银合金的制备及其可见光催化活性
- 格式:pdf
- 大小:914.26 KB
- 文档页数:7
专利名称:一种抗变色银合金及其制备方法专利类型:发明专利
发明人:吴峰华
申请号:CN201080004808.7
申请日:20100908
公开号:CN102232121A
公开日:
20111102
专利内容由知识产权出版社提供
摘要:一种抗变色银合金,其成分以重量百分比计为:银82.5~92.5%,钴1.5~7.5%,镍0.5~2.5%,铜0.5%~15%,其中钴与镍的重量比控制在2.5~3.5:1。
该银合金的制备方法包括如下步骤:将原料按配比混合,在真空感应熔炼炉内熔炼,随后冷却至室温形成铸锭。
该银合金成分简单、成本低,不含贵金属和稀有金属;在大气环境下表面可生成一层薄且致密的CoNiO插层氧化物,抗变色能力强,且能保持银的光泽;其硬度与目前常用的925银合金相近,并具有良好的可加工性能,适合用于首饰行业;并且可以免电镀。
申请人:深圳市大凡珠宝首饰有限公司
地址:518029 广东省深圳市福田区八卦三路429栋西三楼
国籍:CN
代理机构:深圳市顺天达专利商标代理有限公司
代理人:易钊
更多信息请下载全文后查看。
link张婷婷 国家知识产权局专利局专利审查协作四川中心张婷婷(1989士,研究方向:涂料组合物。
银系光催化剂的专利技术分析图1 全球和在华专利申请趋势图2 全球专利申请国别分布CHINA SCIENCE AND TECHNOLOGY INFORMATION Nov .2019·中国科技信息2019年第22期专利分析◎或载体复合两个方面。
对于形貌的改性,在2010年日本将磷酸银可见光光催化应用后,同年,福州大学的专利CN101648139A 开创了国内专利磷酸银光催化剂的先河。
2011年武汉理工大学CN101940937A 专利中采用沉淀转换法制备简单立方晶系磷酸银,简化了制备方法。
在2012年,武汉理工大学CN102698782A 制备出树枝状的磷酸银,能在7min 内将甲基橙完全降解,对磷酸磷的性能改性提供了思路。
2014年,南京信息信息工程大学,在CN103252246A 和CN103263937A 中公开梭型和四面体磷酸银,通过调控形貌和粒径,提高光催化性能。
华南理工大学,在2016年CN105435823A 公开了菱形十二面体的磷酸银,可以将磷酸银晶体的表面进行侵蚀,提供更多的反应位点。
在磷酸银形貌发展中,研究者们通过调控形貌,使磷酸银的高能面暴露,从而提高了光催化性能。
对于复合改性,虽然磷酸盐的光催化剂性能优异,但由于磷酸银的导带能势不足以将H+还原位H 2,光生电子在无牺牲剂的情况下会将磷酸银的Ag +还原为Ag 单质,影响磷酸银的有效吸收,从而阻碍磷酸银的工业化应用。
由此,研究者们采用半导体与磷酸银复合,提高催化活性和稳定性。
2011年,浙江大学CN102140660A 将磷酸银与二氧化钛进行复合,形成p -n 异质结,拓宽了磷酸银对可见光的吸收。
2012年,武汉理工大学CN102716758A 公开了磷酸银与磷酸锌的复合光催化剂,通过调控形貌,得到层状薄片组装牡丹花状光催化剂,将形貌调控和半导体复合结合,双向提高光催化剂性能。
银合金的制作工艺流程英文回答:The production process of silver alloy involves several steps to ensure the desired quality and properties of the final product. Let me walk you through the process.1. Material selection: The first step is to select the appropriate materials for the silver alloy. This typically involves choosing a base metal, such as copper or nickel, and determining the desired silver content. The choice of materials will depend on the specific requirements of the alloy and its intended use.2. Melting: Once the materials are selected, they are melted together in a furnace at high temperatures. This process ensures that the metals are properly mixed and allows for the formation of a homogeneous alloy.3. Alloying: After the metals are melted, alloyingagents may be added to further enhance the properties of the silver alloy. These agents can improve the alloy's strength, corrosion resistance, or other desired characteristics. For example, adding small amounts of zinc can increase the hardness of the alloy.4. Casting: Once the alloy is properly mixed and alloying agents are added, it is ready for casting. The molten alloy is poured into a mold and left to cool and solidify. This process allows the alloy to take on the desired shape and form.5. Annealing: After casting, the silver alloy is often subjected to an annealing process. This involves heating the alloy to a specific temperature and then slowly cooling it. Annealing helps to relieve internal stresses in the alloy and improve its overall strength and ductility.6. Finishing: Once the alloy is annealed, it undergoes various finishing processes to achieve the desired surface finish. This may include polishing, buffing, or plating to enhance the appearance and protect the alloy fromtarnishing.中文回答:银合金的制作工艺流程包括多个步骤,以确保最终产品具有所需的质量和性能。
银类催化剂的制备和消除效果的研究随着工业的快速发展,环境污染问题日益严重。
因此,研究和开发高效的催化剂已经成为了环境保护领域的一个热门话题。
银类催化剂不仅可以有效降低环境中的污染物含量,还可以提高其他化学过程的效率。
本文将重点探讨银类催化剂的制备和消除效果的研究。
一、银类催化剂的制备银类催化剂的制备方法有很多种,其中最常用的方法是溶剂法制备和气相沉积法制备。
溶剂法制备银类催化剂的过程中,一般采用银盐与还原剂在溶剂中反应的方法。
常用的还原剂有:乙醇胺、乙二胺、柠檬酸等。
常用的溶剂有:水、乙醇、甲醇、二甲苯等。
而气相沉积法制备银类催化剂的过程中,则是将银原子高速撞击到载体表面,使银原子在载体表面上形成颗粒。
该方法制备的银类催化剂粒子大小均匀,并且表面积较大。
二、银类催化剂的消除效果1.氮氧化物的消除效果银类催化剂可以将氮氧化物(NOx)转化为氮气(N2)和水(H2O),从而起到消除氮氧化物的效果。
实验表明,当催化剂中银含量为0.05%时,NO和NH3的完全转化率分别为71.6%和83.5%。
这说明银类催化剂对氮氧化物的消除效果非常显著。
2.有机污染物的消除效果银类催化剂不仅可以消除氮氧化物,还可以消除其他有机污染物。
例如,苯、甲苯、二甲苯等有机化合物可以被银类催化剂转化为二氧化碳和水。
实验表明,当催化剂中银含量为5%时,苯、甲苯和二甲苯的完全转化率分别为60.3%,65.2%和69.8%。
这说明银类催化剂对有机污染物的消除效果也非常显著。
三、银类催化剂的应用银类催化剂在环境保护领域中有着广泛的应用。
例如,它可以用于医疗废水、石油废水、印染废水等废水的处理;同时,还可以用于汽车尾气的净化,减少尾气中的污染物排放。
此外,银类催化剂还可以用于制备化工中间体、有机合成和精细化工等行业中。
总之,银类催化剂在环境保护领域中具有非常广泛的应用前景。
虽然已经取得了一些进展,但仍需要进一步深入研究,以提高银类催化剂的效率,降低制备成本,促进其在大规模应用中的发展。
《二氧化锰负载的金、银催化剂的制备及其光热催化性能研究》篇一一、引言随着环境问题的日益严重和能源资源的日益紧张,光热催化技术作为一种新型的环保技术,在能源转化、污染物降解等方面具有广泛的应用前景。
二氧化锰负载的金、银催化剂作为一种重要的光热催化剂,具有优异的催化性能和良好的稳定性,因此其制备及其光热催化性能的研究具有重要的理论意义和实际应用价值。
二、文献综述二氧化锰负载的金、银催化剂的制备方法主要包括浸渍法、共沉淀法、溶胶-凝胶法等。
其中,浸渍法因其操作简单、成本低廉等优点被广泛应用。
而光热催化性能的研究则主要集中在催化剂的形貌、结构、组成以及光热转换效率等方面。
目前,关于二氧化锰负载的金、银催化剂的研究已经取得了一定的进展,但仍存在一些亟待解决的问题,如催化剂的制备工艺、光热转换效率的提高等。
三、实验方法本研究采用浸渍法制备二氧化锰负载的金、银催化剂。
具体步骤如下:1. 将二氧化锰载体进行预处理,包括清洗、干燥等步骤。
2. 将金、银前驱体溶液浸渍到二氧化锰载体上,控制浸渍时间和温度等参数。
3. 对浸渍后的催化剂进行干燥、煅烧等处理,得到最终的二氧化锰负载的金、银催化剂。
在光热催化性能测试中,我们采用紫外-可见光谱仪和红外光谱仪等仪器对催化剂的光吸收性能和热性能进行测试,同时以某种有机污染物为模型反应物,考察催化剂的降解效率和矿化度等指标。
四、实验结果与讨论1. 催化剂的表征通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)对制备得到的二氧化锰负载的金、银催化剂进行形貌观察,发现金、银纳米颗粒均匀地负载在二氧化锰载体上,颗粒大小较为均匀。
通过X射线衍射(XRD)和X射线光电子能谱(XPS)等手段对催化剂的组成和结构进行分析,结果表明催化剂的组成和结构符合预期。
2. 光热催化性能测试在光热催化性能测试中,我们发现制备得到的二氧化锰负载的金、银催化剂具有优异的光吸收性能和热性能。
在紫外-可见光谱测试中,催化剂表现出较强的光吸收能力,且吸收边缘位于可见光区域。
一种银合金靶材及其制备方法和应用
银合金靶材是一种被广泛应用于化学气相沉积、磁控溅射、离子注入
等制备薄膜、涂层和器件的材料。
其具有优良的导电性、热导性和化学稳
定性,能够在高压、高温、强磁场等环境下稳定工作。
下面将介绍一种银
合金靶材的制备方法和应用。
制备方法:
1.原料准备:将纯银和合金材料按一定比例混合。
2.熔炼:将混合的银合金材料放入熔炉中,在高温下进行熔炼,直到
完全熔化并均匀混合。
3.浇铸:将熔化的合金液倒入模具中,待其凝固并形成固态材料。
4.热处理:对得到的银合金靶材进行热处理,提高材料的致密性和晶
粒尺寸,提高材料的性能。
5.加工:对热处理后的银合金靶材进行机械加工,制备成符合要求的
形状和尺寸。
应用:
1.磁控溅射:银合金靶材可用于制备导电性薄膜,如ITO薄膜、银膜等,广泛应用于平板显示器、太阳能电池等电子器件中。
2.化学气相沉积:银合金靶材可用于制备纳米颗粒、纳米线等材料,
可应用于光催化、传感等领域。
3.热喷涂:银合金靶材可用于制备高温耐磨涂层,可应用于航空航天、化工等行业中。
4.超导材料:将银合金靶材与其他超导材料相结合,可制备高温超导
体材料,可应用于能源传输和储存等领域。
5.生物医学:银合金靶材具有优良的抗菌性能,可用于医疗设备、植
入材料等领域。
总结:
银合金靶材是一种重要的功能材料,具有广泛的应用前景。
其制备方
法简单、成本低廉,能够满足不同领域的需求。
随着科学技术的不断发展,银合金靶材将在更多领域得到应用和推广,为人类社会的发展做出更大的
贡献。
可见光催化剂钼酸银的合成及其光催化性能李杰; 逄显娟; 和素娜; 杨晖【期刊名称】《《河南科技大学学报(自然科学版)》》【年(卷),期】2020(041)001【总页数】5页(P100-104)【关键词】钼酸银; 纳米线; 可见光; 光催化; 罗丹明B【作者】李杰; 逄显娟; 和素娜; 杨晖【作者单位】河南科技大学医学院河南洛阳 471023; 河南科技大学化工与制药学院河南洛阳 471023【正文语种】中文【中图分类】TQ426.910 引言光催化降解有机污染物是环境净化的一种新型方法。
光催化技术的核心是光催化剂,传统的光催化剂二氧化钛(TiO2)因光能利用率低、电子空穴复合率高、载流子寿命短等问题,制约了其发展及应用[1]。
因此,探索和发现具有可见光响应的高效光催化剂,成为目前光催化领域研究的重点和难点。
目前报道的可见光催化剂主要集中在铋系化合物[2-3]、铟系化合物[4]、铌酸盐[5]和钽酸盐[6]。
近年来,含银的半导体材料由于具有较窄的带隙、较小的电子和空穴有效质量,显示出了良好的光催化活性[7-8],成为可见光催化领域研究的热点。
文献[9]以离子交换法制备了体心立方结构的可见光催化剂Ag3PO4,考察了其在光解水和有机污染物降解方面的光催化活性。
结果表明:Ag3PO4的产氧速率是相同条件下BiVO4的2.6倍、WO3的8.8倍;光催化降解有机污染物的效率是TiO2-xNx和BiVO4的20倍。
文献[10]采用沉淀法合成了光催化剂Ag3AsO4,以有机染料甲基橙为模拟污染物,对其可见光催化性能进行了分析,发现在相同条件下,Ag3AsO4光催化降解甲基橙的速率约为Ag3PO4的4倍。
文献[11]以Na2SiO3和AgNO3为原料合成了可见光催化剂Ag6Si2O7,在可见光的激发下,Ag6Si2O7光催化降解亚甲基蓝的速率是Ag3PO4的9~11倍。
但关于钼酸银可见光催化性能的研究还未见报道,因此,本文采用水热法,通过控制水热反应温度可控地合成了Ag6Mo10O33和Ag2Mo2O7,并对其进行了分析表征。
Vol.35高等学校化学学报No.42014年4月 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 717~723 doi:10.7503/cjcu20130781碳点/银复合结构的制备及可见光催化性能武玲玲,田瑞雪,赵 清,常 青,胡胜亮(中北大学材料科学与工程学院,太原030051)摘要 分别采用原位复合和简单混合方法制备了碳点/银(CDs /Ag)复合结构.原位复合的CDs /Ag 对光的吸收和对亚甲基蓝的降解都高于简单混合的CDs /Ag.研究了H 2O 2和碳点荧光强度对CDs /Ag 原位复合结构的影响.结果表明,H 2O 2的加入量会改变CDs /Ag 原位复合结构的形貌与光吸收,从而导致不同的光催化性能;用强荧光发射的碳点原位制备的CDs /Ag 复合结构具有更好的光吸收特性和更高的光催化活性.CDs /Ag原位复合结构具有高催化活性是由于碳点与纳米银间形成了强化学键,有利于等离子共振效应发生,从而促使了光的吸收及能量转化效率的提高.关键词 碳点;银纳米结构;原位复合;光催化性能中图分类号 O613;O644 文献标志码 A 收稿日期:2013⁃08⁃14.基金项目:国家自然科学基金(批准号:51272301,51172214,51172120)㊁中国博士后基金(批准号:2012M510788,2013T60269)㊁山西省高等学校优秀青年带头人计划㊁科技部创新方法工作专项项目(批准号:2011IM030800)和清华大学新型陶瓷与精细工艺国家重点实验室开放基金资助.联系人简介:胡胜亮,男,博士,教授,主要从事碳量子点及其应用研究.E⁃mail:hsliang@碳点(CDs)是一种新型的碳纳米材料,与传统的量子点相比,碳点具有荧光稳定㊁无光闪烁,激发波长和发射波长可调控㊁生物相容性好㊁毒性低㊁分子量和粒径均较小等优点,受到了广泛的关注[1~5].碳点与金属及氧化物等材料的复合已有很多报道[6~9]:Li 等[8]用电化学法制备出了1.2~3.8nm 的碳量子点,将其加入到已经煅烧的TiO 2纳米粒子中,搅拌10min,真空干燥得到复合结构CDs /TiO 2,并用相同的方法制备了复合结构CDs /SiO 2;Yu 等[9]用溶剂热法以抗坏血酸为碳源制备出了碳点,用溶剂热法制备出了多孔Fe 3O 4,经过热处理氧化成MH(琢⁃Fe 2O 3),将MH 加入碳点中,通过搅拌㊁真空干燥等步骤得到复合结构CDs /MH.这些碳点复合结构均表现出良好的催化性能,但是由于在其制备过程中都是通过搅拌达到简单的吸附性混合,这种结合力较弱的复合方法限制了复合结构光催化性能的进一步提高.贵金属纳米银在一定频率的光照下会发生等离子共振(SPR),SPR 应可使金属粒子附近的光电场显著增强,使贵金属在紫外⁃可见区域有共振吸收峰,尤其是在可见光区有强烈吸收[10].贵金属纳米银与其它物质(如二氧化钛[11]㊁二氧化硅[12]㊁氧化锌[13]等)复合后,均表现出较高的催化活性.而且,碳量子点具有优异的光诱电子转移和电子储存功能[14],使得碳点复合结构能够有效利用可见光进行光催化反应.因此,将贵金属纳米银与碳点相结合的复合光催化剂,必将在光催化领域具有良好的发展前景.本文采用原位复合法,在碳点存在的前提下,用硼氢化钠还原碳点表面的银离子,在碳点表面直接原位生成纳米银,制备出高效复合的CDs /Ag 复合结构.并研究了H 2O 2的加入量和碳点荧光强度对CDs /Ag 复合结构的吸收特性及光催化性能的影响.1 实验部分1.1 试剂与仪器硝酸银(中国上海试剂一厂),柠檬酸钠(天津市大茂化学试剂厂),硼氢化钠(天津市光复精细化817高等学校化学学报 Vol.35 工研究所),聚乙烯吡咯烷酮(PVP,M w=1000,天津市津北精细化工有限公司),亚甲基蓝(MB,天津市恒兴化学试剂制造有限公司).实验所用试剂均为分析纯.实验用水均为去离子水.UV⁃2550紫外⁃可见分光光度计(日本岛津公司),F⁃280荧光分光光度计(天津港东科技发展股份有限公司),Tecnai G2F20透射电子显微镜(美国FEI公司).1.2 实验过程1.2.1 CDs的制备 将无水乙醇与蒸馏水按体积比5∶45混合,加入0.5g NaOH,配制得到电解液[15],然后将2个石墨电极和饱和甘汞电极分别与恒点位仪的工作电极㊁对电极和参比电极档连接[16],施以180mA(或30mA)的恒电流.反应30h后,溶液颜色由无色变为黄色,再以11000r/min 的转速离心后获得所需碳点,用硝酸中和至pH=7,备用.1.2.2 纳米银的制备 参照文献[17]方法制备纳米银.在一定量的水中,将硝酸银(0.05mol/L,50μL),柠檬酸钠(75mmol/L,0.5mL),PVP(17.5mmol/L,0.1mL)和H2O2(质量分数30%,0,30,60μL)混合,在室温下强力搅拌,再将NaBH4(100mmol/L,250μL)快速注入混合溶液中,制备出纳米银,总体积控制为25mL.1.2.3 原位复合法制备CDs/Ag 将1.2.2节中的去离子水替换为等体积的含有5mL碳点的水溶液,其余步骤不变,制备出CDs/Ag原位复合结构,总体积控制为25mL.1.2.4 简单混合法制备CDs/Ag 按照1.2.2节中的方法,不加入H2O2,制备出银纳米颗粒,总体积控制为20mL.加入5mL碳点,室温下磁力搅拌24h,制备CDs/Ag复合结构.1.2.5 光催化实验 取2mL待测的光催化剂溶液(碳点㊁银或复合催化剂,pH=7)分散在亚甲基蓝(MB)溶液中(10mL,2.5mg/L),在黑暗处搅拌30min以达到吸附⁃解析平衡,然后将300W氙灯放置在距离溶液表面25cm处照射.照射光强度为550mW/cm,用滤波片滤除λ<420nm的光,用可见光和红外光进行照射,每隔5min进行取样测试.2 结果与讨论2.1 样品表征图1(A)为采用原位复合和简单混合法制备的CDs/Ag复合结构的吸收光谱.与简单混合法所得样品相比,原位复合法得到的CDs/Ag复合结构在300~550nm范围内具有更强的光吸收,这将有利于提高光的利用效率.图1(B)为采用2种方法制得的CDs/Ag复合结构对亚甲基蓝的催化降解率对比图,可以看出,原位复合的CDs/Ag复合结构光催化活性高于简单混合的复合结构.由于原位复合与简单混合2种方法中加入的碳点和银离子的含量㊁反应温度㊁还原剂和表面活性剂等完全相同,因此2种方法所得产物光吸收和光催化活性的不同应该与其结构有关.Fig.1 UV⁃Vis spectra(A)and photocatalytic activities(B)of CDs/Ag obtained by in⁃situ synthesis(a)and simple mixing(b)原位复合法制备CDs/Ag复合结构的过程是异相形核过程.银离子通过静电引力作用吸附在碳点的表面,加入还原剂后银离子被还原成纳米银,逐渐沉积在碳点的表面,随着晶粒慢慢长大,形成银包覆碳点的复合结构或银在碳点表面长大的复合结构,如图2(A)所示.图2(B)为CDs/Ag原位复合结构的HRTEM照片,可见银纳米颗粒暴露在表面的晶格间距为0.205nm,对应银的(200)晶面,而碳点的晶格间距为0.321nm,与碳的(002)晶面相对应.简单混合过程中由于已形成的纳米银表面已存在有机分子(表面活性剂),所以碳点和纳米银很难通过搅拌达到较强的结合,如图2(C)和(D)所示.大部分的碳点分布在银纳米颗粒的周围,有可能仅有极少碳点与银纳米颗粒接触.综上所述,碳点与纳米银的结合方式决定了CDs /Ag 复合结构的光吸收与光催化活性.为了进一步优化碳点与纳米银的结合方式,利用H 2O 2调节银原子在碳原子表面上的排列方式,希望获得更优异的复合光催化剂.Fig.2 TEM (A ,C )and HRTEM (B ,D )images of CDs /Ag obtained by in⁃situ synthesis (A ,B ),by simple mixing (C ,D )Insets in (A)and (C)are TEM images of typical single CDs /Ag obtained by in⁃situ synthesis and simple mixing.2.2 H 2O 2对CDs /Ag 复合结构催化性能的影响通过改变H 2O 2的加入量(0,30,60μL),采用原位复合法制备了3种不同的CDs /Ag 复合结构及3种不同的纳米银,依次表示为CDs /Ag(0μL H 2O 2),CDs /Ag(30μL H 2O 2),CDs /Ag(60μL H 2O 2)和Ag(0μL H 2O 2),Ag(30μL H 2O 2),Ag(60μL H 2O 2).对应的吸收谱分别为图3谱线a ,c ,e 与谱线b ,d ,f ,3种不同CDs /Ag 原位复合结构及3种不同纳米银的颜色依次为黄色㊁墨绿色和蓝色(光学照片Fig.3 UV⁃Vis spectra of CDs /Ag obtained by in⁃situ synthesis and Ag a .CDs /Ag (0μL H 2O 2);b .Ag (0μL H 2O 2);c .CDs /Ag(30μL H 2O 2);d .Ag (30μL H 2O 2);e .CDs /Ag(60μL H 2O 2);f.Ag(60μL H 2O 2).略).由谱线a ,c 和e 可见,谱线a 的吸收峰位于400nm,谱线c 在420和660nm 两处都有吸收峰,而谱线e 覆盖了整个可见光区域,峰值出现在710nm 处.3种吸收谱峰位的不同表明制备了3种不同吸收特性的CDs /Ag 原位复合结构.类似地,谱线b ,d 和f 的不同也表明制备出了3种不同的纳米银.由图3可见,随着H 2O 2加入量的增加,产物的吸收峰位红移,对可见光的吸收能力增强.3种CDs /Ag 原位复合结构中,在可见光区吸收范围更宽的复合结构可能具有更高的催化效率.由图3还可以看出,在可见光400~800nm 范围内,CDs /Ag 原位复合结构的吸收均强于纯纳米银,这也意味着CDs /Ag 原位复合结构的催化活性可能会高于纯纳米银.在纳米银的形成过程中,H 2O 2作为有效的刻蚀剂能够溶解NaBH 4还原出的金属银[17],抑制Ag 临界形核的数量,从而阻碍了通过临界核聚集长大成为球状颗粒的生长方式;另一方面,NaBH 4还原银离子的量和H 2O 2溶解金属银的量会达到一种动态平衡,更稳定的Ag 原子排列结构被保存下来,这样易于导致多面体纳米银结构的形成.如上所述,在CDs /Ag 复合结构的原位形成过程中,NaBH 4还原出的银原子在碳点表面异相形核时,在H 2O 2影响下Ag 原子排列方式会受到影响,从而可能会导致Ag 与碳点结合处的界面不同.如图4所示,随着H 2O 2加入量的增加,CDs /Ag 原抗复合结构形貌由球形过渡为类三角形:当不加入H 2O 2时,CDs /Ag 原位复合结构形成了较为规则的球状结构[图4(A)];当H 2O 2的加入量为30μL 时,CDs /Ag 原位复合结构形成了介于球状和类三角形结构中的一种中间形貌[图4(B)];当H 2O 2的加入量为60μL 时,CDs /Ag 原位复合结构形成了类三角形结构[图4(C)].图5示出了3种不同纳米银及CDs /Ag 原位复合结构对亚甲基蓝的催化降解率.可见,光照30917 No.4 武玲玲等:碳点/银复合结构的制备及可见光催化性能Fig.4 TEM images of single CDs /Ag (0μL H 2O 2)(A ),CDs /Ag (30μL H 2O 2)(B )andCDs /Ag (60μL H 2O 2)(C )Fig.5 Photocatalytic activities of CDs /Ag obtained by in鄄situ synthesis and Agmin 后,加入0,30,60μL H 2O 2得到的3种纯纳米银对MB 的降解率分别为73.01%,61.63%,67.11%,而3种CDs /Ag 原位复合结构对MB 的降解率分别为62.39%,70.74%,100.00%.可见,H 2O 2的加入量对纯纳米银及CdS /Ag 复合结构光催化活性的影响不同.加入H 2O 2后所得CDs /Ag原位复合结构的光催化活性明显高于对应的纯纳米银,但是未加H 2O 2的CDs /Ag 原位复合结构的光催化活性要低于纯纳米银.如上所述,H 2O 2的加入影响了碳点与纳米银结合的界面结构,造成了等离子共振效应程度的差异,促使了产物对光吸收的改变(图3),从而表现出了不同的光催化活性(图5).Fig.6 Fluorescence spectra of the visible⁃light irradiated CDs /Ag and Ag in TA at different irradiation time(A)Ag(0μL H 2O 2);(B)Ag(60μL H 2O 2);(C)CDs /Ag(0μL H 2O 2);(D)CDs /Ag(60μL H 2O 2).利用对苯二甲酸(TA)对光催化剂的活性进行了测试[18,19].光催化剂在可见光照射下,电子会发生转移,从而产生电子⁃空穴对.空穴可氧化催化剂表面的OH -或H 2O 生成㊃OH 自由基,而㊃OH 与TA 反应生成2⁃羟基对苯二甲酸(TAOH),TAOH 在315nm 激发下会发出荧光,峰位为426nm.图6(A)和(B)分别为Ag(0μL H 2O 2)和Ag(60μL H 2O 2)的活性测试结果,图6(C)和(D)分别为CDs /Ag (0μL H 2O 2)和CDs /Ag(60μL H 2O 2)的活性测试结果.可见,光照50min 后,纯纳米银及CDs /Ag 原027高等学校化学学报 Vol.35 位复合结构以TA 作为荧光指示剂的强度峰值与光照前相比均增强,这说明纯纳米银及CDs /Ag 原位复合结构在光照下都能产生㊃OH 自由基,㊃OH 自由基有着很强的氧化性,可以有效降解TA 生成TAOH.光照50min 后,加入60μL H 2O 2的CDs /Ag 原位复合结构的强度峰值上升了54,而对应的纯纳米银的峰值只上升了34,说明加入H 2O 2后所得CDs /Ag 原位复合结构的活性高于对应的纯纳米银.光照50min 后,未加H 2O 2的CDs /Ag 原位复合结构的强度峰值上升了22,而对应的纯纳米银的峰值却上升了30,说明未加H 2O 2的CDs /Ag 原位复合结构的活性要低于纯纳米银.这与图5的结果相一致.2.3 碳点荧光强度对CDs /Ag 原位复合结构催化性能的影响2.3.1 不同荧光强度碳点的荧光光谱 通过改变电化学法制备碳点时的电流大小,制备出2种Fig.7 Fluorescence spectra of CDs⁃1(a ,c )and CDs⁃2(b ,d )a ,b :Excitation;c ,d :emission.不同荧光强度的碳点(CDs⁃1,CDs⁃2).2种碳点的荧光光谱图如图7所示,两者的最佳激发峰(462nm)和最佳发射峰(525nm)的位置相同,但是峰值不同,在最佳发射峰525nm 处,CDs⁃1的峰值约为280,而CDs⁃2的峰值约为200,与CDs⁃1相比,CDs⁃2的强度降低约28.6%.2.3.2 不同荧光强度碳点与银复合结构的吸收光谱 用2种不同荧光强度的碳点分别与银复合,制备出不同的CDs /Ag 原位复合结构[CDs⁃1/Ag(0μL H 2O 2),CDs⁃1/Ag(30μL H 2O 2),CDs⁃1/Ag(60μL H 2O 2)和CDs⁃2/Ag(0μL H 2O 2),CDs⁃2/Ag (30μL H 2O 2),CDs⁃2/Ag (60μL H 2O 2)],对应的吸收光谱见图8.可以看出,CDs⁃1制备出的3种CDs /Ag 原位复合结构的吸收谱在可见光400~800nm 范围内都强于CDs⁃2制备出的CDs /Ag 原位复合结构,这种差异是由于碳点荧光强度的不同而造成的.采用在可见光范围内具有较强吸收的CDs⁃1制备的CDs /Ag 原位复合结构的催化性能可能高于CDs⁃2制备的CDs /Ag 原位复合结构.Fig.8 UV⁃Vis spectra of CDs⁃1/Ag (0μL H 2O 2)(a ),CDs⁃2/Ag (0μL H 2O 2)(b ),CDs⁃1/Ag (30μL H 2O 2)(c ),CDs⁃2/Ag (30μL H 2O 2)(d ),CDs⁃1/Ag (60μL H 2O 2)(e ),CDs⁃2/Ag (60μL H 2O 2)(f )Fig.9 Photocatalytic activities of CDs⁃1/Ag and CDs⁃2/Ag 2.3.3 不同荧光强度碳点与银复合结构对MB 的光催化性能 图9为用2种不同荧光强度的碳点分别与银复合得到的CDs /Ag 原位复合结构对亚甲基蓝催化降解率的对比.可见加入0,30,60μL H 2O 2得到的3种CDs⁃2/Ag 原位复合结构对MB 的降解率分别为39.34%,59.84%,66.37%.加入0,30,60μL H 2O 2得到的3种CDs⁃1/Ag 原位复合结构对MB 的降解率分别为51.29%,61.70%,89.82%.3种CDs⁃1/Ag 原位复合结构对MB 的降解率均高于相应的CDs⁃2/Ag 原位复合结构,这可能是由于碳点的荧光强度增强促进了CDs⁃1/Ag 原位复合结构对光的吸收,从而增强了CDs⁃1/Ag 原位复合结构的催化性能.127 No.4 武玲玲等:碳点/银复合结构的制备及可见光催化性能227高等学校化学学报 Vol.35 2.4 机理讨论一方面,由于银表面等离子共振(SPR)的作用[20,21],Ag受到一定频率的光照射后,表面的电子被激发到高能级,与光波的电场耦合产生共振,使得Ag在紫外⁃可见光区域有共振吸收峰,尤其在可见光区有强烈吸收,大大增加了电子⁃空穴形成的几率.催化剂对光的吸收强度对光催化效率有着很大的影响,以降解亚甲基蓝为例,亚甲基蓝的降解速率为[22]-d[MB]d t=ΦI a[H2O/OH-]ads[MB]ads(1)式中,Φ为吸收光子的转化率;I a为催化剂的吸光度;[MB]ads为吸附到催化剂粒子上的亚甲基蓝; [H2O/OH-]ads为H2O/OH-的吸附浓度.从式(1)可以看出,MB的光催化降解率与催化剂的吸光度成正比,即材料的吸光度提高可以有效地提高光催化效率.吸光度的提高就是意味着材料捕获光子能力的增加,从而有利于材料光催化活性的提高.结合实验结果可知,原位复合法制备的CDs/Ag复合结构的吸收强于简单混合法制备的CDs/ Ag复合结构(图1),所以表现出了更高的光催化效率;与纯的纳米银相比,碳点与银的原位复合也增强了对光的吸收(图3),使光催化效率得到了增加;对于不同形貌的CDs/Ag原位复合结构,随着H2O2加入量的增加,产物的形貌从球形过渡到类三角形,形貌的改变导致了吸收峰位的红移,提高了对可见光的吸收,从而使得可见光催化效率得到提高(图3~图5);用强荧光碳点制备的CDs/Ag原位复合结构也是如此(图8和图9).因此,碳点与纳米银结构原位复合的重要贡献是提高了产物捕获光子的能力.另一方面,碳点和银复合形成的界面能够有效阻止电子与空穴(h+)的复合.光催化过程中,CDs 作为电子受体,Ag作为电子供体,Ag在等离子共振的作用下产生电子,转移到CDs上[20].电荷的移动在CDs和沉积的贵金属Ag之间形成Schottische能垒,有效地阻止了电子与空穴的重新复合[23].产生的空穴与H2O/OH-反应,形成羟基自由基[见式(2)和式(3)].图6的活性测试结果证实催化过程中确实产生了羟基自由基,说明电子与空穴得到了有效分离,从而提高了光催化效率.H2O+h→+㊃OH+H+(2)OH-+h→+㊃OH(3) 综上所述,采用原位复合方法制备的CDs/Ag复合结构的光吸收性能和催化效率都高于简单混合法制备的复合结构.通过改变H2O2的加入量制备了3种不同的CDs/Ag原位复合结构,H2O2用量的不同改变了CDs/Ag原位复合结构的形貌与光吸收,从而导致了不同的光催化性能.研究了碳点的荧光强度对复合结构性能的影响,结果表明,增强碳点的荧光强度能有效增强CDs/Ag原位复合结构对光的吸收,从而提高CDs/Ag复合结构的催化性能.CDs/Ag原位复合结构对光的吸收更强,具有较高的光子捕获能力,另外,碳点与纳米银的界面有效阻止了电子与空穴的复合,从而提高了CDs/Ag原位复合结构的光催化活性.参 考 文 献[1] Baker S.N.,Baker G.A.,Angew.Chem.,Int.Ed.,2010,49(38),6726 6744[2] Xu X.,Ray R.,Gu Y.,Ploehn H.J.,Gearheart L.,Raker K.,Scrivens W.A.,J.Am.Chem.Soc.,2004,126(40),1273612737[3] Hu S.L.,Bai P.K.,Sun J.,Cao S.R.,Prog.Chem.,2010,22(2/3),345 351(胡胜亮,白培康,孙景,曹士瑞.化学进展,2010,22(2/3),345 351)[4] Sun Y.P.,Zhou B.,Lin Y.,Wang W.,Fernando K.A.S.,Pathak P.,Meziani M.J.,Harruff B.A.,Wang X.,Wang H.F.,Luo P.G.,Yang H.,Kose M.E.,Chen B.L.,Veca L.M.,Xie S.Y.,J.Am.Chem.Soc.,2006,128(24),7756 7757 [5] Hu S.L.,Bai P.K.,Cao S.R.,Sun J.,Chem.J.Chinese Universities,2009,30(8),1497 1500(胡胜亮,白培康,曹士瑞,孙景.高等学校化学学报,2009,30(8),1497 1500)[6] Ray S.C.,Saha A.,Jana N.R.,Sarkar R.,Phys.Chem.C,2009,113,18546 18551[7] Cao L.,Sahu S.,Anilkumar P.,Bunker C.E.,Xu J.,Fernando K.S.,Wang P.,Guliants E.A.,Tackett K.N.,Sun Y.P.,J.Am.Chem.Soc.,2011,133(13),4754 4757[8] Li H.T.,He X.D.,Kang Z.H.,Huang H.,Liu Y.,Liu J.L.,Lian S.Y.,Tsang C.H.,Yang X.B.,Lee S.T.,Angew.Chem.Int.Ed .,2010,49,4430 4434[9] Yu B.Y.,Kwak S.Y.,J.Mater.Chem.,2012,22,8345 8353[10] Xing Y.Y.,Li Q.Y.,Yang J.J.,J.Funct.Mater .,2012,43(16),2126 2130(邢阳阳,李秋叶,杨建军.功能材料,2012,43(16),2126 2130)[11] Chan S.C.,Barteau M.A.,Langmuir ,2005,21(12),5588 5595[12] Chen Y.Y.,Wang C.A.,Liu H.Y.,Qiu J.S.,Bao X.H.,mun .,2005,(42),5298 5300[13] Zheng Y.H.,Zheng L.R.,Zhan Y.Y.,Lin X.Y.,Zheng Q.,Wei K.M.,Inorg.Chem .,2007,46(17),6980 6986[14] Li H.T.,Kang Z.H.,Liu Y.,Lee S.T.,J.Mater.Chem .,2012,22,24230 24253[15] Yu H.,Zhang H.C.,Huang H.,Liu Y.,Li H.T.,Ming H.,Kang Z.H.,New J.Chem .,2012,36,1031 1035[16] Guo Y.,Tian R.X.,Dong Y.G.,Hu S.L.,Chin.J.Lumin .,2012,33(2),155 160(郭艳,田瑞雪,董英鸽,胡胜亮.发光学报,2012,33(2),155 160)[17] Zhang Q.,Li N.,Goebl J.,Lu Z.,Yin Y.,J.Am.Chem.Soc .,2011,133(46),18931 18939[18] Liu G.,Wang L.Z,,Sun C.H.,Yan X.X.,Wang X.W.,Chen Z.G.,Smith S.C.,Cheng H.M.,Lu G.Q.,Chem.Mater.,2009,21,1266 1270[19] Hirakawa T.,Nosaka Y.,Langmuir ,2002,18(8),3247 3254[20] Kowalska E.,Mahaney O.O.P.,Abe R.,Ohtani B.,Phys.Chem.Chem.Phys.,2010,12,2344 2355[21] Tanaka A.,Hashimoto K.,Kominami H.,mun.,2011,47,10446 10448[22] Gao L.,Zheng S.,Zhang Q.H.,Photocatalytic Nanomaterials of Titanium Dioxide and Their Applications ,Chemical Industry Press,Beijing,2002,44 52(高濂,郑珊,张青红.纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002,44 52)[23] Subramanian V.,Wolf E.E.,Kamat P.V.,J.Am.Chem.Soc .,2004,126(15),4943 4950Synthesis and Photocatalytic Properties of the Composites Between Carbon Dots and Silver Nanostructures †WU Lingling,TIAN Ruixue,ZHAO Qing,CHANG Qing,HU Shengliang *(School of Material Science and Engineering ,North University of China ,Taiyuan 030051,China )Abstract The composites between carbon dots and silver nanostructures(CDs /Ag)were synthesized by in⁃situ synthesis and simple mixing,respectively.The products obtained by in⁃situ synthesis exhibit stronger light absorption and higher photocatalytic activity for methylene blue(MB)degradation than those of simple mixing.The effects of H 2O 2addition and the fluorescence intensity of CDs on photocatalytic activities of the obtained CDs /Ag were analyzed.The experimental results indicate that the amount of H 2O 2addition can change the morphology and light absorption of CDs /Ag,and then results in different photocatalytic performances.On the other hand,the CDs /Ag obtained from CDs with stronger fluorescence emission shows stronger light absorptionand higher photocatalytic activities.The possible mechanism of photocatalytic activities of the in⁃situ synthe⁃sized CDs /Ag could be that strong combination between CDs and Ag nanocrystals induced much stronger sur⁃face plasma resonance,thus enhancing light absorption and the light energy conversion efficiency.Keywords Carbon dots;Siliver nanostructure;in⁃situ Synthesis;Photocatalytic property(Ed.:S ,Z ,M )†Supported by the National Natural Science Foundation of China(Nos.51272301,51172214,51172120),the China Postdoctoral Science Foundation Funded Project(Nos.2012M510788,2013T60269),the Innovation Method Special Project of Ministry of Science and Technology of China(No.2011IM030800)and the Open Fund of State Key Laboratory of New Ceramic and Fine Processing,Tsinghua University,China.327 No.4 武玲玲等:碳点/银复合结构的制备及可见光催化性能。
富含{001}活性晶面TiO2负载纳米银的制备及其室温催化氧化CO性能研究摘要:用原位光沉积法制得Ag/TiO2催化剂,以CO氧化为探针反应,通过SEM、XRD、TEM、紫外-可见吸收光谱对材料的结构进行表征。
结果表明:Ag纳米粒子成功沉积在TiO2纳米片表面且颗粒尺寸较小,TiO2纳米片的{001}晶面富含的Ti3+缺陷态会向Ag纳米粒子转移电子,使其表面电子密度增加,有利于CO和O2的吸附;CO与TiO2晶格氧作用后产生氧空位,促进O2在氧空位的吸附与活化,并进一步再生补充晶格氧。
关键词:Ag/TiO2;原位光沉积;{001}晶面;CO氧化1引言近年来,CO的催化转化一直是催化研究领域的研究热点,兼具理论研究和应用价值。
自Haruta等人[1]在还原性载体上负载超细纳米金颗粒实现低温催化氧化CO以来,TiO2表面负载贵金属纳米颗粒用以CO的催化活化并实现转化受到了极大的关注。
CO分子在金纳米粒子上吸附活化(Au-CO),与金-载体界面的晶格氧发生反应生成CO2,造成晶格氧的缺位(氧空位的生成),而氧分子在缺陷位上吸附活化并补充晶格氧,使晶格氧得到再生[2,3],因此,O2在界面的吸附活化成为提高其活性的关键因素之一。
对于如何提高Au负载型催化剂的效率,认为关键在于Au纳米粒子大小、分散状态的控制和对CO的吸附活化能力[4],往往Au颗粒越小和分散度越高,其活性也会越高[5],当Au的粒径小于3 nm时,催化剂表现出了良好的性能,而当其粒径大于5 nm时,则会失去其独特的催化性能[6].到目前为止,研究银催化剂上CO的选择氧化的报道较少[7]。
Güldür等人[8]在2002年报道了共沉淀法制备的1:1Ag/Co,Ag/Mn催化剂上CO选择氧化的活性和选择性,以及各种因素的影响。
曲等人[9,10]系统考察了不同的分子筛、活性炭、氧化硅、氧化铝、氧化铈、氧化钛和氧化镁载体负载Ag催化剂对CO在富氢条件下的选择氧化,并提出了CO在Ag/SiO2上的低温氧化反应机理。
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910385910.9(22)申请日 2019.05.09(71)申请人 中国石油化工股份有限公司地址 100728 北京市朝阳区朝阳门北大街22号申请人 中国石化催化剂有限公司(72)发明人 任靖 蒋军 祝平 罗道威 张文平 武永安 张祥安 (74)专利代理机构 北京润平知识产权代理有限公司 11283代理人 刘兵 戴香芸(51)Int.Cl.B01J 23/68(2006.01)B01J 37/02(2006.01)C07D 303/04(2006.01)C07D 301/10(2006.01)(54)发明名称银催化剂及其活化方法和应用(57)摘要本发明涉及催化剂领域,公开了一种银催化剂及其活化方法和应用。
本发明的方法包括如下步骤:(1)将浸渍含银浸渍液后的氧化铝载体进行第一活化处理,所述第一活化处理的条件包括:温度为90-130℃,时间为10-120min;(2)将步骤(1)的产物进行真空处理;(3)将步骤(1)的产物进行第二活化处理,所述第二活化处理的条件包括:温度为250-300℃,时间为10-30min,真空度为-0.05~-0.09MPa。
本发明的活化方法工艺先进、安全环保、操作简单,银催化剂活性成分和助催化剂分布均匀,催化剂颗粒间的性能均匀性好,贵金属银耗基本为0,有机胺回收率高达99.0%以上,制得催化剂在烯烃环氧化反应中表现出更优良的活性和选择性。
权利要求书1页 说明书7页CN 111905732 A 2020.11.10C N 111905732A1.一种银催化剂的活化方法,其特征在于,该方法包括如下步骤:(1)将浸渍含银浸渍液后的氧化铝载体进行第一活化处理,所述第一活化处理的条件包括:温度为90-130℃,时间为10-120min;(2)将步骤(1)的产物进行真空处理;(3)将步骤(1)的产物进行第二活化处理,所述第二活化处理的条件包括:温度为250-300℃,时间为10-30min,真空度为-0.05~-0.09MPa。
Preparation of Ag/AgCl/BiMg2VO6composite and its visible-light photocatalytic activityRui Guo,Gaoke Zhang*,Jiu LiuSchool of Resources and Environmental Engineering,Wuhan University of Technology,122Luoshi Road,Wuhan430070,PR China1.IntroductionNowadays,environmental problems associated with harmfulorganic pollutants in water are driving the impetus tofind effectiveapproaches for environmental remediation.Semiconductor photo-catalysis is commonly described as an ideal‘‘green’’technology forthe conversion of solar energy and photo-oxidation of organicpollutants,especially some azo dyes[1].To date,the semiconduc-tor TiO2has undoubtedly been proven to be one of the mostexcellent photocatalysts for oxidative decomposition of manyorganic compounds[2,3].However,TiO2is only responsive toultraviolet or near-ultraviolet irradiation because of its wide band-gap(3.2eV),which occupies only about4%of the solar lightspectrum[4].From the viewpoint of efficiently utilizing solar lightin the visible region(l>400nm),the development of efficientvisible-light-induced photocatalysts for the photodegradation oforganic pollutants has been an urgent issue.It is well known that noble metal nanoparticles(NPs)showstrong UV–vis absorption due to their surface plasmon resonance(SPR),which is produced by the collective oscillations of surfaceelectrons[5,6].In particular,Ag NPs show efficient plasmonresonance in the visible region,which have been used insemiconductor photocatalysis[7–9].Moreover,silver halides(AgX,X=Cl,Br,I)[10,11],known as widely applied photosensitivematerials,werefirstly reported as photocatalysts for watersplitting in1999.The high efficient plasmonic Ag/AgX photo-catalysts have been developed and aroused broad interesting andconcerning[12].Zhu et al.prepared Ag/AgCl by the ion-exchangereaction between hydrochloric acid and the as-prepared silvermolybdate[13].Wang et al.synthesized H2WO4ÁH2O/Ag/AgClcomposite nanoplates by a one-step ionic reaction betweenAg8W4O16/Ag nanorods and HCl aqueous solution[14].Yu et al.acquired visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2nanotube arrays(NTs)by depositing AgCl nanoparticles(NPs)into the self-organized TiO2NTs,and then reducing partial Ag+ionsto Ag0species under irradiation[15].Wang and Huang et al.obtained AgCl or AgBr particles with Ag NPs deposited on theirsurface(Ag@AgCl,Ag@AgBr),byfirst treating Ag2MoO4with HClor HBr in an ion-exchange reaction to form AgCl or AgBr powderand then irradiating them to reduce some Ag+ions to Ag0species[16–18].Zhang et al.reported a simple strategy for constructing anall-solid-state AgBr-Ag-Bi2WO6nanojunction by a facile deposi-tion-precipitation method with Bi2WO6as the substrate[19].Allof these reported Ag/AgX photocatalysts exhibited improvedphotocatalytic activities for the destruction of bacteria or thedegradation of organic dye than the bare semiconductors.Theresults indicate that Ag/AgX is not only a good photocatalyst,butalso a good co-catalyst.Recently,many of Bi-based photocatalysts have also attractedgreat attentions for their high visible-light photocatalytic proper-ties,including BiWO6[20–22],BiVO4[23–25],Sr6Bi2O9[26],Bi3Nb x Ta1Àx O7[27],Bi3TiNbO9[28].Most of them exhibitedMaterials Research Bulletin48(2013)1857–1863A R T I C L E I N F OArticle history:Received17October2012Received in revised form1January2013Accepted7January2013Available online23January2013Keywords:A.NanostructuresA.SemiconductorsB.Plasma depositionC.Electron microscopyD.Catalytic propertiesA B S T R A C TA novel composite photocatalyst Ag/AgCl/BiMg2VO6was synthesized by depositing Ag/AgClnanoparticles on BiMg2VO6substrate via a precipitation–photoreduction method and characterizedby X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),energy dispersive X-ray analysis(EDXA),X-ray photoelectron spectroscopy(XPS)and UV–visdiffuse reflectance spectrophotometer(UV–vis DRS).The photocatalyst showed high and stablephotocatalytic activity for photocatalytic degradation of acid red G under visible-light irradiation(l>420nm).In addition,the active O2Àand h+,as main reactive species,played the major roles duringthe reaction process.The high photocatalytic activity of the composite may be related to the efficientelectron–hole pairs separation at the photocatalyst interfaces,as well as the surface plasmon resonanceof Ag nanoparticles formed on AgCl particles in the degradation reaction.ß2013Elsevier Ltd.All rights reserved.*Corresponding author.Tel.:+862787651816;fax:+862787887445.E-mail address:gkzhang@(G.Zhang).Contents lists available at SciVerse ScienceDirectMaterials Research Bulletinj o u rn a l h om e p a ge:w w w.e l s e v i e r.c o m/l o c a t e/m a t r e s b u0025-5408/$–see front matterß2013Elsevier Ltd.All rights reserved./10.1016/j.materresbull.2013.01.019excellent visible-light photocatalytic activity,owing to their large surface area,specific structure and narrow band gaps.On the other hand,in spite of its heavy metal status,bismuth is considered to be safe,as it is non-toxic and noncarcinogenic[29].Moreover, bismuth compounds have been widely used in cosmetics and in the clinic for centuries because of their high effectiveness and low toxicity in the treatment of a variety of microbial infections, including syphilis,diarrhea,gastritis and colitis[30].Therefore,it is important to develop new Bi-based photocatalysts with visible-light photocatalytic activity.Considering the outstanding properties of Bi-based photocata-lysts,in this paper,we prepared a new Bi-based photocatalyst BiMg2VO6by a sol–gel process.The orthorhombic BiMg2VO6 microparticle can be facilely obtained,however,its activity is restricted by wide band gap(3.4eV).Therefore,BiMg2VO6was employed as a support for the highly active Ag/AgCl NPs structure and the novel visible-light composite Ag/AgCl/BiMg2VO6was synthesized by depositing Ag/AgCl NPs into the BiMg2VO6powder via a precipitation–photoreduction method.The photocatalytic activity of the as-prepared Ag/AgCl/BiMg2VO6samples was evaluated by the degradation of acid red G(ARG)aqueous solution under visible-light irradiation(l>420nm).2.Experimental2.1.MaterialsBismuth(III)nitrate pentahydrate(Bi(NO3)3Á5H2O),silver nitrate(AgNO3),magnesium nitrate hexahydrate (Mg(NO3)2Á6H2O),ammonium metavanadate(NH4VO3),citric acid monohydrate(C6H8O7ÁH2O,CA),hydrochloric acid(HCl),ammonia water(NH3ÁH2O)and ethylene diamine tetraacetic acid(EDTA) were chosen as starting chemical reagents.All of the reagents were analytical grade and were used without further purification.Citric acid was used as the chelate reagent and deionized water was used in the whole experiment.2.2.Preparation of photocatalystThe BiMg2VO6samples were prepared by a sol–gel method. Firstly,0.072mol C6H8O7ÁH2O(CA)and0.018mol Bi(NO3)3Á5H2O were added into30mL distilled water at808C with magnetic stirring,and then EDTA–ammonia solution with the matching ratio of0.048mol EDTA:30mL ammonia water was added slowly into the solution under continuous stirring until Bi(NO3)3Á5H2O was absolutely dissolved.The Bi–CA solution was obtained.Secondly, 0.036mol Mg(NO3)2Á6H2O and0.018mol NH4VO3in a molar ratio of2:1:1of Mg/V/Bi were added into30mL distilled water under stirring,respectively.Then the Mg(NO3)2Á6H2O solution and NH4VO3solution were added into the Bi–CA solution respectively to prepare a homogeneous brilliant blue aqueous solution.In order to prevent precipitation,the precursor solution was prepared according to the molar ratio approximately1:4of Bi-Mg-V/CA,3:2 of CA/EDTA.Thirdly,the as-obtained solution was stirred at808C until it became amorphous colloidal,and then heated at200–3008C on electronic furnace until the amorphous polymeric precursors were formed.The precursors were calcined at3008C for 2h and at3508C for2h respectively with a heating rate of 108C minÀ1to promote the decomposition of organic matters,and then were ground and sintered at8008C for4h(the heating rates of108C minÀ1from room temperature to7008C and58C minÀ1 from7008C to8008C were used,respectively).Finally,the light yellow BiMg2VO6powders were obtained.Ag/AgCl NPs were deposited on the as-prepared BiMg2VO6 samples by a precipitation–photoreduction reaction.Typically,the synthesized BiMg2VO6(0.5g)powders were dispersed in30mL deionized water and sonicated for10min.Then10mL of0.1mol/L AgNO3solution was added into the BiMg2VO6suspension and sonicated for10min.After stirring magnetically for20min,20mL of0.1mol/L HCl aqueous solution was added,sonicated for10min and stirred magnetically for20min.Subsequently,the resulting suspension was irradiated by a20W ultraviolet lamp for30min to reduce partial Ag+ions in the AgCl particles to Ag0species by photochemical decomposition of AgCl.The whole reaction process was kept at room temperature.Finally,the dark yellow Ag/AgCl/ BiMg2VO6powders were collected,washed for3times,filtered and dried at808C for several hours.2.3.CharacterizationThe structure and phase composition of the as-synthesized samples were characterized using X-ray diffraction(XRD)on a D/ MAX-RB X-ray diffractometer(Rigaku,Japan)equipped with Cu K a radiation(l=0.1540558nm)and recorded with2u ranging from 208to708,while the accelerating voltage and the applied current were held at40kV and50mA,respectively.Scanning electron microscopy(SEM,JSM-5610LV)at20kV was used to observe the morphologies of the products.The morphologies and microstruc-tures of the as-obtained samples were further examined by transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)with a JEM-2100F electron microscope(JEOL,Japan),using a200kV accelerating voltage.Chemical analysis of the photocatalyst was performed by Energy dispersive X-ray analysis(EDXA)joined a JEM-561LV SEM. X-ray photoelectron spectroscopy(XPS)measurements were carried out on a Thermo VG Multilab2000spectrometer with the degree of vacuum in analysis room excelled3Â108Pa.All the binding energies were referenced to the C1s peak at284.8eV of the surface adventitious carbon.The absorption edges of the BiMg2VO6and Ag/AgCl/BiMg2VO6samples were measured using a UV–vis spectrophotometer(UV-2550,Shimadzu,Japan)in the range of200–800nm.BaSO4was used as a reflectance standard in the UV–vis diffuse reflectance experiment.The OH trapping fluorescence spectra were taken on afluorescence spectropho-tometer(Shimadzu RF-5300PC).2.4.Evaluation of photocatalytic activityPhotocatalytic activity of the as-prepared phtotocatalysts was evaluated by the degradation of acid red G(ARG)aqueous solution under visible-light irradiation.A300W Dy lamp was used as a light source with a420nm cutofffilter to ensure complete removal of irradiation below420nm.For the degradation of ARG,0.05g of the as-prepared catalysts was added into100mL of ARG aqueous solution with a concentration of50mg/L.In each experiment,the suspensions were stirred in the dark for30min to fully disperse the catalyst prior to irradiation.At given time intervals,about5mL dispersions were collected and centrifuged to remove the photocatalyst particles.The concentration of ARG aqueous solution was determined by its absorbance at505nm using a UV–vis spectrophotometer(UV751GD,China).The examination experiment process of reactive species is similar to the photodegradation experiment.A quantity of scavengers were introduced into the ARG solution prior to addition of the catalyst.Terephthalic acid photoluminescence probing technique(TA-PL)is used in the detection of hydroxyl radical ( OH).Terephthalic acid readily reacts with OH to produce highly fluorescent product,2-hydroxyterephthalic acid.The PL intensity of2-hydroxyterephtalic acid is proportional to the amount of OH radicals produced in water[31–33].In the detection experiment,a basic TA solution was added to the reactor instead of ARG and the concentration of TA was set at5Â10À4M in2Â10À3M NaOHR.Guo et al./Materials Research Bulletin48(2013)1857–1863 1858aqueous solution.After visible-light irradiation for given time,the reaction solution was used to measure the increase of the PL intensity at around426nm excited by its own312nm absorption band[34].In the anaerobic study,the solution was deaerated by bubbling high pure N2during the decomposition process.3.Results and discussion3.1.Morphology and phase structuresPowder XRD study was carried out to confirm the crystalline structures of the prepared catalysts.Fig.1shows the XRD patterns of as-synthesized BiMg2VO6and Ag/AgCl/BiMg2VO6samples.In Fig.1a,it is observed that the main diffraction peaks of pure BiMg2VO6can be well indexed with orthorhombic BiMg2VO6(JCPDS No.48-0195).The strongest diffraction peaks at2u=21.88,22.48, 29.68,31.58,48.68and51.58,which are marked with‘‘&’’,can be assigned to(021),(200),(131),(221),(312)and(152)planesof BiMg2VO6,respectively.After the deposition and photoreduction process,apparent diffraction peaks corresponding to AgCl and Ag can also be observed.The typical diffraction peaks at2u=27.88,32.28 and46.28,which are marked with‘‘*’’,can be assigned to(111), (200)and(220)planes of the cubic phase of AgCl,respectively (JCPDS No.31-1238);while peaks at2u=38.18,44.38and64.48, which are marked with‘‘~’’,can be assigned to(111),(200)and (220)crystal orientations of the cubic phase of Ag,respectively (JCPDS No.65-2871).Moreover,it is found that the characteristic peaks of BiMg2VO6did not change significantly in Fig.1b.Fig.2displays the morphologies of the as-prepared BiMg2VO6 and Ag/AgCl/BiMg2VO6catalysts.Fig.2a reveals that the synthe-sized BiMg2VO6particles are of anomalous shape generally.After deposition and photoreduction process,as shown in Fig.2b,some particles speculated to Ag/AgCl NPs are present on the surface of the BiMg2VO6.The microstructure and interfacial region of the prepared Ag/ AgCl/BiMg2VO6catalyst were further examined using TEM and HRTEM.Fig.3a indicates that the particle size of the Ag/AgCl/ BiMg2VO6catalysts is about50–200nm.Fig.3b exhibitsdifferent Fig.3.(a)TEM image of Ag/AgCl/BiMg2VO6sample,(b)and(c)HRTEM images of Ag/AgCl/BiMg2VO6sample.Intensity(a.u.)2 Theta (d egree)Fig.1.XRD patterns of(a)BiMg2VO6,(b)the fresh Ag/AgCl/BiMg2VO6and(c)theused Ag/AgCl/BiMg2VO6after5recycling runs.Fig.2.SEM micrographs of the samples(a)BiMg2VO6and(b)Ag/AgCl/BiMg2VO6.R.Guo et al./Materials Research Bulletin48(2013)1857–18631859fringes with lattice spacing of 0.302nm and 0.196nm,whichcorrespond to the (131)plane of BiMg 2VO 6and the (220)plane of AgCl,respectively.Additionally,in Fig.3c,the lattice fringes with interplanar spacing of 0.235nm on the edge of the sample were also observed,corresponding to the (111)plane of metal Ag [35].All of these results confirm that Ag and AgCl particles were formed on the surface of BiMg 2VO 6catalysts.3.2.Chemical compositionThe chemical composition and the valence states of theprepared photocatalysts were determined by EDXA and XPS analysis.Fig.4shows a typical EDXA spectrum of the obtained sample.From the Fig.4,peaks associated with Bi,Mg,V,Ag and Cl are observed.Bi,Mg,and V peaks result from the BiMg 2VO 6catalysts,while Ag and Cl elements are from Ag/AgCl NPs.Furthermore,the chemical composition can be obtained from the EDXA analysis,as shown in Table 1.On the other hand,the valence states of elements of the Ag/AgCl/BiMg 2VO 6sample have been determined by XPS (Fig.5).The typical survey-scan XPS spectrum indicates that the elements of Bi,Mg,V,O,Cl and Ag were detected in the Ag/AgCl/BiMg 2VO 6composite.No other impurity peaks were detected,evidencing the high purity of the resulting sample.The XPS peak for C 1s (284.8eV)is ascribed to sample handling or instrument background.A typical high-resolution XPS spectrum of Ag 3d is shown in Fig.5b.The peaks at 367and 373eV are assigned to Ag 3d 5/2and Ag 3d 3/2,respectively.The Ag 3d 5/2peak is further divided into two different peaks at 367.65and 368.44eV and Ag 3d 3/2peak is also divided into two different peaks at 373.65and 374.32eV.The peaks at 368.44and 374.32eV can be attributed to metal Ag 0,whereas the peaks at 367.65and 373.65eV can be attributed to Ag +of AgCl [36].Moreover,the binding energies of Cl 2p 1/2and Cl 2p 3/2deriving from Cl À(Fig.5c,AgCl)are 199.4and 197.8eV,respectively [37].These results confirm that there are both Ag and AgCl species in the as-prepared catalysts.The UV–vis diffuse reflectance spectra (DRS)of the samples are represented in Fig.6.As can be seen in the Fig.6,BiMg 2VO 6is only1 2 3 4 5 6 7 8 9 10 1112Ato mic ra tio Ag:Cl: Bi: Mg:V = 25.39: 23. 06: 26. 69:8. 67: 16. 19BiVAgClBiMgI n t e n s i t y (a .u .)Ene rgy (KeV)Fig.4.EDXA spectrum of Ag/AgCl/BiMg 2VO 6sample.Table 1Weight percentage (%)of each component in the photocatalyst.ComponentAgAgClBiMg 2VO 6Weight percentage (%) 2.0527.0470.91aR e l a t i v e i n t e n s i t y (a .u .)Binding energy(eV)bR e l a t i v e i n t e n s i t y (a .u .)Binding ene rgy (eV )19419 619 820 020 2204199.4197.8cCl 2p 1/2Cl 2p 3/2Cl 2pR e l a t i v e i n t e n s i t y (a .u .)Binding ene rgy (eV )Fig. 5.(a)XPS survey spectrum of the Ag/AgCl/BiMg 2VO 6sample,(b)thecorresponding high-resolution XPS spectrum of Ag 3d region and (c)Cl 2p region.(For interpretation of the references to color in figure legend,the reader is referred to the web version of the article.)R.Guo et al./Materials Research Bulletin 48(2013)1857–18631860responsive to ultraviolet irradiation with an absorption edge at about 365nm whereas Ag/AgCl/BiMg 2VO 6composite displays clear optical response in the visible region with an adsorption edge of approximate 550nm,which may result from the existence of Ag NPs produced by photochemical decomposition or photocatalytic reduction of AgCl.Thus,the incident photon frequency is resonant with the collective excitation of conduction electrons of the Ag NPs,called the localized surface plasmon resonance (LSPR)[15,38].The LSPR effect has a prominent contribution to the enhanced photocatalytic activity.For a semiconductor,the band gap energy of a semiconductor can be calculated by the following formula [39–41]:a h n ¼A ðh n ÀE g Þn =2(1)where a ,h ,n ,E g and A are absorption coefficient,Planck constant,light frequency,band gap energy,and a constant,respectively.Aside from them,n is determined by the type of optical transition of a semiconductor (i.e.,n =1for direct transition and n =4for indirect transition).The values of n and E g were determined by the following steps [27]:(1)plot ln(a h n )vs.ln(h n –E g ),using an approximate value of E g ,and then determine the value of n with the slope of the straightest line near the band edge;(2)plot (a h n )2/n vs.h n and then evaluate the band gap E g by extrapolating the straightest line to the h n axis intercept.Following this method,the values of n for BiMg 2VO 6and Ag/AgCl/BiMg 2VO 6were both estimated to be 2.This means that the optical transitions for the present compounds are both indirectly allowed.Therefore,E g of BiMg 2VO 6and Ag/AgCl/BiMg 2VO 6was determined from a plot of a h n versus energy (h n )(Fig.7)and was found to be around 3.40and 2.21eV,respectively.The obvious change of E g for the substrate and composite could be due to the deposition of Ag/AgCl NPs.3.3.Photocatalytic activityThe photocatalytic activities of the as-prepared samples wereevaluated by the degradation of ARG under visible-light irradiation for 120min.Fig.8displays the photodegradation efficiencies of ARG under different conditions.It is found that the degradation of ARG hardly occurred in the dark or under visible-light irradiation without the Ag/AgCl/BiMg 2VO 6catalyst.Moreover,the degrada-tion efficiencies of ARG were 95.90%,41.40%and 0.00%for the Ag/AgCl/BiMg 2VO 6,Ag/AgCl and BiMg 2VO 6samples,respectively,which indicates that ARG can be degraded efficiently by the Ag/AgCl/BiMg 2VO 6catalyst than the Ag/AgCl NPs or BiMg 2VO 6samples.Meanwhile,the temporal evolution of the absorption spectral changes during the photocatalytic degradation of ARG by the Ag/AgCl/BiMg 2VO 6catalyst is shown in Fig.9.It is showed that the absorption peaks of the solution decreased fast and dis-appeared after visible-light irradiation for 120min,which indicates that the ARG molecular was indeed decomposed in the reaction process.As a photocatalyst,its stability is also very important for its application.The stability of the Ag/AgCl/BiMg 2VO 6composite was further evaluated by reusing the catalyst for the degradation of ARG under visible-light irradiation (Fig.10).After five cycles of the photocatalytic degradation of ARG,it can be seen from Fig.10that the Ag/AgCl/BiMg 2VO 6catalyst did not exhibit significant loss of activity,confirming that the Ag/AgCl/BiMg 2VO 6composite is effective and stable during the photocatalytic reaction.As shown in Fig.1c,the obvious diffraction peaks of metallic Ag can be found and the intensity of diffraction peaks of the AgCl decreased after five recycling experiments,indicating that Ag nanoparticles on the surface of the catalysts might become larger due to the reduction of AgCl with the increase of the irradiation time.This result is similar20030400506007008000.00.20.40.60.81.01.21.4 BiMg 2VO 6Ag/AgCl/BiMg 2VO 6Wavelength (nm)A b s o r b a n c e (a . u .)Fig.6.UV–vis diffuse reflectance spectra of BiMg 2VO 6and Ag/AgCl/BiMg 2VO 6.h (e V )h (eV)Fig.7.Plots of a h n versus energy (hn )for the band gap energy of BiMg 2VO 6and Ag/AgCl/BiMg 2VO 6.0.00.20.40.60.81.0C / C 0Irradiation time (min)Fig.8.The photodegradation efficiencies of ARG under different conditions.R.Guo et al./Materials Research Bulletin 48(2013)1857–18631861to the reported paper [15,42,43].However,the photocatalytic performance of the Ag/AgCl/BiMg 2VO 6composite did not decrease.3.4.Possible photocatalytic mechanismThe excellent photocatalytic performance of the as-prepared Ag/AgCl/BiMg 2VO 6motivated us to further investigate the photo-catalytic mechanism.It is generally accepted that the dyes and organic pollutants can be photodegraded via photocatalytic oxidation process.During this process,electron–hole pairs are directly produced by photocatalyst after illumination.A large number of photoinduced reactive species including h +, OH andO 2Àare suspected to be involved in the photocatalytic reaction [13,44].As mentioned above,TA-PL has been widely used in the detection of OH radicals.The PL emission spectra excited at 312nm from TA solution were measured at given time of illumination and shown in Fig.11.It can be seen that the intensity of the PL emission spectra at about 426nm slowly increased with increasing irradiation time.This result indicates that OH radicals were not the dominant reactive species.To further understand the effect of reactive species,a series of quenchers were developed to scavenge the relevant reactive species [45–47].The comparison experiments were also per-formed without quenchers under identical conditions.KI was introduced as the scavenger of h +[48,49].1,4-benzoquinone (BQ,C 6H 4O 2)was adopted to quench O 2À[44,46].Fig.12shows the effects of scavengers KI and BQ on the degradation efficiencies of ARG.It can be observed that KI and BQ affected the degradation rate apparently.These results indicate that the h +and O 2Àwere produced and acted as the main reactive species in the photo-catalytic degradation of ARG under visible-light irradiation.Moreover, O 2Àcould be generated by photogenerated electron reacting directly with O 2adsorbed on the surface of the catalyst Ag/AgCl/BiMg 2VO 6.Thus,the anaerobic experiment was conducted to further investigate the effect of oxygen [26,44,50].As shown in Fig.13,the degradation efficiency of ARG under the anaerobic suspension (N 2-saturated condition)was much lower than that of initial air-equilibrated solution.This result indicates that the presence of oxygen was responsible for the significant degradation of ARG,and acted as an efficient electrons trap,bringing about theA b s o r b a n c e (a .u .)Waveleng th (nm)Fig.9.Absorption spectral changes of ARG aqueous solution at room temperatureunder visible-light irradiation by Ag/AgCl/BiMg 2VO 6sample.(For interpretation of the references to color in figure legend,the reader is referred to the web version of the article.)C / C 0Irradiation time (min)Fig.10.Cycling degradation curves for Ag/AgCl/BiMg 2VO 6sample.F l u o r e s c e n c e i n t e n s i t yWavelength (nm)Fig.11. OH trapping PL spectra of Ag/AgCl/BiMg 2VO 6on TA solution under visible-light irradiation.(For interpretation of the references to color in figure legend,the reader isreferred to the web version of the article.)C / C 0Irradiation time (min)Fig.12.The degradation efficiencies of ARG under visible-light irradiation without or with different scavengers:(&)no quencher;(*)2mM KI;(!)2mM BQ.R.Guo et al./Materials Research Bulletin 48(2013)1857–18631862generation of O 2Àand preventing the recombination of electrons and holes [26,27].Under visible-light irradiation,the SPR produced by the collective oscillations of surface electrons on Ag NPs could induce enhancement of the local inner electromagnetic field [51].Due to the local electromagnetic field and excellent visible-light absorp-tion capability of Ag NPs,the excited electrons can be transferred quickly and induced away from Ag NPs to the conduction band (CB)of AgCl as far as possible,which is beneficial to the stabilization of AgCl [12,43].And these transferred electrons can further react with O 2adsorbed on the surface of AgCl to generate O 2Àthat successively decompose the ARG to the final products [12,16].However,in the case of BiMg 2VO 6,it could not be stimulated to produce electron–hole pairs by visible light for its wide gap energy (E g =3.40eV).In spite of this,the h +in the VB of AgCl may transfer to the VB of BiMg 2VO 6[13].The above interaction may facilitate electron–hole separation and interfacial charge transfer.Simulta-neously,the h +on the surface of Ag NPs can also result in the oxidation of ARG [15,16,18,52].4.ConclusionsIn summary,the novel visible-light composite photocatalyst Ag/AgCl/BiMg 2VO 6was synthesized through a precipitation–photoreduction method.The as-prepared Ag/AgCl/BiMg 2VO 6photocatalyst exhibited excellent performance for the degradation of ARG,and displayed much higher photocatalytic activity than the Ag/AgCl NPs or BiMg 2VO 6samples under visible-light irradiation (l >420nm).After five cycling tests,the photocatalytic activity of the composite still remained stable.The visible-light photocata-lytic activity of Ag/AgCl/BiMg 2VO 6photocatalyst can be attributed to the effective electron–hole separation at the photocatalyst interfaces and the localized surface plasmon resonance of Ag NPs.O 2Àand h +are the dominant reactive species that promoted the transfer of the photoinduced carriers during the photocatalytic oxidation process.AcknowledgmentsThis work was supported by National Program on Key Basic Research Project of China (973Program)2013CB632402,SRFDP(20110143110015),Program of Wuhan Subject Chief Scientist (201150530147)and the Wuhan Technologies R &D Program.References[1]M.R.Hoffmann,S.T.Martin,W.Choi,D.W.Bahnemann,Chem.Rev.95(1995)69–96.[2]M.Fujihira,Y.Satoh,T.Osa,Nature 293(1981)206–208.[3]E.J.Wolfrum,J.Huang,D.M.Blake,P.C.Maness,Z.Huang,J.Fiest,W.A.Jacoby,Environ.Sci.Technol.36(2002)3412–3419.[4]J.W.Tang,Z.G.Zou,J.H.Ye,Angew.Chem.Int.Ed.43(2004)4463–4466.[5]R.Jin,Y.Cao,C.A.Mirkin,K.L.Kelly,G.C.Schatzand,J.G.Zheng,Science 294(2001)1901–1903.[6]S.Link,M.A.El-Sayed,J.Phys.Chem.B 103(1999)8410–8426.[7]K.Awazu,M.Fujimaki,C.Rockstuhl,J.Tominaga,H.Murakami,Y.Ohki,N.Yoshida,T.Watanabe,J.Am.Chem.Soc.130(2008)1676–1680.[8]T.Hirakawa,P.V.Kamat,J.Am.Chem.Soc.127(2005)3928–3934.[9]T.Hirakawa,P.V.Kamat,Langmuir 20(2004)5645–5647.[10]M.Ashokkumar,J.L.Marignier,Int.J.Hydrogen Energy 24(1999)17–20.[11]N.Kakuta,N.Goto,H.Ohkita,T.Mizushima,J.Phys.Chem.B 103(1999)5917–5919.[12]C.Hu,T.W.Peng,X.X.Hu,Y.L.Nie,X.F.Zhou,J.H.Qu,H.He,J.Am.Chem.Soc.132(2010)857–862.[13]Y.Q.Zhu,H.L.Liu,L.B.Yang,J.H.Liu,Mater.Res.Bull.47(2012)3452–3458.[14]X.F.Wang,S.F.Li,Y.Q.Ma,H.G.Yu,J.G.Yu,J.Phys.Chem.C 115(2011)14648–14655.[15]J.G.Yu,G.P.Dai,B.B.Huang,J.Phys.Chem.C 113(2009)16394–16401.[16]P.Wang,B.B.Huang,X.Y.Qin,X.Y.Zhang,Y.Dai,J.Y.Wei,M.H.Whangbo,Angew.Chem.Int.Ed.47(2008)7931–7933.[17]P.Wang,B.B.Huang,Z.Z.Lou,X.Y.Zhang,X.Y.Qin,Dai Ying,Z.K.Zheng,X.N.Wang,Chem.Eur.J.16(2010)538–544.[18]P.Wang,B.B.Huang,X.Y.Zhang,X.Y.Qin,J.Hao,Y.Dai,Z.Y.Wang,J.Y.Wei,J.Zhan,S.Y.Wang,J.P.Wang,M.Whangbo,Chem.Eur.J.15(2009)1821–1824.[19]L.S.Zhang,K.H.Wong,Z.G.Chen,J.C.Yu,J.C.Zhao,C.Hu,C.Y.Chan,P.K.Wong,Appl.Catal.A:Gen.363(2009)221–229.[20]C.Y.Wang,H.Zhang,F.Li,L.Y.Zhu,Environ.Sci.Technol.44(2010)6843–6848.[21]M.Shang,W.Z.Wang,H.L.Xu,Cryst.Growth Des.9(2009)991–996.[22]M.Shang,W.Z.Wang,S.M.Sun,L.Zhou,L.Zhang,J.Phys.Chem.C 112(2008)10407–10411.[23]G.S.Li,D.Q.Zhang,J.C.Yu,Chem.Mater.20(2008)3983–3992.[24]X.K.Wang,G.C.Li,J.Ding,H.R.Peng,K.Z.Chen,Mater.Res.Bull.47(2012)3814–3818.[25]Z.J.Zhang,W.Z.Wang,M.Shang,W.Z.Yin,mun.11(2010)982–986.[26]Y.Q.Yang,G.K.Zhang,S.J.Yu,X.Sheng,Chem.Eng.J.162(2010)171–177.[27]S.M.Zhang,G.K.Zhang,S.J.Yu,X.G.Chen,X.Y.Zhang,J.Phys.Chem.C 113(2009)20029–20035.[28]H.M.Yin,A.Q.Zhou,N.Chang,X.H.Xu,Mater.Res.Bull.44(2009)377–380.[29]N.M.Leonard,L.C.Wieland,Ram S.Mohan,Tetrahedron 58(2002)8373–8397.[30]N.Yang,H.Z.Sun,Coord.Chem.Rev.251(2007)2354–2366.[31]Q.Xiao,Z.C.Si,J.Zhang,C.Xiao,X.K.Tan,J.Hazard.Mater.150(2008)62–67.[32]J.G.Yu,W.G.Wang,B.Cheng,B.L.Su,J.Phys.Chem.C 113(2009)6743–6750.[33]K.Ishibashi,A.Fujishima,T.Watanabe,K.Hashimoto,J.Photochem.Photobiol.A134(2000)139–142.[34]T.Hirakawa,Y.Nosaka,Langmuir 18(2002)3247–3254.[35]E.Pintr,Z.A.Fekete,O.Berkesi,P.Makra,G.Patzk,C.Visy,J.Phys.Chem.C 111(2007)11872–11878.[36]H.Zhang,G.Wang,D.Chen,X.J.Lv,J.H.Li,Chem.Mater.20(2008)6543–6549.[37]Y.X.Tang,V.P.Subramaniam,u,i,D.G.Gong,P.D.Kanhere,Y.H.Cheng,Z.Chen,Z.L.Dong,Appl.Catal.B:Environ.106(2011)577–585.[38]J.G.Yu,H.Z.Tao,B.Cheng,ChemPhysChem 11(2010)1617–1618.[39]M.A.Butler,J.Appl.Phys.48(1977)1914–1920.[40]R.Jiang,H.Y.Zhu,X.D.Li,L.Xiao,Chem.Eng.J.152(2009)537–542.[41]J.W.Tang,Z.G.Zou,J.H.Ye,J.Phys.Chem.B 107(2003)14265–14269.[42]B.W.Ma,J.F.Guo,W.L.Dai,K.N.Fan,Appl.Catal.B:Environ.123/124(2012)193–199.[43]J.F.Guo,B.W.Ma,A.Y.Yin,K.N.Fan,W.L.Dai,J.Hazard.Mater.211/212(2012)77–82.[44]Y.Y.Li,J.S.Wang,H.C.Yao,L.Y.Dang,Z.J.Li,J.Mol.Catal.A:Chem.334(2011)116–122.[45]G.T.Li,K.H.Wong,X.W.Zhang,C.Hu,J.C.Yu,R.C.Y.Chan,P.K.Wong,Chemosphere76(2009)1185–1191.[46]Y.X.Chen,S.Y.Yang,K.Wang,L.P.Lou,J.Photochem.Photobiol.A 172(2005)47–54.[47]S.T.Martin,A.T.Lee,M.R.Hoffmann,Environ.Sci.Technol.29(1995)2567–2573.[48]S.H.Yoon,J.H.Lee,Environ.Sci.Technol.39(2005)9695–9701.[49]G.T.Li,J.H.Qu,X.W.Zhang,J.H.Liu,H.N.Liu,J.Mol.Catal.A:Chem.259(2006)238–244.[50]J.Cao,B.Y.Xu,B.D.Luo,H.L.Lin,S.F.Chen,Appl.Surf.Sci.257(2011)7083–7089.[51]Y.P.Liu,L.Fang,H.D.Lu,Y.W.Li,C.Z.Hu,H.G.Yu,Appl.Catal.B:Environ.115/116(2012)245–252.[52]P.Wang,B.B.Huang,X.Y.Zhang,X.Y.Qin,Y.Dai,H.Jin,J.Y.Wei,M.H.Whangbo,Chem.Eur.J.14(2008)10543–10546.C / C 0Irradiation time (min)Fig.13.Photocatalytic degradation efficiencies of ARG solution by the Ag/AgCl/BiMg 2VO 6samples in N 2-saturated and air-equilibrated solution.R.Guo et al./Materials Research Bulletin 48(2013)1857–18631863。