1202B1复习题
- 格式:doc
- 大小:173.50 KB
- 文档页数:9
新概念Lesson 121-126 阶段性测试题一、词汇听写(每小题1分,共10分)1.讨厌的东西n. __________2.提供v. __________3.认出v. __________4.柜台n. __________5.浇水v. __________6.非常adv. __________7.经理n. __________ 8.顾客n. __________9.照顾;服务v. __________ 10.忘记v. __________二、单项选择(每小题1分,共10分)( ) 1. Tom is the boy ______ is watching TV.A. whichB. whoC. whose ( ) 2. —Must I take the bus?—No, you ______. You can walk from here.A. don’t have toB. mustn’tC. had better not ( ) 3. Does your father let ______ go all by ______?A. you; yourselfB. your; yoursC. your; yourself ( ) 4. ______ a beautiful building it is!A. HowB. WhatC. So( ) 5. To his ______, he found his pen lost.A. surprisingB. surpriseC. surprised ( ) 6. —Did he go to school when he was young?—No, he taught ______.A. himB. heC. himself ( ) 7. We ______ talk loudly when we see the “Be quiet” sign.A. mustB. needn’tC. mustn’t ( ) 8. He offered ______ me to the station.A. driveB. to driveC. driving ( ) 9. This is the photograph I ______ during my trip.A. hadB. didC. took( ) 10. I have told everything ______ I can to you.A. thatB. whichC. who三、用所给词的适当形式填空(每小题1分,共10分)1. When I __________ (leave) the house, the postman arrived.2. This is the woman who I __________ (serve) just now.3. We must serve our __________ (custom) very well.4. I’ll cook a meal by __________ (I).5. You needn’t __________ (walk) to the station.6. It is __________ (surprise) news, isn’t it?7. What’s the __________ (mean) of this word?8. The __________ (manage) is talking with the assistant.9. Don’t forget __________ (lock) the door.10. I’d like __________ (take) some photographs of my old house.四、句型转换(每小题2分,共10分)1. I told you about the man. He offered me a job. (合并句子)I told you about the man __________ __________ me a job.2. I forgot to take photographs yesterday. (就划线部分提问)__________ __________ you forget to __________ yesterday?3. What a beautiful ship it is! (写出同义句)__________ __________ the ship is!4. Scott grew a beard during the trip. (就划线部分提问)__________ __________ Scott __________ a beard?5. I’ll have tea by myself. (就划线部分提问)__________ will you __________ tea?五、连词成句(每小题2分,共10分)1. you do these have water to flowers______________________________________________________________________?2. the he yesterday man served is I______________________________________________________________________.3. ever the film is I have best this seen______________________________________________________________________.4. this the which coat he is yesterday bought______________________________________________________________________.5. the the sister is girl under sitting tree is who my______________________________________________________________________.六、改错(每小题2分,共10分)1. Hasn’t your friend arrived already?_______________________________________________________________________ 2. You don’t need water the flowers now._______________________________________________________________________ 3. Look out the window._______________________________________________________________________ 4. Who is the woman which talked with you yesterday morning?_______________________________________________________________________ 5. He repaired the car by him._______________________________________________________________________七、翻译句子(每小题2分,共10分)1. 是谁接待的您,先生?____________________________________________________________________________.2. 他就是我昨天服务过的人。
单元过关检测六 数列一、单项选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.记等差数列{a n }的前n 项和为S n ,若S 11=22,则a 1+a 3+a 9+a 11=( ) A .2 B .4 C .8 D .162.已知等比数列{a n }中,a 1=1,且a 5+a 8a 2+a 5=8,那么S 5的值是( ) A .15 B .31 C .63 D .643.已知数列{a n }满意a 1=2,a 2=3,a n +2=a n +1a n,则a 2 022=( ) A .12 B .13 C .32 D .234.记S n 为等比数列{a n }的前n 项和.若S 2=3,S 4=6,则S 6=( ) A .7 B .8 C .9 D .105.在等差数列{a n }中,a 1,a 2,,,成公比为3的等比数列,则k 3=( )A .14B .34C .41D .866.[2024·北京通州模拟]已知数列{a n }满意a 1=1,a n +1=a n +1,记b n =a 2n -1,则数列{b n }的前n 项和为( )A .n 2B .(n +1)2C .n (n +1)2D .n (n +1)7.[2024·山东德州模拟]意大利闻名数学家斐波那契在探讨兔子繁殖问题时,发觉有这样一列数:1,1,2,3,5,…,从第三项起,每个数等于它前面两个数的和,即a n +2=a n +1+a n (n ∈N *),后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”.记a 2 023=m ,则a 2+a 4+a 6+…+a 2 022=( )A .m -2B .m -1C .mD .m +18.[2024·山东聊城模拟]若函数f (x )使得数列a n =f (n ),n ∈N *为递增数列,则称函数f (x )为“数列保增函数”.已知函数f (x )=e x-ax 为“数列保增函数”,则a 的取值范围为( )A .(-∞,0]B .(-∞,e 2-e) C .(-∞,e) D .(-∞,e]二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若{a n }为等差数列,a 2=11,a 5=5,则下列说法正确的是( ) A .a n =15-2nB .-20是数列{a n }中的项C .数列{a n }单调递减D .数列{a n }前7项和最大10.若{a n }为等比数列,则下列数列中是等比数列的是( ) A .{a 2n }B .{k ·a n }(其中k ∈R 且k ≠0)C .⎩⎨⎧⎭⎬⎫1a n D .{ln a n }11.已知S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,则下列结论正确的是( ) A .a 2+a 5=2a 8 B .a 3+a 6=2a 9 C .a 28 =a 2·a 5 D .a 29 =a 3·a 6 12.已知数列{a n }满意a n >0,a n +1n =a n a 2n +n -1(n ∈N *),数列{a n }的前n 项和为S n ,则下列结论正确的是( )A .a 1a 2=1B .a 1=1C .S 2 020·a 2 021=2 020D .S 2 020·a 2 021>2 020 [答题区]13.在等差数列{a n }中,a 1+a 9=2,则a 4+4a 5+a 6=________.14.设S n 为数列{a n }的前n 项和,且a 1=4,a n +1=S n ,n ∈N *,则a n =________. 15.记数列{a n }的前n 项和为S n ,若a n =2n3n -49,则使得S n 取得最小值时n 的值为________.16.[2024·新高考Ⅰ卷]某校学生在探讨民间剪纸艺术时,发觉剪纸时常常会沿纸的某条对称轴把纸对折,规格为20 dm×12 dm 的长方形纸,对折1次共可以得到10 dm×12 dm,20 dm×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm×12 dm ,10 dm×6 dm,20 dm×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2.以此类推,则对折4次共可以得到不同规格图形的种数为________;假如对折n 次,那么∑k =1nS k =________ dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)[2024·新高考Ⅱ卷]记S n 是公差不为0的等差数列{a n }的前n 项和,若a 3=S 5,a 2a 4=S 4.(1)求数列{a n }的通项公式a n ; (2)求使S n >a n 成立的n 的最小值.18.(12分)[2024·新高考Ⅰ卷]已知数列{a n }满意a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{}b n 的通项公式;(2)求{a n}的前20项和.19.(12分)[2024·新高考Ⅱ卷]已知{a n}为等差数列,{b n}是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素个数.20.(12分)[2024·河北唐山模拟]已知数列{a n}的各项均不为零,S n为其前n项和,且a n a n+1=2S n-1.(1)证明:a n+2-a n=2;(2)若a1=-1,数列{b n}为等比数列,b1=a1,b2=a3.求数列{a n b n}的前2 022项和T2 022.21.(12分)已知数列{a n}的前n项和为S n,且4S n=(2n-1)a n+1+1,a1=1.(1)求数列{a n}的通项公式;(2)设b n=1a n S n ,数列{b n}的前n项和为T n,证明:T n<32.22.(12分)[2024·辽宁大连模拟]已知数列{a n}是首项a1=1的正项等比数列,{b n}是公差d=2的等差数列,且满意b3=2a2,a3=b4+1.(1)求数列{a n},{b n}的通项公式;(2)若c n=________,求{c n}的前n项和S n.请在①c n=3a n+(b n-1);②c n=b n-13a n这两个条件中任选一个,补充在上面的横线中,并加以解答.单元过关检测六 数列1.答案:C解析:由题知S 11=22,即S 11=11(a 1+a 11)2=11a 6=22,∴a 6=2,∴a 1+a 3+a 9+a 11=4a 6=8. 故选C. 2.答案:B解析:设等比数列的公比为q ,由题得q 4+q 7q +q 4=8,∴q 4(1+q 3)q (1+q 3)=8,∴q 3=8,∴q =2. 所以S 5=1-251-2=31.故选B. 3.答案:D 解析:由a n +2=a n +1a n,a 1=2,a 2=3, 所以a 3=a 2a 1=32,a 4=a 3a 2=323=12,a 5=a 4a 3=1232=13,a 6=a 5a 4=1312=23,a 7=a 6a 5=2313=2,即{a n }是周期为6的数列.因为2 022=6×337,所以a 2 022=a 6=23.故选D. 4.答案:C解析:∵S n 为等比数列{a n }的前n 项和,∴S 2,S 4-S 2,S 6-S 4成等比数列, ∴S 2=3,S 4-S 2=6-3=3,∴S 6-S 4=3,∴S 6=3+S 4=3+6=9. 故选C. 5.答案:C解析:设等差数列{a n }的公差为d , 因为a 1,a 2,,,成公比为3的等比数列,所以a 2a 1=3,所以a 2=3a 1,即a 1+d =3a 1,所以d =2a 1, 所以a n =a 1+(n -1)d =(2n -1)a 1, 又因为a 1,a 2,,,成公比为3的等比数列,所以=a 1×34=81a 1,因为=(2k 3-1)a 1,所以2k 3-1=81,解得k 3=41. 故选C. 6.答案:A解析:由题知,∵a n +1=a n +1,∴a n +1-a n =1, ∴{a n }是以1为首项,1为公差的等差数列, ∴a n =n ,故b n =a 2n -1=2n -1, ∴b n -b n -1=2,b 1=1,所以{b n }是以1为首项,2为公差的等差数列, 记{b n }的前n 项和为S n , ∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.故选A. 7.答案:B解析:因为a n +2=a n +1+a n ,所以a 2 023=a 2 022+a 2 021=a 2 022+a 2 020+a 2 019=…=a 2 022+a 2 020+a 2 018+…+a 2+a 1, 又因为a 1=1,所以a 2+a 4+a 6+…+a 2 022=a 2 023-a 1=m -1.故选B. 8.答案:B解析:由题意,对∀n ∈N *,f (n +1)-f (n )>0, 即[en +1-a (n +1)]-(e n -an )=(e -1)e n-a >0,即a <(e -1)e n,对∀n ∈N *恒成立, 由于y =e x 在R 上单调递增,故e n ≥e 1=e ,故a <(e -1)e n ≤[(e -1)e n ]min =e (e -1)=e 2-e. 即a ∈(-∞,e 2-e ). 故选B. 9.答案:ACD解析:因为数列{a n }为等差数列,且a 2=11,a 5=5,则⎩⎪⎨⎪⎧a 1+d =11a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=13,d =-2,a n=13+(n -1)×(-2)=-2n +15,故A 选项正确,由-20=-2n +15,得n =352∉N *,故B 错误, 因为d <0,所以数列{a n }单调递减,故C 正确,由数列通项公式a n =15-2n 可知,前7项均为正数,a 8=-1,所以前7项和最大,故D 正确.故选ACD.10.答案:ABC解析:因{a n }为等比数列,设其公比为q ,则有a n =a 1qn -1,对于A ,a 2n +1 a 2n=(a n +1a n )2=q 2是常数,数列{a 2n }是等比数列,A 是;对于B ,k ∈R 且k ≠0,k ·a n +1k ·a n =a n +1a n=q 是常数,数列{}k ·a n 是等比数列,B 是; 对于C ,1a n +11a n=a n a n +1=1q 是常数,⎩⎨⎧⎭⎬⎫1a n 是等比数列,C 是; 对于D ,明显a n =1,{a n }为等比数列,而ln a n =0,数列{ln a n }不是等比数列,D 不是. 故选ABC. 11.答案:AB解析:若公比q =1有S 3=3a 1,S 6=6a 1,S 9=9a 1, 此时2S 9≠S 3+S 6,故公比q ≠1,由题意2S 9=S 3+S 6⇒2a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,化简有q +q 4=2q 7,两边同时乘以a 1,可得:a 2+a 5=2a 8; 两边同时乘以a 1q ,可得a 3+a 6=2a 9, 故有a 2+a 5=2a 8或a 3+a 6=2a 9. 故选AB. 12.答案:AC 解析:由a n +1n =a n a 2n +n -1得n a n +1=a n +n -1a n ,∴a n =n a n +1-n -1a n; 当n =1时,可得a 1a 2=1,但a 1不肯定为1,∴A 正确,B 错误;S n =a 1+a 2+…+a n =(1a 2-0a 1)+(2a 3-1a 2)+…+(n a n +1-n -1a n )=na n +1,∴S n ·a n +1=n .∴n =2 020时,S 2 020·a 2 021=2 020,所以C 正确,D 错误.故选AC. 13.答案:6解析:依据等差数列的性质可得a 1+a 9=2a 5=2, 所以a 5=1, 又a 4+a 6=2a 5,所以a 4+4a 5+a 6=6a 5=6.14.答案:a n =⎩⎪⎨⎪⎧2n,n ≥2,4,n =1,n ∈N解析:∵a n +1=S n ,则当n ≥2时,a n =S n -S n -1=a n +1-a n , 得a n +1a n=2,故数列{a n }从其次项起是等比数列, 又a 2=S 1=4, 当n ≥2时,a n =a 2×2n -2=2n,又a 1=4,∴a n =⎩⎪⎨⎪⎧2n,n ≥2,4,n =1,n ∈N *.15.答案:16解析:由a n =2n 3n -49得a n =23+983×13n -49,当n ≤16时,⎩⎨⎧⎭⎬⎫13n -49单调递减,且13n -49<0,当n =1时,a 1<0,故当n ≤16时,a n <0,当n ≥17时,13n -49>0,且a n >0,所以当n =16时,S n 最小. 16.答案:5 720-15()n +32n -4解析:(1)由对折2次共可以得到5 dm×12 dm,10 dm×6 dm,20 dm×3 dm 三种规格的图形,所以对折三次的结果有:52×12,5×6,10×3,20×32,共4种不同规格(单位dm 2);故对折4次可得到如下规格:54×12,52×6,5×3,10×32,20×34,共5种不同规格.(2)由于每次对折后的图形的面积都减小为原来的一半,故各次对折后的图形,不论规格如何,其面积成公比为12的等比数列,首项为120()dm 2,第n 次对折后的图形面积为120×⎝ ⎛⎭⎪⎫12n -1,对于第n 次对折后的图形的规格形态种数,依据(1)的过程和结论,猜想为n +1种(证明从略),故得猜想S n =120(n +1)2n -1, 设S =∑k =1nS k =120×220+120×321+120×422+…+120()n +12n -1, 则12S =120×221+120×322+…+120n 2n -1+120(n +1)2n, 两式作差得12S =240+120⎝ ⎛⎭⎪⎫12+122+…+12n -1-120()n +12n=240+60⎝ ⎛⎭⎪⎫1-12n -11-12-120()n +12n=360-1202n -1-120()n +12n =360-120()n +32n, 因此,S =720-240()n +32n =720-15()n +32n -4. 17.解析:(1)由等差数列的性质可得S 5=5a 3,则a 3=5a 3,∴a 3=0, 设等差数列的公差为d ,从而有a 2a 4=(a 3-d )(a 3+d )=-d 2,S 4=a 1+a 2+a 3+a 4=(a 3-2d )+(a 3-d )+a 3+(a 3+d )=-2d ,从而-d 2=-2d ,由于公差不为零,故d =2, 数列的通项公式为a n =a 3+(n -3)d =2n -6.(2)由数列的通项公式可得a 1=2-6=-4,则S n =n ×(-4)+n (n -1)2×2=n2-5n ,则不等式S n >a n 即n 2-5n >2n -6,整理可得(n -1)(n -6)>0, 解得n <1或n >6,又n 为正整数,故n 的最小值为7.18.解析:(1)由题设可得b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=5, 又a 2k +2=a 2k +1+1,a 2k +1=a 2k +2,故a 2k +2=a 2k +3即b n +1=b n +3即b n +1-b n =3, 所以{b n }为等差数列,故b n =2+(n -1)×3=3n -1. (2)设{a n }的前20项和为S 20,则S 20=a 1+a 2+a 3+…+a 20, 因为a 1=a 2-1,a 3=a 4-1,…,a 19=a 20-1, 所以S 20=2(a 2+a 4+…+a 18+a 20)-10=2(b 1+b 2+…+b 9+b 10)-10=2×(10×2+9×102×3)-10=300.19.解析:(1)证明:设数列{a n }的公差为d ,所以⎩⎪⎨⎪⎧a 1+d -2b 1=a 1+2d -4b 1a 1+d -2b 1=8b 1-(a 1+3d ),即可解得b 1=a 1=d 2,所以原命题得证.(2)由(1)知,b 1=a 1=d2,所以b k =a m +a 1⇔b 1×2k -1=a 1+(m -1)d +a 1,即2k -1=2m ,亦即m =2k -2∈[1,500],解得2≤k ≤10,所以满意等式的解k =2,3,4, (10)故集合{k |b k =a m +a 1,1≤m ≤500}中的元素个数为10-2+1=9.20.解析:(1)证明:因为a n a n +1=2S n -1①,则a n +1a n +2=2S n +1-1②, ②-①得a n +1(a n +2-a n )=2a n +1,又a n +1≠0,所以a n +2-a n =2.(2)由a 1=-1得a 3=1,于是b 2=a 3=1,由b 1=-1得{b n }的公比q =-1.所以b n =(-1)n ,a n b n =(-1)n a n .由a 1a 2=2a 1-1得a 2=3,由a n +2-a n =2得a 2 022-a 2 021=a 2 020-a 2 019=…=a 2-a 1=4,因此T 2 022=-a 1+a 2-a 3+a 4…-a 2 021+a 2 022=(a 2-a 1)+(a 4-a 3)+…+(a 2 022-a 2 021)=1 011×(a 2-a 1)=1 011×4=4 044.21.解析:(1)因为4S n =(2n -1)a n +1+1,所以4S n -1=(2n -3)a n +1(n ≥2). 两式相减,得4a n =(2n -1)a n +1-(2n -3)a n (n ≥2),即(2n +1)a n =(2n -1)a n +1,所以当n ≥2时,a n +1a n =2n +12n -1, 在4S n =(2n -1)a n +1+1中,令n =1,得a 2=3,所以a n =a n a n -1·a n -1a n -2·a n -2a n -3…a 3a 2·a 2a 1·a 1=2n -12n -3·2n -32n -5·2n -52n -7…53·31·1=2n -1(n ≥2),又a 1=1满意,所以a n =2n -1,所以a n -a n -1=(2n -1)-(2n -3)=2(n ≥2),故数列{a n }是首项为1,公差为2的等差数列,且a n =2n -1.(2)S n =n +n (n -1)2×2=n 2, 所以b n =1a n S n =1(2n -1)n =22n (2n -1)<22n (2n -2)=12n -2-12n, 当n =1时,T 1=1a 1S 1=1<32, 当n ≥2时,T n <(1+12-14+14-16+…+12n -2-12n )=32-12n <32, 所以T n <32. 22.解析:(1)设正项等比数列{a n }的公比为q ,则q >0,依据题意,由b 3=2a 2,a 3=b 4+1,可得⎩⎪⎨⎪⎧b 1+2d =2a 1q a 1q 2=b 1+3d +1, 即⎩⎪⎨⎪⎧b 1+4=2q q 2=b 1+7,解得⎩⎪⎨⎪⎧b 1=2q =3或⎩⎪⎨⎪⎧b 1=-6q =-1(舍), 所以a n =a 1q n -1=3n -1,b n =b 1+(n -1)d =2n .(2)选①由(1)可得c n =3n +2n -1,所以S n =c 1+c 2+c 3+...+c n =(3+32+33+ (3))+(1+3+5+…+2n -1), 所以S n =3(1-3n )1-3+n 2(1+2n -1)=n 2+3n +12-32. 选②由(1)可得c n =2n -13n ,所以S n =c 1+c 2+c 3+…+c n =13+332+533+…+2n -13n ,① 则13S n =132+333+534+…+2n -13n +1,②①-②得23S n =13+232+233+234+…+23n -2n -13n +1=13+232⎣⎢⎡⎦⎥⎤1-(13)n -11-13-2n -13n +1=13+13[1-⎝ ⎛⎭⎪⎫13n -1]-2n -13n +1=23-2(n +1)3n +1,所以S n =1-n +13n .。
高考数学二轮复习考点知识与题型专题讲解第31讲 空间几何体[考情分析] 空间几何体的结构特征是立体几何的基础,空间几何体的表面积和体积是高考的重点与热点,多以选择题、填空题的形式考查,难度中等或偏上.考点一 空间几何体的折展问题核心提炼空间几何体的侧面展开图 1.圆柱的侧面展开图是矩形. 2.圆锥的侧面展开图是扇形. 3.圆台的侧面展开图是扇环.例1 (1)“莫言下岭便无难,赚得行人空喜欢.”出自南宋诗人杨万里的作品《过松源晨炊漆公店》.如图是一座山的示意图,山大致呈圆锥形,山脚呈圆形,半径为40 km ,山高为4015 km ,B 是山坡SA 上一点,且AB =40 km.为了发展旅游业,要建设一条从A 到B 的环山观光公路,这条公路从A 出发后先上坡,后下坡,当公路长度最短时,下坡路段长为( )A .60 kmB .12 6 kmC .72 kmD .1215 km 答案 C解析 该圆锥的母线长为(4015)2+402=160, 所以圆锥的侧面展开图是圆心角为2×π×40160=π2的扇形,如图,展开圆锥的侧面,连接A ′B ,由两点之间线段最短,知观光公路为图中的A ′B ,A ′B =SA ′2+SB 2=1602+1202=200, 过点S 作A ′B 的垂线,垂足为H ,记点P 为A ′B 上任意一点,连接PS ,当上坡时,P 到山顶S 的距离PS 越来越小,当下坡时,P 到山顶S 的距离PS 越来越大, 则下坡段的公路为图中的HB , 由Rt △SA ′B ∽Rt △HSB , 得HB =SB 2A ′B =1202200=72(km).(2)(2022·深圳检测)如图,在三棱锥P -ABC 的平面展开图中,AC =3,AB =1,AD =1,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB 等于( )A.12B.13C.35D.34 答案 D解析 由题意知,AE =AD =AB =1,BC =2, 在△ACE 中,由余弦定理知, CE 2=AE 2+AC 2-2AE ·AC ·cos ∠CAE =1+3-2×1×3×32=1, ∴CE =CF =1,而BF =BD =2,BC =2,∴在△BCF 中,由余弦定理知,cos ∠FCB =BC 2+CF 2-BF 22BC ·CF =4+1-22×2×1=34.规律方法 空间几何体最短距离问题,一般是将空间几何体展开成平面图形,转化成求平面中两点间的最短距离问题,注意展开后对应的顶点和边.跟踪演练1 (1)(多选)如图是一个正方体的展开图,如果将它还原为正方体,则下列说法中正确的是( )A .C ∈GHB .CD 与EF 是共面直线C .AB ∥EFD .GH 与EF 是异面直线 答案 ABD解析 由图可知,还原正方体后,点C 与G 重合, 即C ∈GH ,又可知CD 与EF 是平行直线,即CD 与EF 是共面直线,AB 与EF 是相交直线(点B 与点F 重合),GH 与EF 是异面直线,故A ,B ,D 正确,C 错误.(2)如图,在正三棱锥P -ABC 中,∠APB =∠BPC =∠CP A =30°,P A =PB =PC =2,一只虫子从A 点出发,绕三棱锥的三个侧面爬行一周后,又回到A 点,则虫子爬行的最短距离是( )A .32B .3 3C .23D .2 2 答案 D解析 将三棱锥由P A 展开,如图所示,则∠AP A 1=90°,所求最短距离为AA 1的长度,∵P A =2, ∴由勾股定理可得 AA 1=22+22=2 2.∴虫子爬行的最短距离为2 2.考点二 表面积与体积核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式(1)V 柱=Sh (S 为底面面积,h 为高). (2)V 锥=13Sh (S 为底面面积,h 为高).(3)V 台=13(S 上+S 上·S 下+S 下)h (S 上,S 下为底面面积,h 为高).(4)V 球=43πR 3(R 为球的半径).例2 (1)(2022·全国甲卷)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙等于( )A. 5 B .2 2 C.10 D.5104答案 C解析 方法一因为甲、乙两个圆锥的母线长相等,所以结合S 甲S 乙=2,可知甲、乙两个圆锥侧面展开图的圆心角之比是2∶1.不妨设两个圆锥的母线长为l =3,甲、乙两个圆锥的底面半径分别为r 1,r 2,高分别为h 1,h 2, 则由题意知,两个圆锥的侧面展开图刚好可以拼成一个周长为6π的圆, 所以2πr 1=4π,2πr 2=2π,得r 1=2,r 2=1. 由勾股定理得,h 1=l 2-r 21=5,h 2=l 2-r 22=22,所以V 甲V 乙=13πr 21h113πr 22h 2=4522=10.方法二 设两圆锥的母线长为l ,甲、乙两圆锥的底面半径分别为r 1,r 2,高分别为h 1,h 2,侧面展开图的圆心角分别为n 1,n 2, 则由S 甲S 乙=πr 1l πr 2l =n 1πl 22πn 2πl22π=2,得r 1r 2=n 1n 2=2. 由题意知n 1+n 2=2π, 所以n 1=4π3,n 2=2π3,所以2πr 1=4π3l ,2πr 2=2π3l ,得r 1=23l ,r 2=13l .由勾股定理得,h 1=l 2-r 21=53l , h 2=l 2-r 22=223l , 所以V 甲V 乙=13πr 21h113πr 22h 2=4522=10.(2)(多选)(2022·新高考全国Ⅱ)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED ,AB =ED =2FB .记三棱锥E -ACD ,F -ABC ,F -ACE 的体积分别为V 1,V 2,V 3,则( )A .V 3=2V 2B .V 3=V 1C .V 3=V 1+V 2D .2V 3=3V 1 答案 CD解析 如图,连接BD交AC 于O ,连接OE ,OF .设AB =ED =2FB =2, 则AB =BC =CD =AD =2, FB =1.因为ED ⊥平面ABCD ,FB ∥ED , 所以FB ⊥平面ABCD ,所以V 1=V E -ACD =13S △ACD ·ED =13×12AD ·CD ·ED =13×12×2×2×2=43,V 2=V F -ABC =13S △ABC ·FB =13×12AB ·BC ·FB =13×12×2×2×1=23.因为ED ⊥平面ABCD ,AC ⊂平面ABCD , 所以ED ⊥AC , 又AC ⊥BD ,且ED ∩BD =D ,ED ,BD ⊂平面BDEF ,所以AC ⊥平面BDEF . 因为OE ,OF ⊂平面BDEF , 所以AC ⊥OE ,AC ⊥OF . 易知AC =BD =2AB =22, OB =OD =12BD =2,OF =OB 2+FB 2=3, OE =OD 2+ED 2=6, EF =BD 2+(ED -FB )2 =(22)2+(2-1)2=3,所以EF 2=OE 2+OF 2,所以OF ⊥OE . 又OE ∩AC =O ,OE ,AC ⊂平面ACE , 所以OF ⊥平面ACE , 所以V 3=V F -ACE =13S △ACE ·OF=13×12AC ·OE ·OF =13×12×22×6×3=2, 所以V 3≠2V 2,V 1≠V 3,V 3=V 1+V 2,2V 3=3V 1, 所以选项A ,B 不正确,选项C ,D 正确. 规律方法 空间几何体的表面积与体积的求法(1)公式法:对于规则的几何体直接利用公式进行求解.(2)割补法:把不规则的图形分割成规则的图形,或把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体.(3)等体积法:选择合适的底面来求体积.跟踪演练2 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为( ) A .802π B .40 C .402π D .405π 答案 C解析 由圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,可得sin ∠ASB =1-⎝⎛⎭⎫782=158, 又△SAB 的面积为515, 可得12SA 2sin ∠ASB =515,即12SA 2×158=515,可得SA =45, 由SA 与圆锥底面所成角为45°, 可得圆锥的底面半径为22×45=210, 则该圆锥的侧面积为π×210×45=402π.(2)(2022·连云港模拟)如图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是( )A.72π24B.73π24C.72π12D.73π12 答案 B解析 如图,设上底面的半径为r ,下底面的半径为R ,高为h ,母线长为l ,则2πr =π·1,2πR =π·2, 解得r =12,R =1,l =2-1=1, h =l 2-(R -r )2=12-⎝⎛⎭⎫122=32,上底面面积S ′=π·⎝⎛⎭⎫122=π4, 下底面面积S =π·12=π,则该圆台的体积为13(S +S ′+SS ′)h =13×⎝⎛⎭⎫π+π4+π2×32=73π24. 考点三 多面体与球核心提炼求空间多面体的外接球半径的常用方法(1)补形法:侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可.例3 (1)(2022·烟台模拟)如图,三棱锥V -ABC 中,VA ⊥底面ABC ,∠BAC =90°,AB =AC =VA =2,则该三棱锥的内切球和外接球的半径之比为( )A .(2-3)∶1B .(23-3)∶1C .(3-1)∶3D .(3-1)∶2 答案 C解析 因为VA ⊥底面ABC ,AB ,AC ⊂底面ABC , 所以VA ⊥AB ,VA ⊥AC , 又因为∠BAC =90°,所以AB ⊥AC ,而AB =AC =VA =2,所以三条互相垂直且共顶点的棱,可以看成正方体中共顶点的长、宽、高,因此该三棱锥外接球的半径R =12×22+22+22=3,设该三棱锥的内切球的半径为r , 因为∠BAC =90°,所以BC =AB 2+AC 2=22+22=22, 因为VA ⊥AB ,VA ⊥AC ,AB =AC =VA =2, 所以VB =VC =VA 2+AB 2=22+22=22, 由三棱锥的体积公式可得,3×13×12×2×2·r +13×12×22×22×32·r =13×12×2×2×2⇒r =3-33, 所以r ∶R =3-33∶3=(3-1)∶3.(2)(2022·新高考全国Ⅱ)已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为( ) A .100π B .128π C .144π D .192π 答案 A解析 由题意,得正三棱台上、下底面的外接圆的半径分别为23×32×33=3,23×32×43=4.设该棱台上、下底面的外接圆的圆心分别为O 1,O 2,连接O 1O 2(图略),则O 1O 2=1,其外接球的球心O 在直线O 1O 2上.设球O 的半径为R ,当球心O 在线段O 1O 2上时,R 2=32+OO 21=42+(1-OO 1)2,解得OO 1=4(舍去);当球心O 不在线段O 1O 2上时,R 2=42+OO 22=32+(1+OO 2)2,解得OO 2=3,所以R 2=25,所以该球的表面积为4πR 2=100π. 综上,该球的表面积为100π.规律方法 (1)求锥体的外接球问题的一般方法是补形法,把锥体补成正方体、长方体等求解. (2)求锥体的内切球问题的一般方法是利用等体积法求半径.跟踪演练3 (1)(2022·全国乙卷)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( ) A.13B.12 C.33D.22答案 C解析 该四棱锥的体积最大即以底面截球的圆面和顶点O 组成的圆锥体积最大. 设圆锥的高为h (0<h <1),底面半径为r , 则圆锥的体积V =13πr 2h =13π(1-h 2)h ,则V ′=13π(1-3h 2),令V ′=13π(1-3h 2)=0,得h =33,所以V =13π(1-h 2)h 在⎝⎛⎭⎫0,33上单调递增,在⎝⎛⎭⎫33,1上单调递减,所以当h =33时,四棱锥的体积最大. (2)(2022·衡水中学调研)将两个一模一样的正三棱锥共底面倒扣在一起,已知正三棱锥的侧棱长为2,若该组合体有外接球,则正三棱锥的底面边长为________,该组合体的外接球的体积为________. 答案6823π解析 如图,连接P A 交底面BCD 于点O ,则点O 就是该组合体的外接球的球心.设三棱锥的底面边长为a , 则CO =PO =R =33a , 得2×33a =2, 所以a =6,R =2, 所以V =43π·(2)3=823π.专题强化练一、单项选择题1.(2022·唐山模拟)圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为()A.1∶1 B.1∶2C.2∶1 D.2∶3答案 A解析设球的半径为r,依题意知圆柱的底面半径也是r,高是2r,圆柱的侧面积为2πr·2r=4πr2,球的表面积为4πr2,其比例为1∶1.2.(2021·新高考全国Ⅰ)已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2 B.2 2 C.4 D.4 2答案 B解析设圆锥的母线长为l,因为该圆锥的底面半径为2,所以2π×2=πl,解得l=2 2.3.某同学为表达对“新冠疫情”抗疫一线医护人员的感激之情,亲手为他们制作了一份礼物,用正方体纸盒包装,并在正方体六个面上分别写了“致敬最美逆行”六个字.该正方体纸盒水平放置的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如图是该正方体的展开图.若图中“致”在正方体的后面,那么在正方体前面的字是()A.最B.美C.逆D.行答案 B解析把正方体的表面展开图再折成正方体,如图,面“致”与面“美”相对,若“致”在正方体的后面,那么在正方体前面的字是“美”.4.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,则三棱锥A -B 1CD 1的体积为( ) A.43 B.83 C .4 D .6 答案 B解析 如图,三棱锥A -B 1CD 1是由正方体ABCD -A 1B 1C 1D 1截去四个小三棱锥A -A 1B 1D 1,C -B 1C 1D 1,B 1-ABC ,D 1-ACD 形成的,又1111ABCD A B C D V -=23=8,11111111A A B D C B C D B ABC D ACD V V V V ----====13×12×23=43, 所以11A B CD V -=8-4×43=83.5.(2022·河南联考)小李在课间玩耍时不慎将一个篮球投掷到一个圆台状垃圾篓中,恰好被上底口(半径较大的圆)卡住,球心到垃圾篓底部的距离为510a ,垃圾篓上底面直径为24a ,下底面直径为18a ,母线长为13a ,则该篮球的表面积为( ) A .154πa 2B.6163πa 2C .308πa 2D .616πa 2 答案 D解析 球与垃圾篓组合体的轴截面图如图所示.根据题意,设垃圾篓的高为h ,则h =(13a )2-(12a -9a )2=410a . 所以球心到上底面的距离为10a . 设篮球的半径为r , 则r 2=10a 2+(12a )2=154a 2. 故篮球的表面积为4πr 2=616πa 2.6.(2022·湖北联考)定义:24小时内降水在平地上积水厚度(mm)来判断降雨程度.其中小雨(<10 mm),中雨(10 mm ~25 mm),大雨(25 mm ~50 mm),暴雨(50 mm ~100 mm),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A .小雨B .中雨C .大雨D .暴雨 答案 B解析 由题意知,一个半径为2002=100(mm)的圆面内的降雨充满一个底面半径为2002×150300=50(mm),高为150(mm)的圆锥,所以积水厚度d =13π×502×150π×1002=12.5(mm),属于中雨.7.(2022·八省八校联考)如图,已知正四面体ABCD 的棱长为1,过点B 作截面α分别交侧棱AC ,AD 于E ,F 两点,且四面体ABEF 的体积为四面体ABCD 体积的13,则EF 的最小值为( )A.22 B.32 C.13 D.33答案 D解析 由题知V B -AEF =13V B -ACD ,所以S △AEF =13S △ACD =13×12×1×1×32=312,记EF =a ,AE =b ,AF =c , 则12bc sin 60°=312,即bc =13. 则a 2=b 2+c 2-2bc cos 60°≥2bc -bc =bc =13,当且仅当b =c =33时取等号, 所以a 即EF 的最小值为33. 8.(2022·新高考全国Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤33,则该正四棱锥体积的取值范围是( ) A.⎣⎡⎦⎤18,814 B.⎣⎡⎦⎤274,814 C.⎣⎡⎦⎤274,643D .[18,27] 答案 C解析 方法一 如图,设该球的球心为O ,半径为R ,正四棱锥的底面边长为a ,高为h ,依题意,得36π=43πR 3,解得R =3.由题意及图可得⎩⎨⎧l 2=h 2+⎝⎛⎭⎫22a 2,R 2=(h -R )2+⎝⎛⎭⎫22a 2,解得⎩⎨⎧h =l 22R =l 26,a 2=2l 2-l418,所以正四棱锥的体积V =13a 2h=13⎝⎛⎭⎫2l 2-l 418·l 26=l 418⎝⎛⎭⎫2-l 218(3≤l ≤33), 所以V ′=49l 3-l 554=19l 3⎝⎛⎭⎫4-l 26(3≤l ≤33).令V ′=0,得l =26, 所以当3≤l <26时,V ′>0; 当26<l ≤33时,V ′<0,所以函数V =l 418⎝⎛⎭⎫2-l 218(3≤l ≤33)在[3,26)上单调递增,在(26,33]上单调递减,又当l =3时,V =274;当l =26时,V =643;当l =33时,V =814,所以该正四棱锥的体积的取值范围是⎣⎡⎦⎤274,643.方法二 如图,设该球的球心为O ,半径为R ,正四棱锥的底面边长为a ,高为h ,依题意,得36π=43πR 3,解得R =3.由题意及图可得⎩⎨⎧l 2=h 2+⎝⎛⎭⎫22a 2,R 2=(h -R )2+⎝⎛⎭⎫22a 2,解得⎩⎨⎧h =l 22R =l 26,a 2=2l 2-l418,又3≤l ≤33,所以该正四棱锥的体积V =13a 2h=13⎝⎛⎭⎫2l 2-l 418·l 26=l 418⎝⎛⎭⎫2-l 218 =72×l 236·l 236·⎝⎛⎭⎫2-l 218 ≤72×⎣⎢⎡⎦⎥⎤l 236+l 236+⎝⎛⎭⎫2-l 21833=643⎝⎛⎭⎫当且仅当l 236=2-l 218,即l =26时取等号, 所以正四棱锥的体积的最大值为643,排除A ,B ,D.方法三 如图,设该球的半径为R ,球心为O ,正四棱锥的底面边长为a ,高为h ,正四棱锥的侧棱与高所成的角为θ,依题意,得36π=43πR 3,解得R =3,所以正四棱锥的底面边长a =2l sin θ,高h =l cos θ. 在△OPC 中,作OE ⊥PC ,垂足为E , 则可得cos θ=l 2R =l 6∈⎣⎡⎦⎤12,32,所以l =6cos θ, 所以正四棱锥的体积 V =13a 2h =13(2l sin θ)2·l cos θ=23(6cos θ)3sin 2θcos θ=144(sin θcos 2θ)2. 设sin θ=t ,易得t ∈⎣⎡⎦⎤12,32,则y =sin θcos 2θ=t (1-t 2)=t -t 3, 则y ′=1-3t 2.令y ′=0,得t =33, 所以当12<t <33时,y ′>0;当33<t <32时,y ′<0, 所以函数y =t -t 3在⎝⎛⎭⎫12,33上单调递增,在⎝⎛⎭⎫33,32上单调递减.又当t =33时,y =239;当t =12时,y =38;当t =32时,y =38, 所以38≤y ≤239,所以274≤V ≤643. 所以该正四棱锥的体积的取值范围是⎣⎡⎦⎤274,643. 二、多项选择题9.(2022·武汉模拟)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R 相等,下列结论正确的是( ) A .圆柱的侧面积为4πR 2 B .圆锥的侧面积为2πR 2C .圆柱的侧面积与球的表面积相等D .球的体积是圆锥体积的两倍 答案 ACD解析 对于A ,∵圆柱的底面直径和高都等于2R , ∴圆柱的侧面积S 1=2πR ·2R =4πR 2,故A 正确; 对于B ,∵圆锥的底面直径和高等于2R , ∴圆锥的侧面积为S 2=πR ·R 2+4R 2=5πR 2,故B 错误; 对于C ,圆柱的侧面积为S 1=4πR 2,球的表面积S 3=4πR 2,即圆柱的侧面积与球的表面积相等,故C 正确; 对于D ,球的体积为V 1=43πR 3,圆锥的体积为V 2=13πR 2·2R =23πR 3,即球的体积是圆锥体积的两倍,故D 正确.10.设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上且所有面均与内球相切,则( )A .该正方体的棱长为2B .该正方体的体对角线长为3+ 3C .空心球的内球半径为3-1D .空心球的外球表面积为(12+63)π 答案 BD解析 设内、外球半径分别为r ,R ,则正方体的棱长为2r ,体对角线长为2R ,∴R =3r , 又由题知R -r =1, ∴r =3+12,R =3+32, ∴正方体棱长为3+1,体对角线长为3+3, ∴外接球表面积为4πR 2=(12+63)π.11.如图,已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的体积为32π3答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,分别取BC ,B 1C 1的中点E ,E 1,记四棱台ABCD -A 1B 1C 1D 1的上、下底面中心分别为O 1,O ,连接AC ,A 1C 1,BD 1,B 1D 1,A 1O ,OE ,OP ,PE ,由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱P A ,PB ,PC ,PD 的中点, 则P A =2AA 1=4,OA =22AB =2A 1B 1=2, 所以OO 1=12PO =12P A 2-OA 2=3,故该四棱台的高为3,故A 正确;由P A =PC =4,AC =4,得△P AC 为正三角形, 则AA 1与CC 1所成角为60°,故B 错误; 四棱台的斜高h ′=12PE =12PO 2+OE 2=12(23)2+(2)2=142, 所以该四棱台的表面积为 (22)2+(2)2+4×2+222×142=10+67,故C 错误;由△P AC 为正三角形,易知OA 1=OA =OC =OC 1,OB 1=OD 1=OB =OD ,所以O 为四棱台外接球的球心,且外接球的半径为2,所以该四棱台外接球的体积为4π3×23=32π3,故D 正确.12.(2022·聊城模拟)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴长与短半轴长乘积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是( ) A .底面椭圆的离心率为22B .侧面积为242πC .在该斜圆柱内半径最大的球的表面积为36πD .底面积为42π 答案 ABD解析 不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的几何体是圆柱,如图,矩形ABCD 是圆柱的轴截面,平行四边形BFDE 是斜圆柱的过底面椭圆的长轴的截面,由圆柱的性质知∠ABF =45°, 则BF =2AB ,设椭圆的长轴长为2a ,短轴长为2b , 则2a =2·2b ,即a =2b , c =a 2-b 2=a 2-⎝⎛⎭⎫22a 2=22a , 所以离心率为e =c a =22,A 正确;作EG ⊥BF ,垂足为G ,则EG =6, 易知∠EBG =45°,则BE =62, 又CE =AF =AB =4,所以斜圆柱侧面积为S =2π×2×(4+62)-2π×2×4=242π,B 正确;由于斜圆柱的两个底面的距离为6,而圆柱的底面直径为4,所以斜圆柱内半径最大的球的半径为2,球的表面积为4π×22=16π,C 错误;易知2b =4,则b =2,a =22, 所以椭圆面积为πab =42π,D 正确.三、填空题13.(2022·湘潭模拟)陀螺是中国民间的娱乐工具之一,也叫做陀罗.陀螺的形状结构如图所示,由一个同底的圆锥体和圆柱体组合而成,若圆锥体和圆柱体的高以及底面圆的半径长分别为h 1,h 2,r ,且h 1=h 2=r ,设圆锥体的侧面积和圆柱体的侧面积分别为S 1和S 2,则S 1S 2=________.答案22解析 由题意知,圆锥的母线长为l =h 21+r 2=2r ,则圆锥的侧面积为S 1=πrl =2πr 2,根据圆柱的侧面积公式,可得圆柱的侧面积为 S 2=2πrh 2=2πr 2,所以S 1S 2=22.14.(2022·福州质检)在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,F 是线段A 1B 1上的动点,则AF +FC 1的最小值为________. 答案6+ 2解析 依题意,把正三棱柱ABC -A 1B 1C 1的上底面△A 1B 1C 1与侧面矩形ABB 1A 1放在同一平面内,连接AC 1,设AC 1交A 1B 1于点F ,如图,此时点F 可使AF +FC 1取最小值,大小为AC 1,而∠AA 1C 1=150°,则AC 1=AA 21+A 1C 21-2AA 1·A 1C 1cos ∠AA 1C 1 =22+22-23cos 150° =8+43=6+2,所以AF +FC 1的最小值为6+ 2.15.某同学在参加《通用技术》实践课时,制作了一个实心工艺品(如图所示).该工艺品可以看成是一个球体被一个棱长为4的正方体的6个面所截后剩余的部分(球心与正方体的中心重合),其中一个截面圆的周长为3π,则该球的半径为________;现给出定义:球面被平面所截得的一部分叫做球冠.截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.如果球面的半径是R ,球冠的高是h ,那么球冠的表面积计算公式是S =2πRh .由此可知,该实心工艺品的表面积是________.答案5247π2解析 设截面圆半径为r ,则球心到某一截面的距离为正方体棱长的一半,即此距离为2,根据截面圆的周长可得3π=2πr ,得r =32,故R 2=r 2+22=254,得R =52,所以球的表面积S 1=25π. 如图,OA =OB =52,且OO 1=2,则球冠的高h =R -OO 1=12,得所截的一个球冠表面积S =2πRh =2π×52×12=5π2,且截面圆的面积为π×⎝⎛⎭⎫322=9π4, 所以工艺品的表面积为4πR 2-6⎝⎛⎭⎫S -9π4=25π-3π2=47π2.16.(2022·开封模拟)如图,将一块直径为23的半球形石材切割成一个正四棱柱,则正四棱柱的体积取最大值时,切割掉的废弃石材的体积为________.答案 23π-4解析 设正四棱柱的底面正方形边长为a ,高为h ,则底面正方形的外接圆半径r =22a , ∴h 2+r 2=h 2+12a 2=3,∴a 2=6-2h 2,∴正四棱柱的体积V =a 2h =(6-2h 2)h =-2h 3+6h (0<h <3), ∴V ′=-6h 2+6=-6(h +1)(h -1),∴当0<h <1时,V ′>0;当1<h <3时,V ′<0;∴V =-2h 3+6h 在(0,1)上单调递增,在(1,3)上单调递减, ∴V max =V (1)=4,又半球的体积为23π×()33=23π,∴切割掉的废弃石材的体积为23π-4.。
一级建造师b证考试试题及答案一级建造师B证考试试题及答案一、单项选择题(每题2分,共20题,满分40分)1. 根据《建筑法》,下列哪项不是建筑工程开工前必须具备的条件?A. 施工许可证B. 施工图纸C. 施工单位资质证书D. 施工人员健康证明答案:D2. 建筑工程中,施工单位必须按照什么进行施工?A. 施工图纸B. 施工方案C. 施工合同D. 施工人员经验答案:A3. 以下哪项不是建筑工程质量控制的内容?A. 材料质量控制B. 施工过程控制C. 施工进度控制D. 施工人员培训答案:C4. 建筑工程中,施工单位对施工安全负有直接责任,以下哪项不是施工单位的安全责任?A. 制定安全施工方案B. 进行安全教育培训C. 定期进行安全检查D. 施工人员个人安全防护答案:D5. 建筑工程中,施工单位在施工过程中发现设计文件有错误,应如何处理?A. 继续按照原设计文件施工B. 立即停止施工,并向设计单位报告C. 根据施工经验自行修改设计D. 向监理单位报告,由监理单位决定是否继续施工答案:B...(此处省略中间的题目和答案)20. 建筑工程竣工验收时,以下哪项不是验收的主要内容?A. 工程质量B. 工程进度C. 工程安全D. 工程资料答案:B二、多项选择题(每题3分,共10题,满分30分)1. 建筑工程中,施工单位在施工过程中应遵守哪些法律法规?A. 《建筑法》B. 《安全生产法》C. 《劳动法》D. 《合同法》答案:A、B、C、D2. 建筑工程中,施工单位在施工前应进行哪些准备工作?A. 施工图纸会审B. 施工方案编制C. 施工人员培训D. 施工设备检查答案:A、B、C、D3. 建筑工程中,施工单位在施工过程中应如何控制施工质量?A. 严格按照施工图纸施工B. 定期进行质量检查C. 对发现的问题及时整改D. 施工人员自检互检答案:A、B、C、D...(此处省略中间的题目和答案)10. 建筑工程竣工验收时,以下哪些文件是必须提交的?A. 施工图纸B. 施工日志C. 竣工验收报告D. 工程质量保修书答案:A、B、C、D三、案例分析题(每题10分,共2题,满分20分)1. 某建筑工程在施工过程中,由于施工单位未按照施工图纸施工,导致工程质量不合格。
专题04 数列求和及综合应用【要点提炼】1.常用公式:12+22+32+42+…+n 2=n (n +1)(2n +1)6.2.(1)数列通项a n 与前n 项和S n 的关系为a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).(2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 3.数列求和(1)分组转化法:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并. (2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 4.数列与函数、不等式的交汇数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查不等关系或恒成立问题.考点一 数列求和及综合应用考向一 a n 与S n 的关系问题【典例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1T n T n +1. (1)求数列{a n }的通项公式;(2)求数列{c n }的前n 项和A n ,并求出A n 的最值.解 (1)因为a n =5S n +1,n ∈N *, 所以a n +1=5S n +1+1, 两式相减,得a n +1=-14a n ,又当n =1时,a 1=5a 1+1,知a 1=-14, 所以数列{a n }是公比、首项均为-14的等比数列. 所以数列{a n }的通项公式a n =⎝ ⎛⎭⎪⎫-14n.(2)由(1)知b n =-1-log 2|a n |=2n -1, 数列{b n }的前n 项和T n =n 2, c n =b n +1T n T n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2, 所以A n =1-1(n +1)2.因此{A n }是单调递增数列,∴当n =1时,A n 有最小值A 1=1-14=34;A n 没有最大值.探究提高 1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.由S n 求a n 时,一定注意分n =1和n ≥2两种情况,最后验证两者是否能合为一个式子,若不能,则用分段形式来表示.【拓展练习1】 (2020·合肥检测)已知正项数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1. (1)求数列{a n }的通项公式;(2)设b n =(1-a n )2-a (1-a n ),若{b n }是递增数列,求实数a 的取值范围. 解 (1)a 2n =S n +S n -1(n ≥2), a 2n -1=S n -1+S n -2(n ≥3).相减可得a 2n -a 2n -1=a n +a n -1,∵a n >0,a n -1>0,∴a n -a n -1=1(n ≥3). 当n =2时,a 22=a 1+a 2+a 1,∴a 22=2+a 2,a 2>0,∴a 2=2. 因此n =2时,a n -a n -1=1成立. ∴数列{a n }是等差数列,公差为1. ∴a n =1+n -1=n .(2)b n =(1-a n )2-a (1-a n )=(n -1)2+a (n -1), ∵{b n }是递增数列,∴b n +1-b n =n 2+an -(n -1)2-a (n -1) =2n +a -1>0,即a >1-2n 恒成立,∴a >-1. ∴实数a 的取值范围是(-1,+∞). 考向二 数列求和 方法1 分组转化求和【典例2】 (2020·山东五地联考)已知等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 解 (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d ,又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.探究提高 1.求解本题要过四关:(1)“转化”关,把不等式的解转化为方程根的问题;(2)“方程”关,利用方程思想求出基本量a 1及d ;(3)“分组求和”关,观察数列的通项公式,把数列分成几个可直接求和的数列;(4)“公式”关,会利用等差、等比数列的前n 项和公式求和.2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.本题易忽视数列通项的下标如错得a 2n =n ,应注意“=”左右两边保持一致.【拓展练习2】 (2020·潍坊调研)设等差数列{a n }的前n 项和为S n ,且a 2=8,S 4=40.数列{b n }的前n 项和为T n ,且T n -2b n +3=0,n ∈N *. (1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前n 项和P n .解 (1)设等差数列{a n }的公差为d , 由题意,得⎩⎨⎧a 1+d =8,4a 1+6d =40,解得⎩⎨⎧a 1=4,d =4,所以a n =4n , 因为T n -2b n +3=0,所以当n =1时,b 1=3,当n ≥2时,T n -1-2b n -1+3=0, 两式相减,得b n =2b n -1(n ≥2),则数列{b n }为首项为3,公比为2的等比数列, 所以b n =3·2n -1.(2)c n =⎩⎨⎧4n ,n 为奇数,3·2n -1,n 为偶数,当n 为偶数时,P n =(a 1+a 3+…+a n -1)+(b 2+b 4+…+b n ) =(4+4n -4)·n 22+6(1-4n2)1-4=2n +1+n 2-2.当n 为奇数时,法一 n -1(n ≥3)为偶数,P n =P n -1+c n =2(n -1)+1+(n -1)2-2+4n =2n +n 2+2n -1,n =1时符合上式.法二 P n =(a 1+a 3+…+a n -2+a n )+(b 2+b 4+…+b n -1) =(4+4n )·n +122+6(1-4n -12)1-4=2n +n 2+2n -1.所以P n =⎩⎨⎧2n +1+n 2-2,n 为偶数,2n +n 2+2n -1,n 为奇数.方法2 裂项相消求和【典例3】 (2020·江南六校调研)设数列{a n }的前n 项和为S n ,已知S 1=2,a n +1=S n +2.(1)证明:{a n }为等比数列; (2)记b n =log 2a n ,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫λb n b n +1的前n 项和为T n ,若T n ≥10恒成立,求λ的取值范围.(1)证明 由已知,得a 1=S 1=2,a 2=S 1+2=4, 当n ≥2时,a n =S n -1+2,所以a n +1-a n =(S n +2)-(S n -1+2)=a n , 所以a n +1=2a n (n ≥2).又a 2=2a 1,所以a n +1a n=2(n ∈N *),所以{a n }是首项为2,公比为2的等比数列. (2)解 由(1)可得a n =2n ,所以b n =n . 则λb n b n +1=λn (n +1)=λ⎝ ⎛⎭⎪⎫1n -1n +1, T n =λ⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=λ⎝ ⎛⎭⎪⎫1-1n +1,因为T n ≥10,所以λn n +1≥10,从而λ≥10(n +1)n ,因为10(n +1)n =10⎝ ⎛⎭⎪⎫1+1n ≤20, 所以λ的取值范围为[20,+∞).探究提高 1.裂项相消求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.【拓展练习3】 设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和.解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,① 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1,又n =1时,a 1=2适合上式,从而{a n }的通项公式为a n =22n -1.(2)记⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和为S n ,由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1,则S n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1=2n2n +1.方法3 错位相减法求和【典例4】 (2020·济南统测)在①a 3=5,a 2+a 5=6b 2,②b 2=2,a 3+a 4=3b 3,③S 3=9,a 4+a 5=8b 2这三个条件中任选一个,补充至横线上,并解答问题. 已知等差数列{a n }的公差为d (d >1),前n 项和为S n ,等比数列{b n }的公比为q ,且a 1=b 1,d =q ,________. (1)求数列{a n },{b n }的通项公式; (2)记c n =a nb n,求数列{c n }的前n 项和T n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 选条件①.(1)∵a 3=5,a 2+a 5=6b 2,a 1=b 1,d =q ,d >1, ∴⎩⎨⎧a 1+2d =5,2a 1+5d =6a 1d ,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=256,d =512(舍去).∴⎩⎨⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n. ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件②.(1)∵b 2=2,a 3+a 4=3b 3,a 1=b 1,d =q ,d >1, ∴⎩⎨⎧a 1d =2,2a 1+5d =3a 1d 2,即⎩⎨⎧a 1d =2,2a 1+5d =6d , 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=-1,d =-2(舍去).∴⎩⎨⎧b 1=1,q =2. ∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n . ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件③.(1)∵S 3=9,a 4+a 5=8b 2,a 1=b 1,d =q ,d >1, ∴⎩⎨⎧a 1+d =3,2a 1+7d =8a 1d ,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=218,d =38(舍去),∴⎩⎨⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n . ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.探究提高 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.2.在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“S n -qS n ”的表达式.【拓展练习4】 (2020·潍坊模拟)在①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{a n }中,a 1=1,a n +1=3a n .公差不等于0的等差数列{b n }满足________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 因为a 1=1,a n +1=3a n ,所以{a n }是以1为首项,3为公比的等比数列, 所以a n =3n -1.选①②时,设数列{b n }的公差为d 1. 因为a 2=3,所以b 1+b 2=3(ⅰ).因为b 2n =2b n +1,所以当n =1时,b 2=2b 1+1(ⅱ). 由(ⅰ)(ⅱ)解得b 1=23,b 2=73,所以d 1=53,所以b n =5n -33.所以b n a n=5n -33n .所以S n =b 1a 1+b 2a 2+…+b n a n =231+732+1233+…+5n -33n ,所以13S n =232+733+1234+…+5n -83n +5n -33n +1.上面两式相减,得23S n =23+5⎝ ⎛⎭⎪⎫132+133+…+13n -5n -33n +1 =23+56-152×3n +1-5n -33n +1=32-10n +92×3n +1.所以S n =94-10n +94×3n .选②③时,设数列{b n }的公差为d 2.因为a 2=3,所以b 1+b 2=3,即2b 1+d 2=3.因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 2)2=b 1(b 1+3d 2),化简得d 22=b 1d 2.因为d 2≠0,所以b 1=d 2,从而d 2=b 1=1,所以b n =n . 所以b n a n =n 3n -1.所以S n =b 1a 1+b 2a 2+…+b n a n =130+231+332+…+n3n -1,所以13S n =131+232+333+…+n -13n -1+n 3n .上面两式相减,得23S n =1+131+132+133+…+13n -1-n 3n=32⎝ ⎛⎭⎪⎫1-13n -n 3n =32-2n +32×3n . 所以S n =94-2n +34×3n -1.选①③时,设数列{b n }的公差为d 3.因为b 2n =2b n +1,所以b 2=2b 1+1,所以d 3=b 1+1.又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 3)2=b 1(b 1+3d 3),化简得d 23=b 1d 3.因为d 3≠0,所以b 1=d 3,无解,所以等差数列{b n }不存在.故不合题意.考向三 与数列相关的综合问题【典例5】 (2020·杭州滨江区调研)设f (x )=12x 2+2x ,f ′(x )是y =f (x )的导函数,若数列{a n }满足a n +1=f ′(a n ),且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)由f (x )=12x 2+2x ,得f ′(x )=x +2. ∵a n +1=f ′(a n ),且a 1=1. ∴a n +1=a n +2,则a n +1-a n =2,因此数列{a n }是公差为2,首项为1的等差数列. ∴a n =1+2(n -1)=2n -1.(2)数列{a n }的前n 项和S n =n (1+2n -1)2=n 2,等比数列{b n }中,设公比为q ,∵b 1=a 1=1,b 2=a 2=3, ∴q =3.∴b n =3n -1,∴数列{b n }的前n 项和T n =1-3n 1-3=3n -12.T n ≤S n 可化为3n -12≤n 2.又n ∈N *,∴n =1,或n =2.故适合条件T n ≤S n 的所有n 的值为1和2.探究提高 1.求解数列与函数交汇问题要注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别注意;(2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.【拓展练习5】 已知数列{a n }与{b n }满足:a 1+a 2+a 3+…+a n =2b n (n ∈N *),若{a n }是各项为正数的等比数列,且a 1=2,b 3=b 2+4. (1)求数列{a n }与{b n }的通项公式; (2)若数列{c n }满足c n =a nb n b n +1(n ∈N *),T n 为数列{c n }的前n 项和,证明:T n <1. (1)解 由题意知,a 1+a 2+a 3+…+a n =2b n ,① 当n ≥2时,a 1+a 2+a 3+…+a n -1=2b n -1,② ①-②可得a n =2(b n -b n -1) ⇒a 3=2(b 3-b 2)=2×4=8,∵a 1=2,a n >0,设{a n }的公比为q , ∴a 1q 2=8⇒q =2,∴a n =2×2n -1=2n (n ∈N *). ∴2b n =21+22+23+ (2)=2(1-2n )1-2=2n +1-2,∴b n =2n -1(n ∈N *).(2)证明 由已知c n =a n b n ·b n +1=2n(2n -1)(2n +1-1)=12n -1-12n +1-1, ∴T n =c 1+c 2+…+c n=121-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1,当n ∈N *时,2n +1>1,∴12n +1-1>0,∴1-12n +1-1<1,故T n <1.【专题拓展练习】一、单选题1.已知数列{}n a 满足()2*11n n n a a a n N+=-+∈,设12111n nS a a a =+++,且10910231a S a -=-,则数列{}n a 的首项1a 的值为( )A .23 B .1C .32D .2【答案】C 【详解】若存在1n a =,由2111n n n a a a --=-+,则可得11n a -=或0n a =,由12111n nS a a a =+++可得0n a ≠,由10910231a S a -=-可得101a ≠所以{}n a 中恒有1n a ≠由211n n n a a a +=-+,可得()111n n n a a a +-=-所以()11111111n n n n n a a a a a +==----,即111111n n n a a a +=---所以1212231111111111111111n n n n S a a a a a a a a a +⎛⎫⎛⎫⎛⎫=+++=-+-++-⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭111111n a a +=--- 所以110109*********a S a a a -=---=-,即1010101010123222111111a a a a a a =+--=----= 所以1121a =-,则1112a -=,所以132a = 2.已知在数列{}n a 中,14a =,26a =,且当2n ≥时,149n n a a +=-,若n T 为数列{}nb 的前n 项和,19(3)n n n n a b a a +-=⋅,则当175(3)()8n n a T λ+=-⋅-为整数时,n λ=( )A .6B .12C .20D .24 【答案】D 【详解】当2n ≥时,149n n a a +=-,得134(3)n n a a +-=-,又26a =,∴{3}n a -从第二项开始是首项为3,公比为4的等比数列,∴2334n n a --=⨯(2n ≥),∴2413432n n n a n -=⎧=⎨⨯+≥⎩,,, 当1n =时,1138T b ==,217155(3)()82a T Z λ=-⋅-=∉,不符合题意, 当2n ≥时,221213411(41)(41)4141n n n n n n b -----⨯==-++++, ∴12221131171()84141841n n n n T b b b ---=++⋅⋅⋅+=+-=-+++, 则111115534154141n n n λ---=⨯⨯⨯=-++,由λ为整数可知141n -+是15的因数, ∴当且仅当2n =时λ可取整数,12λ=,所以24n λ=,3.设n S 为数列{}n a 的前n 项和,*()(11),2n n n n S a n N -+=∈,则数列{}n S 的前7项和为( ) A .1256-B .85256-C .11024- D .3411024-【答案】B 【详解】 ∵(1)12nn n n S a -+=, ∴1n =时,1112S a +=-,即1112a a +=-,114a =-,由已知1(1)2nn n n S a =--, 2n ≥时,11111111(1)(1)(1)(1)222n n n nn n n n n n n n n na S S a a a a -----=-=----+=-+-+(*), (*)式中n 为偶数时,112n n n na a a -=++,112n n a -=-,此时1n -为奇数, ∴n 为奇数时112n n a +=-(*)式中n 为奇数时,112n n n n a a a -=--+,1122n n na a --=-,即1111112222n n n n a -+-⎛⎫=-⨯-+= ⎪⎝⎭,此时1n -为偶数,∴n 为偶数时,12n na =, ∴11,21,2n n nn a n +⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,由1(1)2nn n nS a =--,得n 为奇数时,11122n n n S +=-,n 为偶数时,11022nn nS =-=, ∴数列{}n S 的前7项和为11111111421686432256128⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11118541664256256=----=-. 4.若()()*12coscoscoscos 5555n n n S n ππππ-=++++∈N ,则1S 、2S、、2020S 中值为0的共有( ) A .202个 B .404个C .606个D .808个【答案】B 【详解】由于4coscos055ππ+=,23cos cos 055ππ+=,5cos 15π=-,69cos cos 055ππ+=,78cos cos 055ππ+=,10cos 15π=,所以234cos coscos cos 05555ππππ+++=, 2310cos cos cos cos 05555ππππ++++=,所以40S =,100S =,()()()101210coscos cos555n n n n n S S πππ++++-=+++()()()()()()1627510cos cos cos cos cos cos 555555n n n n n n ππππππ++++++⎡⎤⎡⎤⎡⎤=++++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()()()()()()112255cos cos cos cos cos cos 555555n n n n n n ππππππ++++++⎡⎤⎡⎤⎡⎤=-+-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦0=,所以,()10n n S S n N *+=∈,则()44+100n SS n N *==∈,()10100n S S n N *==∈,因此,1S 、2S 、、2020S 中值为0的共有2022404⨯=个.5.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8 B .9 C .10 D .11【答案】A 【详解】解:由题意得:323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2n n +-()212312n n ⨯-=⨯--1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<; 当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.6.已知数列{}n a 满足123232n n a a a na ++++=,设1(1)2nn n a b n -=+,n S 为数列{}n b 的前n 项和.若t n S <对任意n *∈N 恒成立,则实数t 的最小值为( ) A .1 B .2C .32D .52【答案】C 【详解】1n =时,12a =,因为123232n n a a a na ++++=,所以2n ≥时,1123123(1)2n n a a a n a --++++-=,两式相减得到12n n na -=,故12,n n a n-=1n =时不适合此式,所以11,11,2(1)2(1)nn n n a b n n n n -=⎧⎪==⎨≥+⎪+⎩,当1n =时,111S b ==, 当2n ≥时,111111313123341221n S n n n ⎛⎫=+-+-+-=-< ⎪++⎝⎭, 所以32t ≥;所以t 的最小值32; 7.已知数列{}n a 的前n 项和为n S ,满足2n S an bn =+,(,a b 均为常数),且72a π=.设函数2()sin 22cos 2xf x x =+,记()n n y f a =,则数列{}n y 的前13项和为( ) A .132πB .7πC .7D .13【答案】D 【详解】因为2()sin 22cos sin 2cos 12xf x x x x =+=++, 由2n S an bn =+,得()()()2211122n n n S S an bn a n b n an a b n a -=-=+----=-+≥,又11a S a b ==+也满足上式,所以2n a an a b =-+, 则12n n a a a --=为常数,所以数列{}n a 为等差数列; 所以11372a a a π+==,()()111131131313sin 2cos 1sin 2cos 1y f a f a a a a y a =+=++++++()()1111sin 2cos 1sin 22cos 12a a a a ππ=+++-+-+=.则数列{}n y 的前13项和为()()()1213...f a f a f a +++,记()()()1213...M f a f a f a =+++,则()()()13121...M f a f a f a =+++,所以()()11321326M f a f a ⎡⎤=+=⎣⎦,因此13M =.8.公元1202年列昂那多·斐波那契(意大利著名数学家)以兔子繁殖为例,引入“兔子数列”{}n a :1,1,2,3,5,8,13,21,34,55,……,即11a =,21a =,()*12,2n n n a a a n n --=+∈>N ,此数列在现代物理、化学等学科都有着十分广泛的应用。
习题1.11. 计算下列行列式:(1) 7415; ()()c o s s i n 2;3s i n c o s xy z x x zx y x x yzx-; ()2cos 1412cos 1012cos x x x;(5)xy x y yx y x x yxy+++。
解:(1)7415=7×5−1×4=31;(2) 1D =;(3) ()111x y zy zyz D x y zx y x y z x y x y zz x z x++=++=++++ ()3331030yzx y z x yy z x y z xyz z yx z=++--=++---。
(4)22cos 10014cos 2cos 12cos 112cos 1012cos 012cos x x x x x xx--=2314cos 2cos 8cos 4cos 12cos x xx x x--=-=-。
(5) xy x y y x y x x yx y+++=2()()()()()x x y y yx x y yx x y x y x y +++++-++33y x --3322x y =--2. 用行列式方法求解下列线性方程组:(1) 31528x y x y +=-⎧⎨+=⎩; (2)1231231323142543x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩。
解:(1) 123111311,10,29528258D D D --====-==, 121210,29D Dx x D D==-== (2) 12131134253,42527,10131D D --==-==- 242132114453,42418131103D D -====,3121239,1,6D D Dx x x D D D====-==-。
3.求下列各排列的逆序数:(1) 34215; (2) 13…(2n −1)(2n )(2n −2)…2。
b1b2科目一考试题库及答案一、单选题1. 驾驶机动车在高速公路上行驶,车速超过每小时100公里时,应当与同车道前车保持多少米以上的距离?A. 100米B. 150米C. 200米D. 50米答案:C2. 机动车在道路上发生故障,需要停车排除故障时,驾驶人应当立即开启什么灯?A. 危险报警闪光灯B. 转向灯C. 前照灯D. 雾灯答案:A3. 驾驶机动车在没有中心线的城市道路上,最高速度不能超过每小时多少公里?A. 30公里B. 40公里C. 50公里D. 60公里答案:B4. 机动车驾驶证被暂扣期间驾驶机动车的,处以多少元罚款?A. 200元以上500元以下B. 500元以上1000元以下C. 1000元以上2000元以下D. 2000元以上5000元以下答案:A5. 驾驶机动车在高速公路上行驶,能见度小于50米时,最高速度不得超过每小时多少公里?A. 20公里B. 40公里C. 60公里D. 80公里答案:A二、多选题6. 下列哪些行为属于违反道路交通安全法律、法规的行为?A. 酒后驾驶机动车B. 超过规定时速行驶C. 驾驶时拨打手持电话D. 驾驶时未系安全带答案:ABCD7. 机动车在高速公路上行驶,遇到雾、雨、雪、沙尘、冰雹等低能见度气象条件时,应当遵守哪些规定?A. 降低行驶速度B. 开启雾灯、近光灯、示廓灯、前后位灯C. 与前车保持安全距离D. 必要时停车等待答案:ABCD8. 驾驶机动车在高速公路上行驶,不得有下列哪些行为?A. 倒车B. 逆行C. 穿越中央分隔带D. 停车答案:ABCD9. 机动车驾驶人有下列哪些违法行为的,一次记12分?A. 饮酒后驾驶机动车的B. 造成交通事故后逃逸,尚不构成犯罪的C. 使用伪造、变造的机动车号牌、行驶证、驾驶证、校车标牌或者使用其他机动车号牌、行驶证的D. 驾驶与准驾车型不符的机动车的答案:ABC10. 机动车在夜间行驶时,不得使用远光灯的情况包括哪些?A. 对向车道有来车B. 同方向行驶的后车与前车近距离行驶时C. 在有路灯的道路上行驶D. 通过有交通信号灯控制的交叉路口答案:ABCD三、判断题11. 驾驶机动车在高速公路上倒车、逆行、穿越中央分隔带、停车的,处以200元以上2000元以下罚款,并记12分。
一、单项选择题1. 以下哪个因素不会影响投资久期?( )A. 票面价值B. 息票利率C. 到期时间D. 现行利率您的答案:D题目分数:10此题得分:10.02. 以下哪种方式最利于投资者将再投资风险最小化?()A. 选择到期时间和投资期限相匹配的债券B. 选择退出股票市场C. 选择较低息票债券代替高息票债券D. 选择久期和投资期限相匹配的债券您的答案:D题目分数:10此题得分:10.03. 如果投资者有10年的投资期限,可以选择以下除()之外的投资组合。
A. 10年零息债券B. 股票和债券的各种投资组合,久期为10年C. 债券的各种投资组合,其中50%的债券久期为20年,50%的债券久期为10年D. 两种久期均为10年债券的投资组合您的答案:C题目分数:10此题得分:10.04. 将来所得利息不能按照原始利率再投资的风险被称为()。
A. 风险容忍度B. 再投资风险C. 不可预见的风险D. 低风险您的答案:B题目分数:10此题得分:10.05. 10年期、息票利率为12%的债券,其久期要()10年期、息票利率为5%的债券。
A. 长于B. 短于C. 差不多等于D. 完全等于您的答案:B题目分数:10此题得分:10.06. 如果你有一笔债券投资,利率为10%,两年之后现金收益为100美元,如今的现值为82.64美元,这意味着()。
A. 如今的100美元两年后值82.64美元B. 82.64美元是两年之后的100美元的久期C. 82.64美元两年之后值100美元D. 82.64美元两年之后值1000美元您的答案:C题目分数:10此题得分:10.07. 阶梯式投资组合可以()。
A. 缩短投资组合久期,降低再投资率B. 通过延长投资组合的到期时间,延长投资组合久期C. 不会影响投资组合久期D. 延长投资组合的平均到期时间您的答案:A题目分数:10此题得分:10.08. 投资者使用了免疫策略,下列说法错误的是()。
国家公共英语一级B练习试卷4(题后含答案及解析) 题型有: 2. 阅读 3. 情景对话 4. 词汇阅读第二节短文理解2阅读短文,从各题所给的三个选项中选出最佳答案。
It is Sunday morning. There are a lot of people in the park. Some Young Pioneers are in the park. too. and they me having a good time. Some are playing games under a big True. Some are singing and dancing. Some boys and girls are running up the hill. Others are rowing boals on the lake. Where is Li Lei’? lie is sitling by tile lake. What’s be doing? lie’s reading. Where is Meinlei? She is on the grass. What’s she doing? She is running after a nice butterfly (蝴蝶). She wants to catch it.1.Who are in the park?A.Some teachers.B.Some Young Pioneers.C.Some children.正确答案:B2.What am the Young Pioneers doing?A.They are jumping.B.They are reading.C.They are having a good time.正确答案:C3.Where is Li Lei?A.He’s sitting on tbe lake.B.He’s reading by the lake.C.Li Lei’s standing by the lake.正确答案:B4.What does Meimei want to do?A.She wants to catch a butterfly.B.She’s running after a butterfly.C.She’s on the grass.正确答案:AMrs Green is going to have a birthday party (生日宴会) for Mary. Mary’ is her daughter(女儿) Mary’ is going to be thirteen years old. A lot of friends of Mary’s are going to tile party. They are all girls and there are twenty of them. Mrs Green is getting ready for the party. Mrs Wbge is belping her. “That’s a pretty(精致的)cake. ‘ Mrs White says to Mrs Green. “Thank you. ‘Mrs Green is going shopping now. She’s buying sonlg frug for die party. She buys a lot of oranges. apples and bananas. Then she goes home. It’s three o’clock in the afternoon. Everything is ready. Now tile first girl is arriving (到达). The party is going to start in early ndnules.5.Mary is going to be ______ years old.A.twentyB.elevenC.thirteen正确答案:C6.______ are going to tile party.A.Thirty boysB.Twenty girlsC.Forty children正确答案:B7.Mm Green is buying ______ for the party.A.a cakeB.some fruitC.a lot of oranges正确答案:BA young couple (夫妇) couldn’t find anyone to look after their baby. so they took him to the cinema. The mm in the cinema said if tile baby cried. be would give their money back and ask them to leave. Near the end of the film. the husband said in a law voice to his wife. “What do you think alit?”“Very bad. “ She answered. “So do I. “ Said the husband. “Hit(打)the baby.”8.Why do they take the baby to the cinema?A.Because the baby would like to see the film.B.Because they like their baby to see the film.C.Because they couldn’t find anyone Io look after the baby.正确答案:C9.What did they think of the film?A.Wonderful.B.Incensing.C.Not good.正确答案:C10.Why did the husband want his wife to Hit (打) the baby? A.Because he cried.B.Because tile man iii the cinema asked him to do so.C.Because he wanted their baby to cry.正确答案:C第三节词语配伍从上边一栏中找出一个与下边一栏的含义相符的选项。
2012年2月B1复习题一、判断题1、安全生产涵盖了劳动保护和职业健康的内容。
A2、施工现场安全帽、安全带及防护用品的管理属于劳动保护范畴,不属于安全生B 产管理范畴。
3、管理是指管理主体采用一定的方式、方法作用于客体所进行的一切活动。
B4、安全生产管理通常是指管理者对安全生产工作进行的决策、计划、组织、指挥、协调和控制等一系列活动,实现生产过程中人与机器设备、物料、环境的和谐,A达到安全生产的目标。
5、能级原理是指管理系统必须是由若干分别具有不同能级的不同层次有规律地A 组合而成。
6、动力原理是指善于利用较小的动力推动管理运动持续而有效地进行下去。
B7、《中华人民共和国安全生产法》规定:“加强劳动保护,改善劳动条件”,这是B 国家和企业安全生产所必须遵循的基本原则。
8、安全生产管理人员(俗称“三类人员”)的安全生产继续教育培训应每2年一B 次。
9、生产安全隐患也要按照“四不放过”原则进行处置。
A10、安全教育措施是指通过对全员的安全培训教育,以提高全员的安全素质,包括A 意识、知识、技能、态度、观念等综合安全素质。
11、为规范建筑施工质量与安全技术行为,促进建筑施工质量、安全技术水平的不断提高,江苏省建设行政主管部门制定了《江苏省建筑安装工程施工技术操作A规程》共计26个分册。
12、有关研究表明,生产安全事故与人有关的因素为60%。
B13、国家建设部根据建筑施工企业管理的特点,确定建筑施工企业安全生产条件为A 12项。
14、建筑施工企业在“五大高危企业”中,事故起数频率排第一。
A15、安全生产不包含劳动保护和职业健康的内容。
B16、管理包括四个基本要素。
A17、管理有4个基本特征组成。
B18、许多施工现场安全生产管理资料的内容相同或相近是管理基本特征的表现。
BA 19、目前我国第安全生产管理体制是“政府统一领导、部门依法监管、企业全面负责、群众监督参与、社会广泛支持”。
20、执行项目经理或常务项目副经理是施工现场安全生产管理第一责任人。
B21、一个有效的现代管理系统,必须是一个封闭系统。
AA 22、安全管理措施是指通过立法、监察、监督、检查等管理方式,保障技术条件和环境达标,以及人员的行为规范,以实现安全生产的目的。
23、为进一步贯彻落实建设部《关于开展建筑施工安全质量标准化工作的指导意A见》,江苏省建设厅发布了《江苏省建筑施工安全质量标准化管理标准》。
24、《安全生产许可证条例》确定的安全生产条件的第一句就是“安全投入符合安B 全生产要求”。
25、热烧伤现场救护的主要措施是尽快使伤员脱离致伤因素,以免继续损害深层组A 织,为下一步的救治创造条件。
A 26、国家建设部根据建筑施工企业管理的特点,确定建筑施工企业安全生产条件为12项。
二、单项选择题1、建筑施工企业在“五大高危企业”中,死亡人数排。
BA、第一B、第二C、第三D、第四2、是指生产经营活动中,为保证人身健康与生命安全,保证财产不受损失,确保生产经营活动得以顺利进行,促进社会经济发展、社会稳定和进步D 而采取的一系列措施和行动的总称。
A、劳动保护B、职业健康安全C、职业健康卫生D、安全生产3、目前我国第安全生产管理体制是。
A、国家监察、行政管理、群众监督B、企业负责,行业管理,国家监察,群众监督DC、企业负责、行政管理、国家监察、群众监督、劳动者遵章守纪D、政府统一领导、部门依法监管、企业全面负责、群众监督参与、社会广泛支持4、弹性原理是指,管理必须要有很强的适应性和灵活性,才能有效地实现动态管理。
A、在系统外部环境和内部条件千变万化的形势下进行AB、根据工作量的变化C、根据时间的变化D、以上三者5、人本原理强调:。
DA、人是管理的主体B、人是管理的客体C、人本原理的核心是如何调动人的积极性D、以上三者6、激励原理是。
AA、人本原理的二级原理B、动力原理的二级原理C、能级原理的二级原理D、以上三者7、根据“管生产必须管安全”的原则,均应对安全生产负责。
A、生产技术负责人B、油漆工班组长DC、架子工班组长D、以上三者8、“三不伤害”原则表述的顺序是。
A、“不伤害他人”、“不被他人伤害”、“不伤害自己”CB、“不被他人伤害”、“不伤害他人”、“不伤害自己”C、“不伤害自己”、“不伤害他人”、“不被他人伤害”D、“不被他人伤害”、“不伤害自己”、“不伤害他人”9、说法是正确的。
CA、“五同时”原则是指安全生产检查中同时要关注质量、进度、效益、卫生和环境等五个方面B、计划、布置、检查、总结、评比生产经营工作等项活动中,有关专职安全生产管理人员可应邀参加部分重要的活动C、在计划、布置、检查、总结、评比生产经营工作等项活动中,有关专职安全生产管理人员必须自始至终地参加这五个工作环节,且有发言权和否定权D、以上三者10、《安全生产许可证条例》确定的安全生产条件有。
A、建立、健全安全生产责任制,制定完备的安全生产规章制度和操作规程DB、安全投入符合安全生产要求C、设置安全生产管理机构,配备专职安全生产管理人员D、以上三者11、国内外一些统计资料指出,触电后开始救治者,90%有良好效果。
AA、1分钟B、2分钟C、3分钟D、5分钟12、电烧伤。
A、往往伤口小,基底大而深B、不能单纯看烧伤部位的面积来衡量烧伤的程度DC、应同时注意致伤的深度和全身情况D、以上三者D 13、目前“安全第一”现在已经不是一句口号,而是国际公认的公理。
这些口号有:。
A、我永远将安全放在第一位B、公司的利益就是安全第一C、安全第一,质量第二D、以上三者D14、我们应从、经济、伦理等不同角度来理解安全生产。
A、理论B、政治C、社会影响D、以上三者15、安全生产责任制挂在墙上是为了迎接检查,这是安全生产管理的“”这D 一基本要素明显缺失的表现。
A、主体B、客体C、手段D、目的B16、管理的本质是。
A、处理各种人际关系B、创新C、处理领导和被领导的关系D、处理上级和下级关系D17、安全生产管理通常是指。
A、管理者对安全生产工作进行的决策、计划、组织、指挥、协调和控制等一系列活动B、实现生产过程中人与机器设备、物料、环境的和谐C、达到安全生产的目标D、以上三者18、代表企业组织工程项目建设活动的行政职务人员。
AA、项目经理B、常务项目副经理C、执行项目经理D、以上三者A19、是项目负责人安全生产职责的第一条。
A、建立、健全本项目部安全生产责任制B、保证本项目部安全生产投入的有效实施C、督促、检查本项目部的安全生产工作,及时消除生产安全事故隐患D、组织制定本项目部安全生产规章制度和操作规程A 20、规定:“加强劳动保护,改善劳动条件”,这是国家和企业安全生产所必须遵循的基本原则。
A、《中华人民共和国宪法》B、《中华人民共和国劳动法》C、《中华人民共和国安全生产法》D、《中华人民共和国职业病防治法》D 21、国家建设行政主管部门发文确定了建筑施工为建筑施工单位安全生产考核的对象。
A、企业主要负责人B、项目负责人C、专职安全生产管理人员D、以上三者D 22、国务院颁发实施的《安全生产许可证条例》第六条提出的13项安全生产条件中,是与人的安全行为因素有关的条件。
A、50%B、60%C、70%D、85%A23、国内外一些统计资料指出,触电后开始救治者,90%有良好效果。
A、1分钟B、2分钟C、3分钟D、5分钟24、发生创伤性出血时,应根据现场条件,及时、正确地采取等暂时性的止D 血方法止血。
A、压迫止血法B、指压止血法C、弹性止血带止血D、以上三者三、多项选择题1、国外“安全第一”先进理念的口号有:。
A、安全第一,质量第一B、安全第一,质量第二BDEC、质量是企业的生命,安全是员工的生命D、我永远将安全放在第一位E、公司的利益就是安全第一2、我们应从等不同角度来理解安全生产。
ABCDEA、理论B、政治C、经济D、伦理E、社会影响3、管理是指所进行的活动。
ABCDA、管理主体B、采用一定的方式、方法C、作用于客体D、使其朝着一定的目标发展E、直至完全实现目标4、我国安全生产管理体制中,。
A、群众监督支持是安全生产管理体制的基础B、社会广泛支持是安全生产管理体制的基础CDEC、企业是安全生产管理的出发点D、企业是安全生产管理的落脚点E、企业是安全生产管理的基础5、违反封闭原理,不能成为一个有效的现代管理系统。
BCA、必须是一个封闭系统B、必须是多个封闭系统C、只能采用一级闭环反馈系统D、可以采用多级闭环反馈系统E、必须构成一个连续封闭的回路ABCDE6、所谓安全生产就是指生产经营活动中,而采取的一系列措施和行动的总称。
A、保证人身健康与生命安全B、保证财产不受损失C、确保生产经营活动顺利进行D、促进社会经济发展E、促进社会稳定和进步AD7、建筑施工企业在“五大高危企业”中:。
A、事故起数排第一B、事故起数排第二C、死亡人数排第一D、死亡人数排第二E、死亡人数排第三ABCD8、管理是指所进行的活动。
A、管理主体B、采用一定的方式、方法C、作用于客体D、使其朝着一定的目标发展E、直至完全实现目标CDE9、我国安全生产管理体制中,。
A、社会广泛支持是安全生产管理体制的基础B、群众监督是安全生产管理体制的基础C、企业是安全生产管理的出发点D、企业是安全生产管理的落脚点E、企业是安全生产管理的基础ABCD10、项目负责人安全生产管理能力考核要点有。
A、能保证安全生产费用的有效使用B、能根据工程的特点组织制定安全施工措施C、能有效开展安全检查,及时消除生产安全事故隐患D、能及时、如实报告生产安全事故E、自考核之日起,所管理的项目一年内未发生死亡事故。
四、案例题1、目前,有的施工现场项目负责人不重视安全生产管理知识的应用,对于管理的理论了解甚少,因而施工现场安全生产管理只是浮在表面上,例如安全生产责任制只是挂在墙上难以落实在行动上,安全生产管理效果不如人意。
建筑施工企业项目负责人应认真学习和掌握安全生产管理有关知识,将管理理论运用到施工现场安全生产中。
请回答如下问题:(1)管理包括等基本要素。
(多选题)A、管理的主体即管理者B、管理的客体即被管理的对象ABCEC、管理的手段及管理的方式方法D、管理的意义E、管理的目的(2)安全生产责任制挂在墙上是为了迎接检查,这是安全生产管理的“主体”B 这一基本要素明显缺失的表现。
(判断题)A、正确B、错误(3)管理的基本特征主要有:。
(多选题)ABCDA、管理是一种社会现象B、管理的“载体”就是“组织”C、管理具有一定的任务和职能D、管理的核心是处理各种人际关系E、体现领导与被领导的关系(4)管理的本质是。
(单选题)BA、处理各种人际关系B、创新C、处理领导和被领导的关系D、处理上级和下级关系(5)安全生产中有关管理的基本特征的正确说法有。