题(每题1分,共10分,把最佳的选项标在相应题号后面)1.下列氨基酸中,哪一个是酸性氨基酸()A赖氨酸B精氨酸C组氨酸D谷氨酸2.在下列各种化学作用力中,哪一个不是维持DNA双螺旋稳定的因素()A疏水键B氢键C离子键D碱基堆积力3.酶作用高效率的关键因素之一就是降低了反应底物的活化能,下列不属于此因素的是()A“趋近”效应B底物变形与张力作用C酸碱催化作用D共价催化作用4.在糖酵解途径中,不是关键酶的是()A6-磷酸果糖激酶-1B磷酸甘油酸激酶C丙酮酸激酶D己糖激酶5.谷氨酸通过转氨作用生成丙氨酸的反应中,哪一个是氨基的受体()A谷氨酸Ba-酮戊二酸C丙酮酸D丙氨酸6.在FAD与NADH氧化呼吸途径中,下列哪一种物质是解偶联剂()A2,4-二硝基苯酚B鱼藤酮C异戊巴比妥D粉蝶霉素A7.下列哪一种药物通过影响核酸的合成来发挥作用的()A红霉素B甲氨蝶呤C利福霉素D四环素8.下列生物中遗传物质为RNA的是()A大肠杆菌B艾滋病毒C B型肝炎病毒D细菌9.在细胞内信息物质中,有多种小分子化合物作为第二信使连接着信息传递。
专利名称:用于改善软膜侧支循环和治疗血液凝固障碍的方法与组合物
专利类型:发明专利
发明人:C·森,C·瑞克,S·罗伊,G·克里斯托佛里迪斯
申请号:CN201380040067.1
申请日:20130607
公开号:CN104507468A
公开日:
20150408
专利内容由知识产权出版社提供
摘要:本发明提供了促进受试者的动脉生成的方法。
实施例包括以下方法,这些方法包括:向该受试者给予有效剂量的生育三烯酚;在该受试者中导致脑血管侧支循环的血管中的金属蛋白酶组织抑制剂金属肽酶抑制剂1(TIMP1)增加;减弱基质金属蛋白酶-2(MMP2)的活性;由此促进动脉生成。
申请人:俄亥俄州立大学
地址:美国俄亥俄
国籍:US
代理机构:中国国际贸易促进委员会专利商标事务所
代理人:李程达
更多信息请下载全文后查看。
试题:(复旦大学)2002年生物化学试题2007年07月02日16:11 来源:考研教育网一、是非题(1/30)1.天然蛋白质中只含19种L-型氨基酸和无L/D-型之分的甘氨酸达20种氨基酸的残基。
( )2.胶原蛋白质由三条左旋螺旋形成的右旋螺旋,其螺旋周期为67nm( )3.双链DNA分子中GC含量越高,Tm值就越大( )4. a-螺旋中Glu出现的概率最高,因此poly(Glu)可以形成最稳定的a-螺旋( )5.同一种辅酶与酶蛋白之间可由共价和非共价两种不同类型的结合方式( )6.在蛋白质的分子进化中二硫键的位置的到了很好的保留( )7. DNA双螺旋分子的变性定义为紫外吸收的增加( )8.有机溶剂沉淀蛋白质时,介电常数的增加使离子间的静电作用的减弱而致( )9. RNA由于比DNA多了一个羟基,因此就能自我催化发生降解( )10. RNA因在核苷上多一个羟基而拥有多彩的二级结构( )11.限制性内切酶特制核酸碱基序列专一性水解酶( )12. pH8条件下,蛋白质与SDS充分结合后平均每个氨基酸所带电荷约为0.5个负电荷( )13.蛋白质的水解反应为一级酶反应( )14.蛋白质变性主要由于氢键的破坏这一概念是由Anfinsen提出来的( )15.膜蛋白的二级结构均为a-螺旋( )16.糖对于生物体来说所起的作用就是作为能量物质和结构物质( )17.天然葡萄糖只能以一种构型存在,因此也只有一种旋光度( )18.人类的必须脂肪酸是十六碳的各级不饱和脂肪酸( )19.膜的脂质由甘油脂类和鞘脂类两大类脂质所组成( )20.维生素除主要由食物摄取外,人类自身也可以合成一定种类和数量的维生素( )21.激素是人体自身分泌的一直存在于人体内的一类调节代谢的微量有机物( )22.甲状腺素能够提高BMR的机理是通过促进氧化磷酸化实现的( )23.呼吸作用中的磷氧比(P/O)是指一个电子通过呼吸链传递到氧所产生A TP的个数( )24.人体正常代谢过程中,糖可以转变为脂类,脂类也可以转变为糖( )25. D-氨基酸氧化酶在生物体内的分布很广,可以催化氨基酸的氧化脱氨( )26.人体内所有糖分解代谢的中间产物都可以成为糖原异生的前体物质( )27.人体HDL的增加对于防止动脉粥样硬化由一定的作用( )28.胆固醇结石是由于胆固醇在胆囊中含量过多而引起的结晶结石( )29.哺乳动物可以分解嘌呤碱为尿素排出体外( )30. THFA所携带的一碳单位在核苷酸的生物合成中只发生与全程途径( )二、填空题(40分)1.一个典型的分泌蛋白质的信号肽N端1~3个________和C端一段______________组成2.糖蛋白中糖恋的主要作用是____________________3. DNA的Cot曲线是通过测定____________来作图的4.肽链中的甲硫氨酸残基被溴化氰作用后肽链就在_____________被切断,甲硫氨酸残基变成__________________5. Pribnow box是指______________,真核生物中的对应物为________________6.在DNA的样品保存液中一般要加入1mM EDTA,作用为___________和___________7.酶活性测定体系的关键在于____________8.大肠杆菌基因组DNA共300万对碱基,拉成直线长度为_________cm9.形成球蛋白的作用力按其重要程度依次为__________,_________,________和__________10.顺相层析的移动相为________________11.非竞争性抑制的酶反应中Vmax____________,Km______________12.核酸的分子杂交技术是从_____________发展而来的13.某细胞亚器官的膜厚度为7.5nm,存在于该膜上的蛋白质的穿膜部分至少应该由_________个富疏水氨基酸构成。
西安大学生物工程学院2020级《生物化学》课程试卷(含答案)__________学年第___学期考试类型:(闭卷)考试考试时间:90 分钟年级专业_____________学号_____________ 姓名_____________1、判断题(50分,每题5分)1. α淀粉酶和β淀粉酶的区别在于α淀粉酶水解α1,4糖苷键,β淀粉酶水解β1,4糖苷键。
()答案:错误解析:2. 酶反应的专一性和高效性取决于酶蛋白本身。
()答案:正确解析:3. DNA双螺旋的两条链方向一定是相反的。
()答案:正确解析:4. 线粒体中也存在一定量的DNA。
()答案:正确解析:5. 霍乱毒素能与肠道上皮细胞膜中的鞘糖脂结合。
()[南开大学2016研]答案:正确解析:鞘糖脂中的苷脂在神经突触的传导中起重要作用,除此之外也作为细菌毒素的受体,如痢疾毒素的受体。
6. CNBr能裂解GlyMetPro三肽。
()答案:正确解析:Pro并不影响CNBr的裂解反应。
7. 蛋白质变性后,其构象发生改变而构型不变。
()答案:错误解析:蛋白质变性后,构型也可能会发生改变。
构型是一个有机分子中各个原子特有的固定的空间排列。
这种排列不经过共价键的断裂和重新形成是不会改变阴离子的。
蛋白质变性中,可能会涉及合成酶的断裂,进而影响到蛋白质构型的变化。
8. 当溶液的pH大于某一可解离基团的pKa值时,该基团有一半以上被解离。
()答案:正确解析:9. 天然氨基酸都具有一个不对称α碳原子。
()答案:错误解析:甘氨酸无不对称α碳原子10. 多肽链能否形成α螺旋及螺旋是否稳定与其氨基酸组成和排列顺序直接有关。
()答案:正确解析:2、名词解释题(25分,每题5分)1. 蛋白质的别构作用答案:蛋白质的别构作用是指含改变的蛋白质由于一个亚基的构象亚基而引多肽起其余亚基和整个分子构象、性质和功能发生再次发生改变的作用。
解析:空2. 脑苷脂(cerebroside)答案:脑苷脂(cerebroside)是由神经酰胺和半乳糖(或葡萄糖)组成,糖链与神经酰胺C1上的羟基以糖苷键相连,最初从脑组织提取到,故称脑苷脂。
中科院研究生考试试题汇编第一部分氨基酸肽蛋白质一是非题(112题)1 自然界的多肽类物质均由L-构型的氨基酸组成,完全没有例外。
(X )2 某一生物样品,与茚三酮反应呈阳性,用羧肽酶A和B作用后测不出游离氨基酸,用胰凝乳蛋白酶作用后也不失活,因此可肯定它绝非肽类物质。
( X )[羧肽酶A:是水解由芳香族和中性脂肪族氨基酸形成的羧基末端。
比如酪氨酸,苯丙氨酸,丙氨酸等羧肽酶B:主要水解碱性氨基酸形成的羧基末端。
胰凝乳蛋白酶(也叫糜蛋白酶。
)在酪氨酸、色氨酸和苯丙氨酸(都是芳香族氨基酸)的羧基处切断肽键,从而裂解蛋白质。
胰蛋白酶选择地水解蛋白质中所有的由赖氨酸Lys或精氨酸Arg的羧基所构成的肽键。
]3 有四个二硫键的胰脏核糖核酸酶,若用巯基乙醇和尿素使其还原和变性,由于化学键遭到破坏和高级结构松散,已经无法恢复其原有功能。
(X )4 多肽合成中往往以苄氧羰基(C6H5CH2-O-CO-)保护氨基,并可用三氟乙酸轻易的将它去除,羰基可转变成叔丁酯,并用碱皂化去除。
(√)5 细胞核内的组蛋白对阻遏基因的表达起重要作用,所以需要种类繁多的组蛋白与这些基因结合。
(√??)6胶原蛋白中有重复的疏水性氨基酸序列出现,所以形成大面积的疏水区,相互作用使三股肽链稳定及整齐排列。
(X)7多肽类激素作为信使分子,需便于运转,所以都是小分子。
由于分子小,轻易通过靶细胞膜,可以深入内部,启动生化作用。
(X)8球状蛋白分子含有极性基团是氨基酸残基在起内部,所以能容于水。
片层结构只能存在于纤维状蛋白中,如丝心蛋白,所以不容于水。
(X)9胰岛素的生物合成途径是先分别产生A、B两条肽链,然后通过-S-桥键相连。
(X)10 血红蛋白与肌红蛋白结构相似,均含有一条肽链的铁卟啉结合蛋白,所以功能上都有与氧结合的能力,血红蛋白与氧的亲和力较肌红蛋白更强。
(X )11 合成的多聚谷氨酸在pH7时,其r -羧基电离为-COO-,由于静电相斥,分子较松散,在pH4时并不电离,容易形成螺旋结构。
钙失衡与AD的关系1、钙失衡能激活磷脂酶A2, 引起脂质过氧化, 产生氧自由基, 造成细胞膜的完整性的破坏。
2、钙失衡能激活Ca2+-CaM 依赖性蛋白激酶Ⅱ, 使突触前突触蛋白Ⅰ磷酸化, 引发兴奋性神经递质谷氨酸的释放。
谷氨酸( Glu)是脑内兴奋性神经递质, NMDA受体门控的通道是Glu引起的Ca2+内流的主要途径, 当其过度激活时可致细胞内钙超载, 激活系列链式反应直接导致神经元的退行性病变和迟发性坏死。
Glu还可通过受体门控通道或激活磷酸肌醇环路, 促进Ca2+内流, 进而激活钙依赖性的转谷氨酰胺酶( Transglutaminase) , 使Tau蛋白产生类似AD中NFTs的聚合物。
3、激活核酸内切酶, 引起DNA的降解, 导致细胞的凋亡。
4、细胞内Ca2+超载激活Calpain破坏细胞结构蛋白质,Calpain是Ca2+ 激活的Ca2+ 依赖性半胱氨酸中性蛋白酶( Ca2+-activated neutral protease, CANP) 。
在细胞内以无活性的形式存在, 有Ca2+ 时释放部分肽段而活化。
中枢神经系统Calpain可以降解的底物包括:①细胞骨架蛋白、actin、神经纤维蛋白、微管、微管相关蛋白Ⅱ( MAP Ⅱ) 、Tau蛋白; ②多种酶和调节蛋白, 如PKC、磷脂酶C、CaM-PKII、Ca-lcineurin; ③多种受体/通道如Glu、EGF受体, Ca2+通道( 如线粒体中的ryanodine受体通道) ; ④转录因子, 如Fos和Jun; ⑤髓鞘基质蛋白和髓鞘相关糖蛋白。
生理Ca2+水平下, Calpain通过作用于膜-细胞骨架而调控重要的信号通路; 在异常高的Ca2+水平时Calpain则具有强烈的破坏作用, 可将细胞内的蛋白质迅速水解。
5、使线粒体氧化-磷酸化脱偶联, 抑制线粒体的呼吸作用, 导致能量代谢的障碍。
6、钙的代谢失衡直接或间接地影响神经长时程突触增强( LTP) , 使神经元的可塑性降低, 出现记忆障碍。
葡萄糖氧化酶-金纳米粒子修饰电极灵敏检测葡萄糖浓度2016-06-19 12:24来源:内江洛伯尔材料科技有限公司作者:研发部自组装法制备GOD/AuNPs/Chit-GP/GC 修饰电极过程示意图近年来, 氧化还原酶与电极间的直接电子传输的相关研究引起了越来越多研究者的关注. 该领域的研究不但可以为深入探究生物体系复杂的电子传输机理提供良好的模型, 还可为新型的电化学生物传感器,生物燃料电池以及酶反应器等诸多方面的研究奠定基础. 然而, 由于酶的氧化还原中心往往深埋于其结构内部, 而且酶在裸电极表面容易因吸附而失活, 因此酶的活性中心与电极表面间的直接电子转移难以实现. 近期的研究发现, 选择合适的生物相容性材料和适宜的酶固载方法不仅可以有效保持酶的生物活性,还可较好地实现酶与电极间的直接电子传输. 由于其独特的结构和性质, 纳米材料尤其是碳基的纳米材料, 已被广泛应用到了酶的固载及新型生物传感器的构筑等方面. 例如, Sun等利用壳聚糖功能化石墨烯与葡萄糖氧化酶(GOD)间的自组装制备了GP-GOD玻碳(GC)修饰电极, 并利用其实现了对葡萄糖高效、灵敏的检测. Jiang等利用非共价修饰方法将壳聚糖修饰于单壁碳纳米管(SWNT)表面, 并进一步在复合物表面原位生长Au纳米粒子(GNPs), 从而制备了 SWNT-GNPs复合物. 利用该复合物与微过氧化物酶-11(MP-11)所构筑的MP-11/SWNT-GNPs/Au修饰电极, 不仅可有效促进固载酶在电极表面的直接电子传输, 还可实现其对氧气的有效电催化.作为一种新型碳基二维纳米材料,石墨烯由于具有较大的比表面积和良好的电子传输性等优点在电化学领域受到了广泛的关注. 研究表明, 利用石墨烯作为电极材料不仅可以促进氧化还原酶与电极间的直接电子转移, 还可以使所构筑的电化学生物传感器具有较好的性能. 例如, Zhao等将细胞色素c吸附到壳聚糖-石墨烯膜修饰的GC电极上成功构建了化学修饰电极. 该修饰电极不仅可实现细胞色素c与电极间的直接电子转移, 还可对NO表现出较好的电催化能力.然而, 由于石墨烯纳米片间存在强烈的范德华力及π-π相互作用, 致使其易发生团聚, 甚至堆叠成石墨, 从而使石墨烯丧失其特有的单片结构具有的独特性质, 也减少了其比表面积. 此外, 石墨烯表面的疏水性还阻碍了石墨烯与水溶性的氧化还原酶的进一步作用, 限制了石墨烯在生物传感器方面的应用. 因此, 制备兼具水溶性和生物相容性的石墨烯复合材料, 对其在氧化还原酶的固载及在第三代生物传感器构筑中的应用甚为重要.辽宁大学绿色合成与先进材料制备化学辽宁省重点实验室张谦等人通过共价键作用和原位还原法制备了金纳米粒子/壳聚糖-石墨烯纳米复合材料(AuNPs/Chit-GP). 利用FT-IR, UV-vis, TEM 以及XRD对所合成的纳米复合物的结构和形貌进行了表征. AuNPs/Chit-GP呈现明显的正电荷, 因此可通过静电相互作用固载葡萄糖氧化酶(GOD),并构建GOD/AuNPs/Chit-GP/GC修饰电极. 该修饰电极不仅可成功地实现GOD与电极间的直接电子转移, 还对葡萄糖表现出良好的催化性能. 实验结果表明, 其催化的线性范围为2.1~5.7μmol/L, 检出限为0.7μmol/L, 灵敏度为 79.71 mA•cm-2•mM-1.这种集金属纳米粒子、生物相容性高分子以及石墨烯为一体的纳米复合物的构筑为无媒介体的电化学生物传感器的研究提供了一个良好的平台.。
a r X i v :h e p -p h /0603083v 3 8 N o v 2007SHEP-06-04February 2,2008Weak corrections to gluon-inducedtop-antitop hadro-productionS.Moretti,M.R.Nolten and D.A.Ross School of Physics &Astronomy,University of Southampton,Southampton SO171BJ,UK Abstract We calculate purely weak virtual one-loop corrections to the production cross section of top-antitop pairs at the Large Hadron Collider via the gluon-gluon fusion subprocess.We find very small negative corrections to the total cross section,of order −0.6%,but significantly larger effects to the differential one,particularly in the transverse momentum distribution,of order −5%to −10%(in observable regions).In case of parity-conserving spin-asymmetries of the final state,α2S αW corrections are typically of a few negative percent,with the exception of positive and negative peaks at +12%and −5%,respectively (near where the tree-level predictions change sign),while those arising in parity-violating asymmetries (which are identically zero in QCD)are typically at a level of a few permille.1Introduction Top quark physics may well be the only context where both accurate Standard Model (SM)tests and searches for new physics Beyond the Standard Model (BSM)will be carried outat the Large Hadron Collider (LHC).If no BSM physics exists at the TeV scale or the typical mass scale of new particles is (just)above the energy reach of the machine,one may well conceive that most of the experimental and theoretical efforts will concentrate in establishing the true nature of the top quark,which in turn will also enable one to constrain possible manifestations of new physics.While top quarks have been discovered and studied at the Tevatron,the reduced number of events available there will only allow one for a percent level determination of the top mass (currently,m t =172.7±2.9GeV).This precision will be improved by over a factor of two at the CERN machine.Here,one will also be able to measure the top-quark width and quantum numbers (i.e.,the electric charge and isospin,accessible through its Electro-Weak (EW)couplings).While there is certainly scope to investigate the EW couplings of top-quarks by resorting to events with radiated photons and Z bosons [1],the V −A structure (or otherwise)of the charged decay current can already be probed directly in t ¯tevents,if one recalls that the top-(anti)quark decays into a bottom-(anti)quark and a W boson rather than hadronising.Finally,for thesame reason,the top-(anti)quark transmits its spin properties to the decay products ratherefficiently,so that the latter can be explored in suitable experimental observables[2,3,4].Clearly,in order to perform all the relevant measurements in t¯t events,any source of SMcorrections should be well under control.While complete one-loop results exist for QCD[5],similar weak effects have been unavailable until very recently[6,7].These last two paperswere concerned with purely weakα2SαW effects entering the q¯q→t¯t subprocess only.It isthe purpose of this paper to complement those studies,by computing the corrections to thegg→t¯t channel,which is in fact dominant at the LHC(whereas the quark initiated oneis the leading partonic component at the Tevatron).Early,though incomplete results,forα2SαW corrections to top-antitop hadro-production can be found in Ref.[8]for both gg andq¯q initiated subprocesses.Concerning the gg→t¯t case,unlike Ref.[8],notice that we havealso included here the one-loop triangle contributions for gg→Z∗→t¯t,which are in fact non-zero for off-shell Z bosons.(Recall that the Landau-Yang’s theorem[9]is only validfor on-shell Z bosons and we have explicitly verified this to be the case in our calculation ifwe take the appropriate limit.)We have also updated the analyses of[8]to the most recenttop and Higgs mass values as well as Parton Distribution Functions(PDFs).The paper is organised as follows.The next section illustrates the importance that EWeffects should have at TeV energy scales.Sections3and4will be devoted to describe ourcomputation and present the numerical results,respectively.The last section contains ourconclusions.2EW effects at TeV scale energiesThe purely weak(W)component of Next-to-Leading Order(NLO)EW effects producescorrections of the typeαW log2(µ2/M2W),whereαW≡αEM/sin2θW,withαEM the Electro-Magnetic(EM)coupling constant andθW the Weinberg angle.Here,µrepresents some typ-ical energy scale affecting the top-antitop process in a given observable,e.g.,the transverse momentum of either the top(anti)quark or the top-antitop invariant mass.For large enough µvalues,such EW effects may be competitive not only with Next-to-NLO(NNLO)(as αW≈α2S)but also with NLO QCD corrections(e.g.,forµ=0.5TeV,log2(µ2/M2W)≈10).These‘double logs’are of Sudakov origin and are due to a lack of cancellation betweenvirtual and real W-emission in higher order contributions.This is in turn a consequence ofthe violation of the Bloch-Nordsieck theorem in non-Abelian theories[11,12].The problemis in principle present also in QCD.In practice,however,it has no observable consequences,because of thefinal averaging of the colour degrees of freedom of partons,forced by con-finement into colourless hadrons.This does not occur in the EW case,where the initialstate generally has a non-Abelian charge,as in proton-proton scattering.Besides,theselogarithmic corrections arefinite(unlike in QCD),since M W provides a physical cut-offforW-emission.Hence,for typical experimental resolutions,softly and collinearly emitted weakbosons need not be included in the production cross section and one can restrict oneself tothe calculation of weak effects originating from virtual corrections only.By doing so,similarlogarithmic effects,∼αW log2(µ2/M2Z),are generated also by Z-boson corrections.Finally, in some instances all these purely weak contributions can be isolated in a gauge-invariant manner from EM effects which therefore may not be included in the calculation(as it is the case here).(Besides,EM corrections are not subject to Sudakov enhancement.)In view of all this,it becomes of crucial importance to assess quantitatively such weak corrections affecting,in particular,a key process(for both present and future hadron colliders)such as top-antitop hadro-production.3CalculationIt is the aim of our paper to report on the computation of the full one-loop weak ef-fects entering the subprocess gg→t¯t,through the perturbative orderα2SαW.We will instead ignore altogether the contributions of tree-levelα2SαW terms involving the radiation (bremsstrahlung)of real Z bosons.In the Feynman-’t Hooft gauge1,the one used for this calculation,neglecting the b-mass,one has to calculate the following one-loop prototype diagrams for gg→t¯t,ignoring permutations of external gluons:(In the calculation of all such graphs,we have retained the full spin dependence of thefinal state particles.)Given the large number of diagrams involved in the computation,it is of paramountimportance to perform careful checks.In this respect,we should mention that our expres-sions have been calculated independently by at least two of us using FORM[13]and thatsome results have also been reproduced by another program based on FeynCalc[14].Uponremoving the one-loop triangle contributions for gg→Z∗→t¯t and for identical choices of Higgs mass,we also reproduce well the results of thefirst paper in Ref.[8].(In fact,thistriangle contribution is always only marginally relevant.)Finally,wefind reasonable agree-ment with Ref.[4](see also[15,16])in the Sudakov limit,i.e.,for large invariant massesand transverse momenta of thefinal state,provided that thefinal state particles are fairlycentral(see later on).Some of the diagrams contain ultraviolet divergences.In the case of self-energies formassive particles the mass subtraction has been effected on mass-shell so that the massesrefer to the physical(pole)masses.The remaining divergences have been subtracted usingthe‘modified’Dimensional Reduction(DR,asopposed to the more usual‘modified’Minimal Subtraction(correctly account for the SM running of the electroweak coupling up to the threshold for t¯t production.For the top mass and width,the latter entering some of the loop diagrams,we have taken m t=175GeV andΓt=1.55GeV,respectively.(As already intimated,the b-quark was considered massless.)The Z mass used was M Z=91.19GeV and was related to the W mass,M W,via the SM formula M W=M Z cosθW,where sin2θW=0.232.(Corresponding widths wereΓZ=2.5GeV andΓW=2.08GeV.)The Higgs boson mass and width were set to150GeV and16MeV by default,respectively.However,other mass(and consequently width)choices(above the LEP limit of M H>∼115GeV)have been investigated(see later on).The PDFs we have used are CTEQ6L1[17]taken at the factorisation scale Q=2m t. We have also checked other sets,but found no significant difference in the relative size of our corrections.4Numerical resultsOur initialfindings are presented in Figs.1–2.Here,we consider both differential spectra of some kinematic observables as well as global asymmetries,the latter plotted,e.g.,against the invariant mass of the t¯t pair.Notice that this last quantity can only be defined when both the top and anti-top four-momenta are reconstructed,which happens in the case of fully hadronic and semi-leptonic/hadronic decays2,but not for fully leptonic ones(where two neutrinos escape detection).The definitions of the asymmetries are as follows:A LL dσ≡dσ++−dσ+−+dσ−−−dσ−+,A L dσ≡dσ−−dσ+,A P V dσ≡dσ−−−dσ++.(1) For A L only the polarisation of either the t-quark or t-antiquark is assumed to be measured, whereas the other two asymmetries require the determination of the polarisations of both the outgoing particles.A LL is parity-conserving while the other two are parity-violating3. Here,the indices+and−refer to the helicities of right(R)and left(L)handed(anti)top quark,respectively.(Other basis choices are also possible,see Ref.[2].)Wefind that the overall effect of our O(α2SαW)corrections is about−0.6%at the inclusive level(i.e.,to the total cross section,as obtained from the integral of any of the curves in Fig.1).However,for differential cross sections,effects can be of either sign,notably in the (anti)top transverse momentum and top-antitop invariant mass.For an LHC integrated luminosity of300fb−1,differential rates of order a few10−5pb may yield detectable events (after accounting for decay fractions,tagging efficiency and reconstruction performance).In the corresponding observable kinematic range,the maximum correction occurs for the transverse momentum spectrum of the(anti)top at around1TeV(in the Sudakov limit), where it reaches almost the−10%level.In the same kinematic regime,the effects are smaller for the invariant mass and pseudorapidity distributions.At small transverse momentum, invariant mass as well as in the very forward/backward direction is where the corrections are positive,with a maximum of O(+2%)for the second of these observables.In the case of the parity-conserving asymmetry,for which the O(α2S)result is non-zero, O(α2SαW)effects enter significantly(up to the+12and−5%level or so)only near the point where tree-level predictions are zero.Otherwise,they amount to a few negative percent at the most.For the parity-violating asymmetries,the relevant quantity is the actual value of the O(α2SαW)result,as the O(α2S)term is identically zero.In both cases,the rates are at the permille level(away from the M t¯t≈2m t threshold,where ourfixed order results are not fully reliable).The dependence on the actual value of the Higgs mass is generally negligible at both inclusive as well as differential level,with the possible exception of the pseudorapidity dis-tribution in the very central region,see Fig.3(top-left frame),where the absolute size of the O(α2SαW)corrections is shown for M H=150and200GeV.In fact,the inclusive correc-tion varies from−2.33to−2.51pb,respectively,in comparison to a(Higgs independent) tree-level result of384pb.For the other differential spectra studied such effects are rather uniformly spread across the given kinematic range.As for the asymmetries,here the effect of an increased Higgs mass varies significantly with M t¯t,yielding differences with respect to the rates obtained with our default Higgs mass value which are not negligible over most of the kinematical intervals considered,see Fig.3(top-right and bottom frames).Before closing,it is of interest to compare our exact O(α2SαW)results with those of Ref.[4].Notice that the latter only include the case of opposite helicities4in thefinal state and are limited to the contribution of non-angular single(∼αW log(s/M2W))and double (∼αW log2(s/M2W))logarithms.In performing the comparison between our results and those in Ref.[4]we have removed the EM component from the latter.From Fig.4,it is clear that for the logarithmic approximation described be valid all Mandelstam variables ˆs,ˆt,ˆu must be very large,condition which is obviously not fulfilled at small/large scattering angles.However,it should be appreciated that the ratio between the full O(α2SαW)term and the one obtained in NLO Sudakov approximation is a constant to a very good approximation already at moderate energies and for most angles.Thus,in principle,a parameterisation of this constant as a function of the angle should be possible,in view of high statistics Monte Carlo simulations.Figure 1:Differential distributions of the subprocess gg →t ¯t through the O (α2S )(top frames,dotted)and the O (α2S αW )(top frames,solid)as well as the percentage of the latter withrespect to the former (bottom frames,solid)for the (anti)top transverse momentum p T ,the top-antitop invariant mass M t ¯t and the (anti)top pseudorapidity ηt .(Lightly/Red coloured solid tracts in logarithmic scale are intended to be negative.)5Conclusions and outlookFor kinematic variables accessible at the LHC,purely weak corrections through one-loop level (without Z bremsstrahlung)to the top-antitop cross section via gluon-gluon fusion are generally small,although –in order to obtain both the appropriate normalisation and shape of the theoretical prediction –they cannot be neglected in the Sudakov regime of some observables.In contrast,in line with the results reported in [18]–[21]for the case of massless quark pair production,such one-loop weak effects are always crucial in massive quark pair production when spin-asymmetries are considered (particularly,parity-violating ones).Ultimately,our results will have to be put together with those from Refs.[6,7](which we are in the process of repeating),in order to study the top-antitop cross sectionFigure 2:The differential spin asymmetry A LL (as defined in the text)of the subprocessgg →t ¯t through the O (α2S )(top frame,dotted)and the O (α2S αW )(top frame,solid).(Notethat the LO QCD contribution changes sign at ≈900GeV and is heavily dependent on M t ¯t whereas the O (α2S αW )correction is not.)Just below the top frame we show the percentagecorrection to the (non-zero)LO QCD asymmetry for A LL due to O (α2S αW )effects.Thelower two frames display the asymmetries A L and A P V (as defined in the text),which vanish exactly in LO QCD,through the same order.The asymmetries are calculated along the helicity axis as a function of the top-antitop invariant mass M t ¯t .at the level of precision required by the LHC experiments.However,particular care should eventually be devoted to the treatment of real Z production and decay in the definition of the inclusive data sample,as this will determine whether (possibly positive)tree-level Zbremsstrahlung effects have to be included in the theoretical predictions through O (α2S αW ),which might counterbalance the negative effects due to the one-loop Z exchange estimated here.Along the same lines,it should be recalled that NNLO terms ought to be investigated too,as it is well known from the Sudakov treatment that they may well be sizable in comparison to the NLO ones (see,e.g.,Ref.[22]).Finally,we have verified that the effectsFigure 3:The absolute size of the O (α2S αW )corrections to the subprocess gg →t ¯tfor the distribution in (anti)top pseudorapidity ηt (top-left frame)and the differential spin asymmetries (as defined in the text),for M H =150GeV (solid)and M H =200GeV (dotted).The asymmetries are calculated along the helicity axis as a function of the top-antitop invariant mass M t ¯t .studied here for the gg →t ¯tchannel are of no phenomenological relevance at the Tevatron.The experimental impact of O (α2S αW )effects will eventually have to be assessed in a properdetector simulation,in presence of top-antitop decay,parton shower and hadronisation:in fact,as shown in [23],the possibility of extracting such effects is generally limited by systematics rather than statistics.AcknowledgmentsWe thank Claudio Verzegnassi for discussions and for financial support during a visit to Tri-este.SM also acknowledges useful conversations and email exchanges with Matteo Beccaria,Paolo Ciafaloni and Denis Comelli.References[1]E.Maina and S.Moretti,Phys.Lett.B286(1992)370.[2]P.Uwer,Phys.Lett.B609(2005)271;W.Bernreuther,A.Brandenburg,Z.G.Si andP.Uwer,arXiv:hep-ph/0410197,Nucl.Phys.B690(2004)81,Acta Phys.Polon.B34 (2003)4477,arXiv:hep-ph/0209202,Int.J.Mod.Phys.A18(2003)1357,Phys.Rev.Lett.87(2001)242002,Phys.Lett.B509(2001)53;A.Brandenburg,Z.G.Si and P.Uwer,Phys.Lett.B539(2002)235;W.Bernreuther,A.Brandenburg and P.Uwer, Phys.Lett.B368(1996)153.[3]W.Wagner,Rept.Prog.Phys.68(2005)2409.[4]M.Beccaria,S.Bentvelsen,M.Cobal,F.M.Renard and C.Verzegnassi,Phys.Rev.D71(2005)073003.[5]P.Nason,S.Dawson and R.K.Ellis,Nucl.Phys.B303(1988)607and Nucl.Phys.B327(1989)49;W.Beenakker,H.Kuijf,W.L.van Neerven and J.Smith,Phys.Rev.D 40(1989)54;W.Beenakker,W.L.van Neerven,R.Meng,G.A.Schuler and J.Smith, Nucl.Phys.B351(1991)507;M.L.Mangano,P.Nason and G.Ridolfi,Nucl.Phys.B 373(1992)295.[6]J.H.Kuhn,A.Scharf and P.Uwer,Eur.Phys.J.C45(2006)139.[7]W.Bernreuther,M.Fucker and Z.G.Si,Phys.Lett.B633(2006)54,arXiv:hep-ph/0509210.[8]W.Beenakker,A.Denner,W.Hollik,R.Mertig,T.Sack and D.Wackeroth,Nucl.Phys.B411(1994)343;C.Kao,dinsky and C.P.Yuan,Int.J.Mod.Phys.A 12(1997)1341;C.Kao and Doreen Wackeroth,Phys.Rev.D61(2000)055009. [9]ndau,Dokl.Akad.Nauk SSSR60(1948)207;C.N.Yang,Phys.Rev.77(1950)242.[10]M.Melles,Phys.Rept.375(2003)219.[11]A.Denner,arXiv:hep-ph/0110155;A.Denner and S.Pozzorini,Eur.Phys.J.C18(2001)461and Eur.Phys.J.C21(2001)63.[12]M.Ciafaloni,P.Ciafaloni and elli,Phys.Rev.Lett.84(2000)4810,Nucl.Phys.B589(2000)359.[13]J.A.M.Vermaseren,arXiv:math-ph/0010025.[14]J.Kublbeck,M.Bohm and A.Denner,mun.60(1990)165.[15]M.Beccaria,F.M.Renard and C.Verzegnassi,Phys.Rev.D69(2004)113004andarXiv:hep-ph/0405036.[16]M.Beccaria,F.M.Renard and C.Verzegnassi,Phys.Rev.D72(2005)093001.[17]J.Pumplin,D.R.Stump,J.Huston,i,P.Nadolsky and W.-K.Tung,JHEP0207(2002)012.[18]E.Maina,S.Moretti,M.R.Nolten and D.A.Ross,Phys.Lett.B570(2003)205.[19]S.Moretti,M.R.Nolten and D.A.Ross,arXiv:hep-ph/0503152.[20]J.R.Ellis,S.Moretti and D.A.Ross,JHEP0106(2001)043.[21]S.Moretti,M.R.Nolten and D.A.Ross,arXiv:hep-ph/0509254.[22]V.S.Fadin,L.N.Lipatov,A.D.Martin and M.Melles,Phys.Rev.D61(2000)094002;W.Beenakker and A.Werthenbach,Nucl.Phys.B630(2002)3;A.Denner,M.Melles and S.Pozzorini,Nucl.Phys.B662(2003)299;B.Feucht,J.H.Kuhn,A.A.Penin and V.A.Smirnov,Phys.Rev.D93(2004)101802;B.Jantzen,J.H.Kuhn,A.A.Penin and V.A.Smirnov,Phys.Rev.D72(2005)051301.[23]F.Hubaut,E.Monnier,P.Pralavorio,K.Smolek and V.Simak,Eur.Phys.J.C44S2(2005)13.-0.4-0.35-0.3-0.25-0.2-0.15-0.1-0.05002468101214H.O.L.O.√s (TeV)g +g →t L ¯tR (cos θ=0.2)Exact logs only -0.4-0.35-0.3-0.25-0.2-0.15-0.1-0.05002468101214H.O.L.O.√s (TeV)g +g →t L ¯tR (cos θ=0.8)Exact logs only-0.4-0.35-0.3-0.25-0.2-0.15-0.1-0.05002468101214H.O.√s (TeV)g +g →t R ¯tL (cos θ=0.2)Exact logs only -0.4-0.35-0.3-0.25-0.2-0.15-0.1-0.05002468101214H.O.√s (TeV)g +g →t R ¯tL (cos θ=0.8)Exact logs onlyFigure 4:A comparison of the exact O (α2S αW )corrections to those obtained from angular independent (double and single)logarithms only in Ref.[4],for the two combinations with opposite helicities in the final state.The graphs on the left(right)represent the case of large(small)angle scattering.Notice that we have subtracted the EM contributions from the formulae in Ref.[4].SHEP-06-04EFebruary2,2008 Weak corrections to gluon-inducedtop-antitop hadro-production:ErratumS.Moretti,M.R.Nolten and D.A.RossSchool of Physics&Astronomy,University of Southampton,Southampton SO171BJ,UKAbstractThis is an Erratum to a paper of ours,Phys.Lett.B639(2006)513.After its publication, we have discovered a mistake in a numerical program that affects the results presented therein.We provide here the corrected version.New numerical resultsThe numerical program used to produce the results of Ref.[1]was affected by a mistake, which has now been corrected.We present in Figs.1–3the amended results,in correspon-dence to the samefigures in the original paper.We also note,as remarked in[2],that the parity-violating asymmetry A P V defined in[1]is identically zero through O(α2SαW),as we could now verify explicitely.The inclusive results are now as follow:while the(Higgs mass independent)tree-level cross section for gg→t¯t at the LHC is384pb,we nowfind that the weak corrections through O(α2SαW)amount to−9.65pb for M H=150GeV and−9.39 pb for M H=200GeV.All these plots and cross sections correspond to the numerical setup (masses,couplings,PDFs,scales,etc.)declared in[1].For all such results,as well additional ones presented in Refs.[2,3](where independent calculations of the same corrections tackled in[1]were performed),we found very good agreement between ourselves and Refs.[2,3],for the same choice of input parameters.As for Fig.4of[1],here the differences are not substantial.Besides,the purpose of those plots was to illustrate the difference between the full results and the Sudakov approximation, which is largely unaffected by the correction we made to our program.Hence,we do not reproduce those plots here.Finally,we have now also calculated the O(α2SαW)corrections to the q¯q→t¯t subprocess and the results obtained(not shown here)are in agreement with the corresponding ones in Refs.[4,5].AcknowledgmentsWe are extremely grateful to Werner Bernreuther,Michael F¨u cker and Peter Uwer for their help in checking our program andfinding the source of the discrepancies between our results and theirs.References[1]S.Moretti,M.R.Nolten and D.A.Ross,Phys.Lett.B639(2006)513.[2]W.Bernreuther,M.F¨u cker and Z.G.Si,Phys.Rev.D74(2006)113005.[3]J.H.K¨u hn,A.Scharf and P.Uwer,Eur.Phys.J.C51(2007)37.[4]W.Bernreuther,M.F¨u cker and Z.G.Si,Phys.Lett.B633(2006)54.[5]J.H.K¨u hn,A.Scharf and P.Uwer,Eur.Phys.J.C45(2006)139.Figure5:Differential distributions of the subprocess gg→t¯t through the O(α2S)(top frames, dotted)and the O(α2SαW)(top frames,solid)as well as the percentage of the latter with respect to the former(bottom frames,solid)for the(anti)top transverse momentum p T,the top-antitop invariant mass M t¯t and the(anti)top pseudorapidityηt.(Lightly/Red coloured solid tracts in logarithmic scale are intended to be negative.)Figure 6:The differential spin asymmetry A LL (as defined in [1])of the subprocess gg →t ¯tthrough the O (α2S )(left plot,top frame,dotted)and the O (α2S αW )(left plot,top frame,solid).(Note that the LO QCD contribution changes sign at ≈900GeV and is heavilydependent on M t ¯t whereas the O (α2S αW )correction is not.)In the left plot,bottom frame,we show the percentage correction to the (non-zero)LO QCD asymmetry for A LL due toO (α2S αW )effects.The right plot displays the asymmetry A L (as defined in [1]),which vanishes exactly in LO QCD,through the same order.The asymmetries are calculated along the helicity axis as a function of the top-antitop invariant mass M t ¯t .Figure7:The absolute size of the O(α2SαW)corrections to the subprocess gg→t¯t for the distribution in(anti)top pseudorapidityηt(top plot)and the differential spin asymmetries (bottom plots,as defined in[1]),for M H=150GeV(solid)and M H=200GeV(dotted). The asymmetries are calculated along the helicity axis as a function of the top-antitop invariant mass M t¯t.。