扬声器的效率一览表
- 格式:doc
- 大小:49.50 KB
- 文档页数:8
扬声器(喇叭)参数说明一、功率功率这个参数,其实是衡量一个音箱性能的基本参数,只是由于厂商的的有意回避,所以在很多产品的说明上,功率变成了一个没有什么意义的参数。
音箱标注的功率主要有以下几个:1、额定输出功率(RMS):RMS功率可以说是所有功率标注方法中唯一真正有意义的,它指的是功放电路在额定失真范围内,能够持续输出的最大功率。
也称为"有效功率"。
我们在前面探讨功放电路时所指的功率一般都指的是额定输出功率。
2、音乐输出功率(MPO):指的是在失真不超过规定范围的情况下,功放电路的瞬间最大输出功率。
3、峰值音乐输出功率(PMPO):指的是完全不考虑失真的情况下,功放的瞬间最大输出功率。
后两种功率其实是没有意义的,因为它们所谓的"瞬间"往往是根本听不出来的几个毫秒。
但是,很多厂商处于希望把自己的产品功率标大的心理,往往乐于使用这两种标注,特别是PMPO功率。
市场上多见的诸如数百瓦的音箱大都是如此,甚至有些音箱把自己的功率标为2000瓦!这真是笑话!真正2000瓦的功放及音箱足以令你居住的小区里每一个人都听到你家里的音乐声,就是真正300瓦的音箱也足以吵的整栋大厦不得安宁,难道是一个小小的桌面音箱能够做到的?难怪PMPO功率被发烧友戏称为"JS功率"。
按照一般的实践,PMPO功率与RMS功率之间的比值一般为5-8:1,也就是说,标称自己300W的音箱,其实不过是个输出功率为30W左右的普通音箱而已!真正的名牌大厂是不会使用PMPO功率的,如果产品真的出色,何必要用这种遮人耳目的方法?所以说,看到PMPO的标识,至少表明厂商都对自己的这个产品信心不足。
除了功放部分以外,多媒体音箱中的功率参数还包括扬声器最大承受功率和电源最大输出功率。
这三个参数中最小的一个就是音箱的最大输出功率。
而且这三个参数之间也存在一定的搭配关系,例如RMS功率必须小于扬声器最大承受功率,否则就会烧坏扬声器。
扬声器技术指标一、扬声器将电能转化为声能,并将它辐射到空气中的一种电声换能器件。
电影、电视、广播以及各种需要扬声的场合都需要使用扬声器。
扬声器的主要性能指标有:灵敏度、频率响应、额定功率、额定阻抗、指向性以及失真等。
灵敏度:指给音箱输入端输入1W/1KHZ正弦信号时,在距离音箱喇叭面垂直中轴前方一米的地方所测得的声压级,灵敏度的单位是分贝(dB)额定功率:AES和RMS标准扬声器频率响应,在恒定电压作用下,在参考轴上距参考点一定距离处,扬声器所辐射的声压级随频率变化的特性。
频率响应一般是记录在以对数频率刻度为横坐标的图上,即频率响应曲线。
扬声器额定阻抗,在扬声器上标称的阻抗值。
在这个阻抗上,扬声器可以获得最大的功率。
电动纸盒扬声器的额定阻抗规定为在阻抗曲线上由低频到高频第一个共振峰后的最小值。
此时的阻抗接近一个纯电阻。
通常有4、8、16欧扬声器瞬态失真,由于扬声器的瞬态特性不好引起的一种失真。
扬声器在实际使用时,重放的节目,如语言和音乐等都是瞬态声,即信号的振幅随时间而快速地变化着,而扬声器的振动系统具有惯性,常使其振动跟不上快速变化着的电信号,这样造成的失真现象就是一种瞬态失真。
一般而言,所谓扬声器的瞬态失真小,也就是说瞬态特性好。
二、扬声器的种类电动扬声器,又称动圈扬声器,是应用电动原理的电声器件。
根据佛来明左手法则,在输入电流与磁场内磁束相交平面的垂直方向产生交变运动,带动纸盆振动,把声能辐射到空气中去。
纸盆扬声器,电动扬声器的典型结构之一。
它是由振动系统、磁路系统和辅助系统三部分组成的。
振动系统包括锥形纸盆、音圈和定心支片等;磁路系统包括永磁磁体、导磁板和场心柱等;辅助系统包括盆架、接线板、压边和防尘盖等。
橡皮折环扬声器,是在纸盆扬声器的基础上发展起来的。
它的折环是用橡皮制成的,目前也有用其他材料的。
采用这种材料的折环,振动系统具有高顺性的特点,故又称为高顺性扬声器。
它的共振频率较一般扬声器要低得多。
扬声器的参数是指采用专用的扬声器测试系统所测试出来的扬声器具体的各种性能参数值.其常用的参数主要包括:Z,Fo,η0,SPL,Qts,Qms,Qes,Vas,Mms,Cms,Sd,BL,Xmax,Gap gauss.以下分别是这几种参数其物理意义. 1.1 Z:是指扬声器的电阻值,包括有:额定阻抗和直流阻抗.(单位:欧姆/ohm),通常指额定阻抗.扬声器的额定阻抗Z:即为阻抗曲线第一个极大值后面的最小阻抗模值,即图1中点B所对应的阻抗值.它是计算扬声器电功率的基准.直流阻抗DCR:是指在音圈线圈静止的情况下,通以直流信号,而测试出的阻抗值.我们通常所说的4欧或者8欧是指额定阻抗.1.2 Fo(最低共振频率)是指扬声器阻抗曲线第一个极大值对应的频率.单位:赫兹(Hz).扬声器的阻抗曲线图是扬声器在正常工作条件下,用恒流法或恒压法测得的扬声器阻抗模值随频率变化的曲线.1.3 η0(扬声器的效率):是指扬声器输出声功率与输入电功率的比率.1.4 SPL(声压级):是指喇叭在通以额定阻抗1W的电功率的电压时,在参考轴上与喇叭相距1m 的点上产生的声压.单位:分贝(dB).1.5 Qts :扬声器的总品质因数值.1.6 Qms:扬声器的机械品质因数值.1.7 Qes:扬声器的电品质因数值.1.8 Vas(喇叭的有效容积):是指密闭在刚性容器中空气的声顺与扬声器单元的声顺相等时的容积.单位:升(L).1.9 Mms(振动质量):是指扬声器在运动过程中参与振动各部件的质量总和,包括鼓纸部分,音圈,弹波以及参与振动的空气质量等.单位:克(gram).1.10 Cms(力顺):是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N).1.11 Sd(振动面积):是指在扬声器的振动过程中,鼓纸/振膜的有效振动面积.单位:平方米(m2).1.12 BL(磁力):间隙磁感应强度与有效音圈线长的乘积.单位:(T*M).1.13 Xmax:音圈在振动过程中运动的线性行程.单位:毫米(mm).1.14 Gap Gauss:间隙磁感应强度值.单位:特斯拉(Tesla).扬声器系统(LOUDSPEAKER)–––音箱是音响器材中最富个性的一员, 对于测试指标相近的音箱, 其重播声音的差别甚大, 这也是音箱存有“英国声”、“美国声”等说法的原因之一。
扬声器系统的性能指标扬声器系统的性能指标1)频率响应(有效频率范围)这项指标反映了扬声器工作的主要频率范围。
当给扬声器加以恒压信号源并由低频到高频改变信号源频率时,扬声器产生的音压将随频率的变化而变化。
由此得出的声压――频率曲线,就是扬声器的频率响应曲线。
IEC(国际电工委员会)规定扬声器所能重放声音的频率界限,也就是有效频率范围,是取扬声器声压频率特性曲线中比峰值附近一个倍频位的平均声压级降低10dB的频率范围。
此范围越宽,放声特性越好一般高保真用扬声器箱最低要求频响为50-12500HZ(+4~-8dB),能到达50-16000Hz已足够了.当然30-20000Hz则更好.2)额定阻抗它的指扬声器在某一特定工作频率(中频)时在输入端测得的阻抗值。
通常即在产品商标铭牌上标明,由生产厂给出。
扬声器的阻抗特性。
由生产厂给出的额定阻抗通常是在额定频率范围可望得到最大功的阻抗模值。
额定阻抗一般规定4欧、8欧、16欧、32欧等,国外也有采用3欧、6欧等。
3)功率扬声器的功率大小是选择使用扬声器的重要指标之一.应该指出国内、外扬声器的标法有很大的差异,这是因为对功率定义解释各不一样。
一般扬声器所标称的功率为额定功率。
额定功率或额定噪声功率,是指扬声器能长时间连续工作而不产生异常声时的输入功率。
一般测试时采用粉红噪声信号,通过特定的滤波器,在额定频率范围内开展测试。
按IEC标准,被测扬声器应保证在100小时的连续工作中不产生异常。
顺便指出,美国EIA标准则规定试验时间为8小时,而且滤波器也不同。
最大噪声功率与额定功率不同,它是说明扬声器承受短时间的大输入功率的能力,其试验时间仅为几秒或几分钟。
一般最大噪声功率是额定功率的2-4倍。
4)灵敏度特性灵敏度是指当音箱加上相当于额定阻抗上1W功率的粉红噪声信号电压时,在轴向1m处测得的声压级。
扬声器箱的灵敏度与效率是两个不同的概念,效率是输出声功率与输入电功率之比,但一般地说灵敏度高的扬声器箱的效率也较高。
扬声器常用参数的物理意义扬声器的参数是指采用专用的扬声器测试系统所测试出来的扬声器具体的各种性能参数值.其常用的参数主要包括:Z,Fo,η0,SPL,Qts,Qms,Qes,Vas,Mms,Cms,Sd,BL,Xmax,Gap gauss.以下分别是这几种参数其物理意义.1.1 Z:是指扬声器的电阻值,包括有:额定阻抗和直流阻抗.(单位:欧姆/ohm),通常指额定阻抗.扬声器的额定阻抗Z:即为阻抗曲线第一个极大值后面的最小阻抗模值,它是计算扬声器电功率的基准.直流阻抗DCR:是指在音圈线圈静止的情况下,通以直流信号,而测试出的阻抗值. 我们通常所说的4欧或者8欧是指额定阻抗.1.2 Fo(最低共振频率)是指扬声器阻抗曲线第一个极大值对应的频率.单位:赫兹(Hz).扬声器的阻抗曲线图是扬声器在正常工作条件下,用恒流法或恒压法测得的扬声器阻抗模值随频率变化的曲线.1.3 η0(扬声器的效率):是指扬声器输出声功率与输入电功率的比率.1.4 SPL(声压级):是指喇叭在通以额定阻抗1W的电功率的电压时,在参考轴上与喇叭相距1m的点上产生的声压.单位:分贝(dB).1.5 Qts :扬声器的总品质因数值.1.6 Qms:扬声器的机械品质因数值.1.7 Qes:扬声器的电品质因数值.1.8 Vas(喇叭的有效容积):是指密闭在刚性容器中空气的声顺与扬声器单元的声顺相等时的容积.单位:升(L).1.9 Mms(振动质量):是指扬声器在运动过程中参与振动各部件的质量总和,包括鼓纸部分,音圈,弹波以及参与振动的空气质量等.单位:克(gram).1.10 Cms(力顺):是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N).1.11 Sd(振动面积):是指在扬声器的振动过程中,鼓纸/振膜的有效振动面积.单位:平方米(m2).1.12 BL(磁力):间隙磁感应强度与有效音圈线长的乘积.单位:(T*M).1.13 Xmax:音圈在振动过程中运动的线性行程.单位:毫米(mm).1.14 Gap Gauss:间隙磁感应强度值.单位:特斯拉(Tesla).请问1.2所述的Fo的物理意义和实际意义是什么?谢谢。
各类⾳源频率范围和效果调节对照表 1、⼩提琴 200Hz~400Hz影响⾳⾊的丰满度;1~2KHz是拨弦声频带;6~10KHz是⾳⾊明亮度。
2、中提琴 150Hz~300Hz影响⾳⾊的⼒度;3~6KHz影响⾳⾊表现⼒。
3、⼤提琴 100Hz~250Hz影响⾳⾊的丰满度;3KHz是影响⾳⾊⾳⾊明亮度。
4、贝斯提琴 50Hz~150Hz影响⾳⾊的丰满度;1~2KHz影响⾳⾊的明亮度。
5、长笛 250Hz~1KHz影响⾳⾊的丰满度;5~6KHz影响的⾳⾊明亮度。
6、⿊管 150Hz~600Hz影响⾳⾊的丰满度;3KHz影响⾳⾊的明亮度。
7、双簧管 300Hz~1KHz影响⾳⾊的丰满度;5~6KHz影响⾳⾊的明亮度;1~5KHz提升使⾳⾊明亮华丽。
8、⼤管 100Hz~200Hz⾳⾊丰满、深沉感强;2~5KHz影响⾳⾊的明亮度。
9、⼩号 150Hz~250Hz影响⾳⾊的丰满度;5~7.5KHz是明亮清脆感频带。
10、圆号 60Hz~600Hz提升会使⾳⾊和谐⾃然;强吹⾳⾊光辉,1~2KHz明显增强。
11、长号 100Hz~240Hz提升⾳⾊的丰满度;500Hz~2KHz提升使⾳⾊变辉煌。
12、⼤号 30Hz~200Hz影响⾳⾊的丰满度;100Hz~500Hz提升使⾳⾊深沉、厚实。
13、钢琴 27.5~4.86KHz是⾳域频段。
⾳⾊随频率增加⽽变的单薄;20Hz~50Hz是共振峰频率。
14、竖琴 32.7Hz~3.136KHz是⾳域频率。
⼩⼒度拨弹⾳⾊柔和;⼤⼒度拨弹⾳⾊丰满。
15、萨克斯管 600Hz~2KHz影响明亮度;提升此频率可使⾳⾊华彩清透。
16、萨克斯管 bB 100Hz~300Hz是影响⾳⾊的淳厚感,提升此频段可使⾳⾊的始振特性更加细腻,增强⾳⾊的表现⼒。
17、吉它 100Hz~300Hz提升增加⾳⾊的丰满度;2~5KHz提升增强⾳⾊的表现⼒ 18、低⾳吉它 60Hz~100Hz低⾳丰满;60Hz~1KHz影响⾳⾊的⼒度;2.5KHz是拨弦声频。
LS3 5A扬声器的效率、阻抗与动态●梁中锷●2003-06-16经由十余年来多次的接触,我发现消费者在选购扬声器时,常会询问:它的效率是多少?阻抗是多少?但却鲜有人问:它的最高音压是多少?音响史上确实有几款著名喇叭以低效率闻名,例如Rogers的LS-3/5a及AR-3a。
二十年前,当我还是杂志社小编辑时,曾亲眼所见,国内音响名师林宜胜先生,谈到3/5a时,脸上竟泛起一阵神光说:它的效率其低!但当日在板桥陈正修先生(音响闻人,早已移民旧金山)家里,有三对小喇叭的试听比较,3/5a上阵还不到五分钟,就被另外一位音响闻人高真民先生一阵xxx给开骂、炮轰了下来!更早之前,那时只有LP没有CD,我到上扬唱片公司买唱片。
在挑选唱片时,觉得背景音乐怪怪的,男高音Domingo怎么感冒了?鼻音这么重!问清楚后,才知一切都是「闷葫芦」3/5a搞的鬼─当时Rogers喇叭是由上扬公司进口销售。
我对3/5a的恶感就是这样而来,没想到全球闻名的BBC-3/5a,竟然是个「闷」葫芦。
等到试作DaLine后,才知BBC并未将KEF单体性能发挥极致,LS-3/5a的好处只是体型小、售价低,难怪有人会卖了3/5a换用我的DaLine传输线喇叭。
道理很简单,依3/5a低音单体B-110之规格计算,根本不能装在那么小的音箱里!这点有必要说明,其实英国BBC并非不会设计喇叭,而是为了携带方便,不得不将喇叭音箱设计得很小,这是没办法的妥协。
当初BBC是想设计出比例为十分之一的喇叭,这样测试的方法比较简单,也比较便宜,于是就诞生了LS-3/5a。
低效率喇叭确实曾风光过,但CD开始逐渐流行后,就有人对低效率喇叭抱着怀疑态度,名乐评家、莹升公司负责人曹永坤先生,就曾经说过CD的高动态会自然淘汰低效率喇叭。
晶体管机的瓦=真空管机的瓦经过20年,CD系统已渐趋成熟,但低效率喇叭依然存在于市场,而且低效率=高音质的观念好像并未动摇;直到最近这几年才有了些许改变。
v1.0 可编辑可修改扬声器扬声器主要技术指标功率最大额定功率指音箱不会引起损坏所能接受的最大功率,使用时要注意不应超过该值的三分之二,以保证音箱的安全。
最小推荐功率指为产生合适的声级所需要的输入电功率,当小于该值功率值时,音箱无法正常工作。
频率响应指音箱发出的声压级在有效频率范围内的变化,例如,可写成:40~18000Hz ±4 dB。
好的音箱应避免在频率范围内出现较大的峰或谷。
在低音区出现“峰”会使音箱产生非音乐内容的“隆隆”声,而出现“谷”,又会使音箱重放缺少临场感。
发散性发散性主要是对音箱的高频重放能力而言的.好的音箱应使其重放的高频声尽可能均匀地分布在一个较宽的区域内,一般以指标的形式给出,如:50~16000Hz,120°,±6dB 。
这一指标说明,如果你在扬声器中心轴两边60°范围内走动,听到的50~16000Hz频率范围内(重点在高频)的声音响度应基本相同,误差不超过±6dB,如果没有注明的偏差值而只标注120°是没有意义的。
标称阻抗音箱的标称阻抗是用以与功率放大器输出相配接的阻抗值,可用直流电阻表在音箱两端测出的阻值近似表示(一般约偏小30%),常见的有16欧、8欧、6欧和4欧。
国内音箱多采用8欧,进口音箱多采用4欧或6欧。
标称阻抗在现行标准中多称额定阻抗。
效率音箱的效率是由扬声器的效率决定的。
扬声器的效率是扬声器输入电功率与总输出声功率之比。
纸盆式扬声器的效率一般小于10%。
由于计算扬声器的效率费时费力,所以常用扬声器的灵敏度来估算扬声器的效率。
灵敏度高的扬声器,其效率一般也比较高。
音箱效率过高会导致动态范围下降,所以,只能在保证音质的前提下谈效率。
灵敏度灵敏度是专业音箱的一项重要指标。
灵敏度的定义是:在音箱输入端加入额定功率为1W的电信号时,在参考点1米处产生的声压级,单位用dB表示。
在相同的条件下,灵敏度高的音箱听起来声音较大。
扬声器参数计算公式扬声器参数计算公式是用于确定扬声器的性能特征以及匹配的参数的数学公式。
在设计和制造扬声器时,正确选择和配置参数非常重要,以确保扬声器的声音质量、频率响应、功率和效率达到实际需求。
以下是几个常用的扬声器参数计算公式。
1.频率响应:扬声器的频率响应指的是扬声器在不同频率下的电声转换效果。
频率响应可以由以下公式计算:FR(f) = 20 * log10(,Vout(f),/,Vin(f),)其中,FR(f) 是频率响应(单位为分贝),Vout(f) 是输出电压的频率响应,Vin(f) 是输入电压的频率响应。
2.灵敏度:扬声器的灵敏度是指在特定输入功率下,扬声器产生的声音压力级。
灵敏度可以使用以下公式计算:SPL = 20 * log10(Pout/Prms)其中,SPL 是声音压力级(单位为分贝),Pout 是输出功率,Prms 是参考电平(通常以1毫瓦为基准)。
3.目标声压级:目标声压级用于确定扬声器在特定距离下产生的声音强度。
根据可听声音的逐渐衰减特性,目标声压级可以使用以下公式计算:SPLd = SPLs + 20 * log10(1/d)其中,SPLd是目标声压级(单位为分贝),SPLs是扬声器的声音压力级,d是距离(单位为米)。
4.扬声器阻抗:扬声器的阻抗是扬声器对电流和电压变化的响应。
阻抗可以使用以下公式计算:Z=V/I其中,Z是阻抗(单位为欧姆),V是电压,I是电流。
5.振动系统参数:振动系统参数包括扬声器的质量(m)、机械阻尼(b)、弹性系数(k)等。
这些参数可以用于计算扬声器的共振频率、谐振频率等。
例如,共振频率可以使用以下公式计算:f0=1/(2*π*√(m/k))以上是一些常用的扬声器参数计算公式,通过这些公式可以确定扬声器的性能特征并选择相应的参数。
但需要注意的是,实际的扬声器设计和参数配置还需要考虑其他因素,如扬声器的尺寸、材料选择、声学设计等。
因此,公式仅提供基本的计算方法,实际应用需要结合具体情况进行综合考虑。
扬声器的效率、阻抗与动态及全球著名放大器一览表效率、阻抗与动态经由十余年来多次的接触,我发现消费者在选购扬声器时,常会询问:它的效率是多少?阻抗是多少?但却鲜有人问:它的最高音压是多少?音响史上确实有几款著名喇叭以低效率闻名,例如Rogers的LS-3/5a及AR-3a。
二十年前,当我还是杂志社小编辑时,曾亲眼所见,音响名师林宜胜先生,谈到3/5a时,脸上竟泛起一阵神光说:它的效率其低!但当日在板桥陈正修先生(音响闻人,早已移民旧金山)家里,有三对小喇叭的试听比较,3/5a上阵还不到五分钟,就被另外一位音响闻人高真民先生一阵xxx给开骂、炮轰了下来!更早之前,那时只有LP没有CD,我到上扬唱片公司买唱片。
在挑选唱片时,觉得背景音乐怪怪的,男高音Domingo怎么感冒了?鼻音这么重!问清楚后,才知一切都是「闷葫芦」3/5a 搞的鬼─当时Rogers喇叭是由上扬公司进口销售。
我对3/5a的恶感就是这样而来,没想到全球闻名的BBC-3/5a,竟然是个「闷」葫芦。
等到试作DaLine后,才知BBC 并未将KEF单体性能发挥极致,LS-3/5a 的好处只是体型小、售价低,难怪有人会卖了3/5a换用我的DaLine传输线喇叭。
道理很简单,依3/5a低音单体B-110之规格计算,根本不能装在那么小的音箱里!这点有必要说明,其实英国BBC并非不会设计喇叭,而是为了携带方便,不得不将喇叭音箱设计得很小,这是没办法的妥协。
当初BBC是想设计出比例为十分之一的喇叭,这样测试的方法比较简单,也比较便宜,于是就诞生了LS-3/5a。
低效率喇叭确实曾风光过,但CD开始逐渐流行后,就有人对低效率喇叭抱着怀疑态度,名乐评家、莹升公司负责人曹永坤先生,就曾经说过CD的高动态会自然淘汰低效率喇叭。
晶体管机的瓦=真空管机的瓦经过20年,CD 系统已渐趋成熟,但低效率喇叭依然存在于市场,而且低效率=高音质的观念好像并未动摇;直到最近这几年才有了些许改变。
真空管又回头了,老厂新厂纷纷出笼,但管机后级的输出功率普遍比晶体机低。
有音质至上,非WE300B不用,而且还只要单端不要推挽。
300B做单端只有7至8W左右的输出,7W能推什么喇叭?当然,也有人用不到10W的管机后级推ATC喇叭─那是有声音,却无法呈现ATC应有的动态。
古早时代的Altec、JBL、EV…等大型落地式喇叭都是高效率,因为它们的亲蜜伙伴就是管机。
所以当管机推Altec A7「剧院之声」时,气势就大大的不同,有谁能说管机后级没啥动态?Watt就是Watt、瓦就是瓦,所以管机的7W差不多完全等于晶体机的7W─差异性是管机有输出变压器,输出功率较不易随负载阻抗变化而改变。
因此若有人说管机的7W比晶体机的7W够力,那是无稽之谈,因为事实的真相是:晶体管机的7W,大多时候会比真空管机的7W够力,绝不骗你。
有两个特例,一是OTL无输出变压器管机后级,另一就是著名的LS-3/5a小喇叭。
喇叭的效率是用dB值表示,但与阻抗有关联。
故效率完全相同,但阻抗不同的两对喇叭,其需求电压也不相同。
因为8Ω喇叭的1W是输入2.83V电压,而4Ω喇叭的1W 是2V输入电压。
因此效率相同、阻抗不同的两对喇叭,接上同一台晶体后级也必定会有不同的声音表现。
扩大机输出功率︳8Ω负载︳4Ω负载───────────────────────1W ----------------------2.83V----------2V2W ----------------------4V--------------2.83V3W ----------------------4.9V-----------3.47V4W-----------------------5.66V---------4V10W---------------------8.95V---------6.33V4Ω喇叭的需求电压虽然比8Ω低,但需求电流却比较高,以4W输出为例,8Ω喇叭是0.7A,而4Ω喇叭则吃1A电流,因此大家都说低阻抗喇叭比较难推。
dB是分贝,它的计算式会因功率或电压、电流之倍数会有所不同,喇叭的效率是以功率计算。
我们现在以阻抗变化甚大的某喇叭为例,说明大多数情况下,7W的晶体机的比7W的真空管机来得有力─重点就是低抗时的电流。
喇叭阻抗│晶体管机功率│真空管机功率8Ω--------------------7W------------------7W4Ω--------------------14W------------------7W2Ω--------------------28W------------------7W只要驱动电流够,晶体机的输出功率会随着喇叭阻抗的降低而提升,故不只是7W而已。
但管机有输出变压器交连,功率不随喇叭阻抗变动。
所以此时是不是晶体机的7W比真空管的7W够力?这就是最简单的奥姆定律。
3/5a既是低效率又兼高阻抗具恒阻特性的喇叭并不多,因此当喇叭阻抗猛往下降时,管机就可能使不上力,所以管机后级推Dynaudio 喇叭比较不容易发出好声,因此时喇叭欲吃电流,但真空管却是电压组件,无法提供电流;可是换成LS-3/5a 就不一样了。
3/5a阻抗|晶体机功率|管机功率───────────────────────15Ω-------------- 3.7W--------------- 7W11Ω-------------- 5W----------------- 7W8Ω--------------- 7W------------------ 7W7W的晶体机接上第一代3/5a就只剩大约3.7W,接第二代3/5a也不过是5W;可是管机就一直维持7W 输出。
故遇到3/5a这对高阻抗喇叭时,管机的7W就比晶体机的7W来得够力。
因此就晶体机言,高阻抗喇叭较不好推。
但为何3/5a的阻抗会高至11~15Ω?它采用的KEF T-27A高音单体及B-110A低音单体都是8Ω。
这就是诡谲之处,依KEF单体规格设计分音器及音箱,不必讶异,你会发现LS-3/5a根本是错误的设计!若是高阻抗再加上低效率,那这对喇叭铁定难伺候,偏偏3/5a就有这种特性。
因此有人用大power推它,但3/5a又吃不下大power,功率太高就容易将它的低音推到触底─它的KEF低音单体没啥动态。
现在我们来看看喇叭效率与扩大机功率的关系,比对的喇叭是LS-3/5a及Klipsch的Klipschorn,从下表就可看出低效率喇叭较难伺候。
Klipschorn大喇叭│LS-3/5a小喇叭──────────────────────────104dB /1W----------------------------81dB /1W107dB /2W--------------------------- 84dB /2W110dB /4W--------------------------- 87dB /4W113dB /8W--------------------------- 90dB /8W116dB /16W--------------------------93dB /16W119dB /32W--------------------------96dB /32W122dB /64W--------------------------99dB /64W--?125dB /128W--?--------------------102dB /128W--?第一行104dB与81dB是两款喇叭的标称效率,3/5a的99dB打个?号,代表3/5a根本无法承受64W连续输入,因低音会触底,50W连续输入就已是最大值。
而Klipschorn喇叭在1W输入时,就得到104dB的音压,这是LS-3/5a打破头也无法做到的事。
至于125W加个问号,那是原厂公布Klipschorn最高连续承受功100W,故当128W连续输入时,Klipschorn也会不了。
由于Klipschorn的效率高达104dB,若扩大机的讯号杂音比(S/N)不够高,那不用转音量旋钮,喇叭就会发出恼人的嘶声和哼声。
对于扩大机的残留杂音及哼声,高效率喇叭倒是具有明察秋毫的效用。
3/5a的效率到底是多少?本文假设它是81dB,记忆中好像也是。
但1995年10月号Audio年鉴上,KEF 3/5a 的效率注明是85dB,阻抗则仍维持11Ω。
最令我大吃一惊的是:这对小喇叭竟然飙涨到US$1450一对!老天,KEF 3/5a有这种身价吗?如果它有1450美金的音质,那我也毫不脸红,传输线设计的DaLine一对卖2400美金!可惜卖到现在,DaLine喇叭已全数售罄。
81dB/W/m绝对是低效率,美国Apogee以生产平面式喇叭闻名,它的Duetta.2只有78dB/W/m,由于效率过低,被评为「反应迟钝」,非得用每声道250W 的大power推不可。
注:英国KEF及Celestion这两家喇叭公司早就出售股权,目前的老板是香港商,因此改变营运方针;KEF高音单体T-27及低音单体B-110皆已停产。
不论有什么改进,3/5a的最高音压却仍不及Klipschorn的基本标称效率。
再计算「标称效率」至「最高音压」的范围,3/5a大约是18dB,而Klipschorn大约是21dB。
这里透露着两点,一是以300B单端每声道7W管机推Klipschorn喇叭,它的表现绝对会比40W×2的晶体后级推3/5a喇叭来得轻松自在、有魄力。
第二点则有赖大家共同研究,是不是高效率也同时代表高动态?若果真如此,曹永坤先生就有先见之明。
准此原则,吾人当选用高效率喇叭,这样后级输出功率不必动辄数百瓦。
当然,上百dB的高效率喇叭通常体型庞大,若是紧贴墙摆,又完全听不出音场、深度。
但以一般家庭聆听音乐或观赏AV用,效率似乎也应在90dB以上。
然而,低效率喇叭就代表低动态?很不幸,3/5a 及本人的DaLine却是明证。
当然ATC可能会不同意,ATC的SCM20为8Ω/83dB─效率比DaLine略高,但它的连续承受功率竟然是200Wrms,因此计算其最高音压竟然高达106dB,绝非LS-3/5a或DaLine之辈能比。
晶体机驱动高阻抗喇叭会降低功率,但也有例外,McIntosh虽是晶体机,却因为有输出变压器,故其输出功率不会随负载阻抗变动而变动。
好在音响圈中特例不多,没有输出变压器的真空管机不多见,有输出output的晶体机也唯有McIntosh。
而标称阻抗高过8Ω的喇叭,这些年来也很少见。
故现代管机的输出变压器,理应只须要有4Ω及8Ω两个绕组输出。
应选用高效率、高动态喇叭接驳低效率低动态喇叭时,后级的输出功率不能太低,以免推不动;但输出功率又不能太高,以免喇叭受不了,故常两难。