大鼠增殖抑制基因通过P53-P21cip1途径抑制胶质瘤细胞增殖
- 格式:pdf
- 大小:2.20 MB
- 文档页数:4
p21~(WAF1/Cip1)远端启动子及自反馈转录调节研究p21<sup>WAF1/Cip1</sup>是第一个在哺乳动物细胞被发现的CDK(cyclin dependentkinase)抑制因子和肿瘤抑制基因p53的转录靶。
已有的研究证明,p21在细胞增殖、分化、死亡和细胞衰老中有着重要功能意义。
p21作为细胞周期检查点关键蛋白分子参与了细胞周期G1和G2/M期阻滞;DNA修复以及细胞凋亡调控。
尽管如此,令人不解的是,迄今为止对多种肿瘤组织和近百种细胞的进一步筛查研究,很少检测出p21编码区的突变或其等位基因的缺失。
也未能真正证明肿瘤细胞有异常的p21启动子区的DNA甲基化。
然而,事实上p21确实在肿瘤发生发展的进程中发挥着重要的功能作用。
目前有关p21基因在转录水平上的调控研究主要集中在对启动子转录起始点至上游2.5kb之间区段,在距起点2.5kb外的上游启动子区的调控缺乏深入研究。
此外,研究揭示:p21也可以作为转录辅因子与其它蛋白如E2F1、C/EBP α、c-Myc、STST3以及CBP/p300等相互作用并调节其功能。
对p21过表达后的全基因表达谱分析发现,外源表达p21似乎促进了内源p21的表达,但其结论尚不明确。
有鉴于p21在肿瘤生成中这些令人困惑和模糊的功能以及p21转录研究的现状,进一步深入探讨p21转录调节及功能意义实有必要。
据此,本文对外源p21蛋白促进内源p21表达进行了验证,进一步在转录水平上对其调节机理以及存在的生物学意义进行了探讨,并对p21基因启动子以及蛋白修饰进行了一些研究。
研究内容及进展主要在如下三个方面:一、对p21基因启动子生物信息学分析,我们发现在距启动子转录起始位点上游-2.6~-3.3kb区域有一段具有反向重复结构的序列,该区域包含Alu家族重复序列。
缺失实验表明该段序列具有较强的转录抑制活性;分段检测发现该序列的抑制活性与其反向重复形成的特殊二级结构有关;其单独上、下游臂区域及中间区三个部分都有一定的抑制活性,似乎表明该区域可能还存在与转录因子结合的抑制性顺式结合元件。
在细胞生命活动过程中,多种内外因素(如氧自由基和紫外辐射)都会影响细胞基因组的完整性。
为确保细胞周期这一生命增殖过程有条不紊地进行,细胞内发展了一系列调控机制,以检测和修复DNA损伤、维持细胞遗传稳定性和完整性。
细胞周期检验点就是其中一种重要的调控机制。
所谓周期检验点就是细胞周期不同时相间存在的类似“开关”式的关键调控点,以保证各个细胞周期事件的启动、完成与忠实地按序进行。
在细胞周期检验点中,如果调节蛋白检测到DNA损伤或其他结构异常,细胞会很快启动DNA损伤修复调控体系,抑制细胞周期运转,以提供足够的时间修复损伤,保证细胞遗传的稳定性。
在人类细胞中,检验点功能缺陷引起的遗传不稳定性与细胞癌变密切相关。
一些检验点蛋白突变显著增加了人类患癌症的几率。
因此,深入研究细胞周期检验点将有助于寻找有效的癌症治疗方法。
1细胞周期检验点通路及其调控机制对细胞周期的研究表明,这些周期检验点可以检测到损伤或结构异常的DNA,启动相应的信号转导途径,引发一系列生物学事件,如阻滞细胞周期和修复受损DNA。
作为蛋白质的网络系统,细胞周期检验点通路包括感受器、转导器和效应器。
感受器[如哺乳动物的毛细血管扩张性共济失调症突变蛋白(ataxia telangiectasia mutated,ATM)和ATR(ATM-Rad3-related)]负责检测结构异常的DNA并启动检验点信号;转导器负责将信号转导到相应的效应器。
哺乳动物细胞中,检验点激酶(checkpoint kinase,CHK)CHK1、CHK2分别是ATR与ATM激酶的底物;检验点经过一系列信号转导,最后由效应器引发生物学效应。
这些效应器蛋白包括与DNA复制、转录调控和细胞周期调控有关的蛋白,如BRCA1、CDC25A、CDC25C、p21等。
在哺乳动物细胞中存在G1/S、S和G2/M等一系列细胞周期调控检验点[1-3]。
1.1G1期和G1/S检验点通路及其调控机制G1期是M期结束后S期开始前的一段间隙。
p21基因作用P21基因是一种抑制细胞周期进程的关键基因,也被称为细胞周期蛋白依赖性激酶抑制因子1A(Cip1)或骨架蛋白P21(Waf1/Cip1)。
这个基因编码的蛋白质P21是一种蛋白酶抑制剂,可以通过和细胞周期蛋白依赖性激酶(CDK)结合以抑制其激酶活性。
在细胞内,CDK与其配体细胞周期蛋白(Cyclin)相结合后形成复合物,促进细胞周期的推进。
P21的出现可以抑制CDK的活性,从而阻断细胞周期的推进,使细胞停留在G1/S和G2/M转换期,保证了DNA修复和细胞凋亡的进行。
P21基因在人体细胞中广泛表达,它的表达受到多种信号的调控。
在细胞受到DNA损伤、细胞失去正常的生长因子刺激、细胞内出现异常增殖等情况下,P21基因会被激活并开始进行转录。
这样一来,P21蛋白就会在细胞核内大量积累,抑制CDK的活性,使细胞周期停滞,为细胞提供更多时间来进行DNA修复。
这是细胞对于DNA损伤的一种保护机制,可以避免受损的DNA进入有问题的细胞周期,从而避免细胞突变和癌变。
除了在DNA损伤修复过程中的重要作用外,P21基因还参与了多种细胞生理过程的调控。
例如,在细胞老化过程中,P21的表达上调可以抑制细胞的增殖,并促进细胞进入细胞凋亡程序。
这对于细胞的寿命和代谢稳定具有重要意义。
此外,研究表明P21还参与了多个信号通路的调节,如细胞凋亡通路、转录调节通路等,与细胞周期密切相关的转录因子和调节因子也有可能与P21相互作用,共同调控细胞的分化和发育。
P21基因作为一个细胞周期调控剂,具有广泛的生物学功能,对于维持细胞的正常功能和机体的健康至关重要。
近年来,关于P21基因的研究越来越受到关注,人们已经发现了许多与其相关的生理和病理学过程,并对其作用机制进行了深入研究。
首先,P21基因在细胞周期的控制中起着至关重要的作用。
正常细胞周期的进行需要严格的调控,细胞周期蛋白依赖性激酶(CDK)是细胞周期进行的重要调控分子。
细胞周期控制中关键因素及其调控机制细胞周期是细胞生命周期的一个重要阶段,其中包括有丝分裂和无丝分裂两个部分。
细胞周期由一系列复杂的过程组成,如DNA复制、减数分裂、染色体复制等。
这些过程是由一个复杂而精细的调节系统来调控的,这个调节系统涉及到许多分子因子的作用。
本文将介绍细胞周期调控的关键因素及其调控机制。
一、Cdks和Cyclins的作用及其调控一个关键因素是Cyclin依赖性激酶(Cdks),它们是细胞周期的一个重要因素。
Cdk1和Cdk2是细胞周期中最重要的Cdks。
他们需要结合特定的调控蛋白Cyclin才能活化。
Cyclins也是周期控制中的重要因素。
它们的表达周期性地发生变化,与Cdks结合后,可以激活它们的催化活性。
Cyclin A和Cyclin B分别通过结合到Cdk1来促进G2期和有丝分裂。
Cyclin E结合到Cdk2以促进将细胞推向G1期的S 期。
因此,Cdks和Cyclins的协同作用,调节了细胞周期的正常进程。
Cdks的激酶活性受到许多不同调节的作用。
一些负向调节的因子可以抑制Cdks的活性,防止细胞进入一个未预期的G2和M期。
例如,p21、p27和p57是Cdk抑制因子,能够结合到不同Cdk/Cyclin复合物上,并抑制激酶活性。
此外,在一些生物体中,Cdk1的活性在M期中受到染色体位置的影响。
此类背景的变化可能影响M期的开始和持续时间,而且这些变化可能与染色体亚群的位置有关。
二、p53和Rb的作用和调控另一个介导细胞周期进程的调节因子是p53和Rb。
p53是一个转录因子,是一个细胞周期通路的关键调节因子。
在许多不同的细胞类型中,p53都可以抑制细胞周期不良的进展,如细胞转化,肿瘤的发生等。
p53作为转录因子,可以启动p21Cip1/waf1的转录,从而抑制Cdks。
p53的其他一些靶基因也能够抑制细胞周期的进展。
在一些研究中,发现大约50%患有不同类型癌症的细胞都具有p53的突变,这表明p53的缺失或缺陷能够促进非正常的细胞增殖和转化。
MCPIP1通过调节VEGFA-ERK途径促进胶质瘤细胞的增殖、迁移和血管生成摘要:MCPIP1是一种新型的转录因子,可通过调节多种信号通路影响不同细胞的生长、分化和凋亡等生物学过程。
本研究旨在探讨MCPIP1在胶质瘤细胞增殖、迁移和血管生成中的作用及其机制。
我们发现MCPIP1在人脑胶质瘤组织和细胞系中高表达,过表达MCPIP1可显著促进胶质瘤细胞的增殖和迁移,同时增强VEGFA/ERK信号通路的活性。
进一步实验发现,MCPIP1通过直接与VEGFA基因启动子结合,增强VEGFA的转录和表达,同时通过调节ERK1/2磷酸化水平影响VEGFA信号通路的下游效应,从而促进胶质瘤细胞的血管生成能力。
这些结果表明MCPIP1可能是促进胶质瘤发生和发展的一个新的靶点,有望成为预防和治疗胶质瘤的重要药物靶点。
关键词:胶质瘤,MCPIP1,VEGFA,ERK,血管生成。
Abstract: MCPIP1 is a novel transcription factor that can affect various biological processes such as growth, differentiation, and apoptosis in different cells by regulating multiple signaling pathways. This studyaims to investigate the role and mechanism of MCPIP1in glioma cell proliferation, migration, and angiogenesis. We found that MCPIP1 was highly expressed in human glioma tissues and cell lines. Overexpression of MCPIP1 significantly promoted gliomacell proliferation and migration, while enhancing the activity of the VEGFA/ERK signaling pathway. Further experiments revealed that MCPIP1 directly bound to the VEGFA gene promoter, increased VEGFA transcription and expression, and affected the downstream effects of the VEGFA signaling pathway by regulating the phosphorylation levels of ERK1/2, thereby promotingthe angiogenic ability of glioma cells. These results suggest that MCPIP1 may be a novel target forpromoting glioma occurrence and development, and may become an important drug target for prevention and treatment of glioma.Keywords: Glioma, MCPIP1, VEGFA, ERK, angiogenesisGlioma is a highly invasive and aggressive tumor that remains one of the most challenging diseases to treat. Therefore, there is an urgent need to identify new molecules and pathways that can be targeted to inhibit glioma growth and progression. In recent years, research has focused on the role of MCPIP1 in cancer, including its involvement in angiogenesis, which is a critical process for tumor development and progression.The study found that MCPIP1 promoted angiogenesis in glioma by upregulating the expression of VEGFA. The VEGFA gene is a key regulator of angiogenesis thatpromotes the growth of new blood vessels. Increased VEGFA expression is often observed in various types of tumors and is associated with poor prognosis.The study also revealed that MCPIP1 regulates the downstream effects of the VEGFA signaling pathway by regulating the phosphorylation levels of ERK1/2.ERK1/2 is an important signaling molecule that regulates many cellular processes, including cell proliferation, differentiation, and survival. In glioma, dysregulation of ERK1/2 signaling has been implicated in tumor growth and progression.Overall, these findings suggest that MCPIP1 may be a promising target for anti-angiogenic therapy in glioma. Targeting MCPIP1 could inhibit VEGFA expression and downstream signaling, thus suppressing angiogenesisand inhibiting tumor growth. Further studies are needed to explore the potential of MCPIP1 as a therapeutic target for gliomaIn addition to targeting MCPIP1, other approaches have been explored for anti-angiogenic therapy in glioma. One such approach is inhibition of vascularendothelial growth factor receptor 2 (VEGFR2), whichis the primary receptor for VEGFA. Inhibition of VEGFR2 reduces VEGFA-mediated angiogenesis and hasbeen shown to slow tumor growth in preclinical models of glioma. Clinical trials of VEGFR2 inhibitors, such as bevacizumab, have shown promise in treating recurrent glioblastoma, although there are concerns about resistance to this therapy and its effects on normal brain tissue.Another approach to anti-angiogenic therapy in glioma is targeting the perivascular niche, which is the microenvironment surrounding blood vessels in tumors. The perivascular niche is important for supporting tumor growth and angiogenesis, and has been shown to be associated with therapy resistance and tumor recurrence. Targeting the perivascular niche, either through direct targeting of perivascular cells or via inhibition of signaling pathways that regulate niche formation and maintenance, may be effective in inhibiting tumor growth and improving treatment outcomes.Additionally, some studies have investigated anti-angiogenic therapy in combination with other treatments, such as chemotherapy or immunotherapy. Preclinical studies have shown that combining anti-angiogenic therapy with chemotherapy can enhance tumor response and reduce resistance to chemotherapy. Clinical trials of this approach in glioblastoma haveyielded mixed results, but further investigation is ongoing. Combining anti-angiogenic therapy with immunotherapy, such as immune checkpoint inhibitors,is also being explored as a potential strategy to improve treatment outcomes in glioma.In conclusion, targeting angiogenesis is a promising approach to treating glioma, a highly vascularized and aggressive brain tumor. MCPIP1 is a novel target for anti-angiogenic therapy, and its inhibition may be effective in suppressing angiogenesis and inhibiting tumor growth. However, further studies are needed to fully understand the mechanisms of MCPIP1 in glioma and to explore its potential as a therapeutic target. Other approaches to anti-angiogenic therapy in glioma, including targeting VEGFR2, the perivascular niche, and combination with other treatments, are also being explored and may yield promising resultsIn addition to targeting MCPIP1, there are other promising approaches to anti-angiogenic therapy in glioma that are currently being explored. One such approach involves targeting VEGFR2, a receptor for vascular endothelial growth factor that plays acritical role in tumor angiogenesis. Bevacizumab, a monoclonal antibody that targets VEGF, has been approved for the treatment of recurrent glioblastomaand has shown promise in clinical trials. However, its effectiveness is limited by the development of resistance and the lack of overall survival benefit.Another approach to anti-angiogenic therapy in glioma is to target the perivascular niche, which is a microenvironment around blood vessels that supports tumor growth and development. The perivascular nicheis enriched with stem cells, immune cells, and extracellular matrix components that facilitate tumor cell survival and proliferation. Targeting the perivascular niche may disrupt the tumor microenvironment and improve the efficacy of anti-angiogenic therapy in glioma.Combination therapy is another strategy for enhancing the effectiveness of anti-angiogenic therapy in glioma. For instance, combining anti-angiogenic therapy with immunotherapy may enhance the antitumor immune response and produce a synergistic effect. Preclinical studies have shown that combining bevacizumab with immune checkpoint inhibitors or adoptive T celltherapy can improve survival and reduce tumor growthin glioma models. Similarly, combining anti-angiogenic therapy with chemotherapy or radiation therapy may enhance their cytotoxic effects and improve treatment outcomes.In summary, anti-angiogenic therapy has emerged as a promising strategy for the treatment of glioma, and the identification of novel targets such as MCPIP1 may further improve its efficacy. However, further research is needed to fully understand the mechanisms of tumor angiogenesis and to develop more effective and specific anti-angiogenic agents. Combination therapy and targeted approaches to the perivascular niche are also promising strategies for improving the efficacy of anti-angiogenic therapy in gliomaIn conclusion, anti-angiogenic therapy holds great potential for the treatment of glioma. MCPIP1 is a potential novel target that can improve the efficacy of this therapy. However, more research is necessary to understand tumor angiogenesis mechanisms and develop effective and specific anti-angiogenic agents. Combination therapy and targeted approaches to the perivascular niche are also promising strategies for improving the efficacy of anti-angiogenic therapy。
P53 信号通路P53是一个肿瘤抑制蛋白,调节各种各样基因的表达,包括细胞凋亡,生长抑制,抑制细胞周期进程,分化和加速DNA修复,基因毒性和细胞应激后的衰老。
作为一个转录因子,p53是N端激活域、DNA中央特定结合域和C—端四聚体化域的组成局部,而且其调控域富含碱性氨基酸。
p53半衰期很短,在26S蛋白酶体作用下,通过持续的泛素化和后期降解,p53在无刺激的哺乳类动物细胞中维持较低的含量.去磷酸化的p53在MDM2〔鼠双微体基因—2)泛素连接酶作用下被泛素化.MDM2结合p53使其无活性是通过两种途径:第一,MDM2结合p53的转录激活域,阻止转录元件的相互作用.第二,介导p53共价结合泛素蛋白,泛素化的p53被蛋白水解酶降解.通过使p53的失活,MDM2扮演着p53抑癌基因的主要监视者。
当细胞面临着DNA损伤、缺氧、细胞因子、代谢改变、病毒感染或者致癌基因等刺激时,导致p53泛素化被抑制和p53在细胞核内积累,通过多个共价修饰包括磷酸化和乙酰化,p53被激活并稳定存在。
p53的磷酸化大多数出现在N—末端激活域的Ser6,Ser9,Ser15,Thr 18,Ser20,Ser33,Ser37,Ser46,Thr55和Thr81残基上,另外还有一些p53磷酸化出现在C-末端连接处和碱性区域的Ser315, Ser371, Ser376, Ser378, 和Ser392残基上。
大多数位点上的磷酸化是由DNA损伤诱发的,还有一些例如Thr55 and Ser376在基因毒性应激下被压抑。
P53磷酸化是由几个细胞激酶所介导,包括Chks,CSNK1—Delta,CSNK2,PKA,CDK7,DNA—PK,HIPK2,CAK,p38和JNK。
显然,由ATM/ATR作用在Ser15上磷酸化,直接作用或者通过Chk1/Chk2,在Chk1/Chk2作用下的Ser20磷酸化已经证实能够减缓抑制或减慢降解p53,导致p53稳定并活化。
Mdivi-1通过抑制少突胶质细胞凋亡信号通路发挥髓鞘保护作用李艳花;张晓娟;张思羽;侯惜缘;刘子乙;于晓静;张年萍【期刊名称】《中国病理生理杂志》【年(卷),期】2024(40)3【摘要】目的:研究线粒体分裂抑制剂1(Mdivi-1)在实验性自身免疫性脑脊髓炎(EAE)小鼠髓鞘保护中的作用,探讨Mdivi-1抑制髓鞘变性的机制。
方法:小鼠经髓磷脂少突胶质细胞糖蛋白第35~55位肽段(MOG35-55)免疫后,随机分为DMSO 模型组和Mdivi-1干预组。
于免疫后第28天处死小鼠,行Luxol fast blue染色分析髓鞘丢失情况,免疫荧光染色和TUNEL染色小鼠脊髓组织和体外细胞实验分析Mdivi-1髓鞘保护机制。
结果:与DMSO模型组比较,Mdivi-1处理明显减少EAE 小鼠脊髓组织白质区髓鞘丢失,减少少突胶质细胞凋亡及线粒体凋亡相关蛋白cleaved caspase-3、caspase-9、cytochrome C和Bax的表达;体外MO3.13少突胶质细胞培养实验发现,Mdivi-1可以明显阻止星形孢菌素(staurosporine)处理诱导的线粒体膜电位去极化,减轻细胞损伤,增强细胞活力。
结论:Mdivi-1可能通过抑制少突胶质细胞线粒体相关凋亡信号通路发挥髓鞘保护作用。
【总页数】8页(P527-534)【作者】李艳花;张晓娟;张思羽;侯惜缘;刘子乙;于晓静;张年萍【作者单位】山西大同大学医学院;西安交通大学医学院【正文语种】中文【中图分类】R744.51;R363.2;Q255【相关文献】1.激活 PI3K/Akt 信号通路抗少突胶质细胞凋亡的研究2.拉喹莫德对中枢神经系统脱髓鞘小鼠胼胝体区少突胶质细胞的保护作用3.Mdivi-1对cuprizone诱导的脱髓鞘性病变小鼠少突胶质细胞的保护作用4.小柴胡汤抑制NF-κB信号通路对氨诱导大鼠星形胶质细胞水肿的保护作用研究因版权原因,仅展示原文概要,查看原文内容请购买。
转录因子TBX3的研究进展张硕;乌兰其其格【摘要】T-box 3(TBX3)基因有两个亚型TBX3和TBX3+2a,其转录调控因子在脊椎动物和非脊椎动物的器官发生和形态发生学方面有至关重要的作用.TBX3基因主要是通过p19ARF(p14ARF)/p53和p21WAF1/Cip1两条途径参与抑制细胞凋亡,促进细胞增殖分裂.TBX3的生物学功能和作用机制非常复杂,该文对TBX3基本结构、生物学功能、表达调控以及其与PTEN之间的相互作用予以综述.【期刊名称】《医学综述》【年(卷),期】2014(020)004【总页数】4页(P597-600)【关键词】TBX3;生物学功能;信号通路【作者】张硕;乌兰其其格【作者单位】内蒙古医科大学附属医院口腔科颌面外科,呼和浩特,010050;内蒙古医科大学附属医院口腔科颌面外科,呼和浩特,010050【正文语种】中文【中图分类】R73T-box(TBX)基因家族成员在脊椎动物和无脊椎动物的胚胎发育过程中起重要的调节作用,尤其在胚胎的形态和组织发生过程中更为突出。
TBX蛋白作为转录因子调节其下游效应基因的表达[1]。
目前人、鼠、鸡、蝾螈、斑马鱼等物种的遗传物质均表达TBX蛋白,这些能表达TBX蛋白的基因被称为TBX基因。
TBX转录因子可以表达在相同的组织和发育时间段中,在控制其表达水平,随定时和定位的表达中发挥不同的功能,并且与不同辅助因子具有相互协同作用。
TBX基因中相同的亚型具有不同的亚细胞定位,表达水平和功能具有独特性。
已有研究表明,剪接作用在调节TBX蛋白活动中具有潜在的作用[2]。
1 TBX3的结构TBX3有两个亚型TBX3和TBX3+2a,正常情况下TBX3表达在早期胚胎内胚层,但在成熟个体四肢中弱表达[3-4]。
TBX3与TBX2蛋白相比,这两个蛋白中有70~100个相同氨基酸残基,具有近70%的同源性蛋白[3]。
2 TBX3的生物学功能2.1 TBX3在胰腺发育中的作用 Begum等[5]通过对小鼠胰腺中TBX3的表达,发现TBX3发生始于胚胎胰腺间充质,TBX3表达在胎儿后期胰腺血管中上皮源性内分泌细胞与导管上皮细胞和出生后以及成人胰腺外分泌组织中。
病理生理学细胞增殖分化异常与疾病章节习题(带答案)选择题A型题1.从基因水平看,细胞增殖分化异常实际上是A.癌基因表达过度B.抑癌基因表达受抑C.细胞增殖分化基因的调控异常D.凋亡基因表达受抑E. 与分化有关的基因表达异常2.细胞增殖周期的顺序依次是A.G1→M→G2→S B.G1→S→G2→M C.M→G1→G2→SD.S→G1→M→G2 E. G1→G2→M→S3.单纯属细胞过度增殖而无分化异常的疾病是A.恶性肿瘤 B.银屑病 C.白癜风 D.家族性红细胞增多症 E.高IgM血症4.CDK的中文全称是A.周期素 B.周期素依赖性激酶 C.周期素依赖性激酶抑制因子D.泛素 E. 细胞因子5.与细胞周期驱动力无直接关系的是A. cyclin B. CDK C. CDID. checkpoint E.以上都无关6.肿瘤细胞恶性增殖主要是细胞内下列哪项因素增高所致A. cyclin B. CDI C. CDK D.泛素 E. P537.Li-Fraumeni癌症综合征患者遗传一个突变的基因是A. RB B. P16 C. P21 D.P53 E.P518.家族性红细胞增多症的发病机制是A. EPO增多 B. EPG增多 C. G蛋白异常D.造血细胞EPO受体突变导致磷酸酶不能发挥抑制功能 E. 骨髓造血微环境功能亢进9.X-连锁γ-球蛋白缺乏症(Bruton病)的发病机制是A.造血细胞磷酸酶功能异常B. Bruton酪氨酸激酶功能异常C. Bruton丝氨酸/苏氨酸激酶功能异常D. Src基因突变E. PKC功能亢进10.调节表皮黑素细胞的增殖分化与功能的细胞是A.角质形成细胞B.上皮细胞C.基底细胞D.白细胞E.成纤维细胞11.属于多能干细胞是A.骨髓造血干细胞B.胚胎干细胞C.红细胞系D.精原细胞E.卵母细胞12.恶性肿瘤细胞不会发生A.低分化B.去分化C.趋异性分化D.高分化E. 细胞分化和增殖脱偶联13.与儿童的视网膜母细胞瘤的发生密切相关的基因是A. P53B. MycC. P16D. RBE. Ras14.银屑病中过度增生分化不全的细胞是A.角质生成细胞B.上皮细胞C.基底细胞D.白细胞E. 成纤维细胞15.局部外用维甲酸和VitD3衍生物治疗银屑病,是通过激活核受体作用,促使A.角质生成细胞分化B.角质生成细胞增殖C.郎罕细胞增殖D.表皮细胞抑制E. 成纤维细胞抑制B型题A.单向性B.阶段性C.检查点D.细胞微环境E.DNA复制和染色体分配质量1.细胞周期检查点检查的是2.细胞在某时相停滞,待生长条件适合后,细胞又可重新活跃到下一时期称为细胞周期的3.细胞只能沿G1→S→G2→M方向推进而不能逆行称为细胞周期的4.细胞外信号、条件等构成了推进细胞周期的5.在各时相交叉处控制决定细胞下一步的增殖分化趋向的检查机制为A. 调节亚基B.催化亚基C. CDKD. cyclinE.增殖细胞核抗原(PCNA)6.CDK发挥作用是作为7.Cyclin发挥作用是作为8.分为G1期、S期和G2/M期细胞三大类的是9.CDI抑制10.不与CDK结合的细胞周期相关蛋白是A.泛素B. P53蛋白C.增殖细胞核抗原(PCNA)D. CDKE.Cyclin11.分子浓度在正常细胞周期各阶段稳定的是12.分子浓度在细胞周期各阶段呈周期性波动的是13.可作为S期标志物之一是14.可降解CDK的是15.抑癌基因产物是A. 磷酸激酶B.DNA复制检查点C.DNA损伤检查点D.CDKE.纺锤体组装检查点16.在G1/S交界处检查的是17.负责检查DNA复制进度的是18.检查有功能的纺锤体形成的是19.细胞周期检查点的效应器是20.可作为检查点传感器的是A.细胞周期的驱动力改变B.增殖抑制信号C.增殖信号D.肿瘤E.CDK活性增高21.大多数肽类生长因子属于22.转化生长因子β(TGF-β)属于(TGF-β对某些细胞有增殖促进作用)23.cyclin、CDK和CDI表达过高或过低属于24.对细胞周期调控异常研究最为深入的疾病是25.肿瘤细胞恶性增殖主要是细胞内A.染色体易位B. cyclin DC. Bcl-1D.基因扩增E.染色体倒位26.生长因子感受器是27.cyclin Dl又称为28.cyclin D过量表达的主要机制是29.人甲状旁腺肿瘤发生inv(11)(p15:q13)是30.在B细胞淋巴瘤Bcl-1断裂点发生t(11:14)(q13:q32)是A. CDK4B. P21cip1C. CDID.P53E.P27kip131.介导TGF-β增殖抑制的靶蛋白可能是(有多种,不是一种,包括诱导P21cip1)32.属于肿瘤抑制基因表达产物的是33.P53下游靶分子是34.在人类肿瘤中突变发生很高的基因是(D是唯一答案吗?)35.被认为是致死性基因突变的是A.凋亡B.高IgM血症C.Li-Fraumeni综合征D.家族性红细胞增多症E.bax基因36.P53过度表达可直接激活37.P53过度表达可诱导38.遗传一個突变的p53基因可导致39.EPO受体羧基端特定部位的基因突变可导致40.CD40配体缺乏导致A. 细胞质决定子B.细胞“决定”C.管家基因D.确定细胞表型E.为维持细胞生存所必需41.某些基因永久地关闭,而另一些基因顺序地表达,具备向某一特定方向分化的能力称为42.干细胞所特有的细胞质组分称为43.编码核糖体蛋白、线粒体蛋白、糖酵解酶的基因是44.管家基因45.组织专一基因A.多向分化B.趋异性分化C.去分化或反分化D.低分化E.差别基因表达46.不同种类细胞的基因选择活动的现象称为47.肿瘤细胞表现为形态上的幼稚性是48.肿瘤细胞多种表型又返回到原始的胚胎细胞表型是49.髓母细胞瘤分化出肌细胞成分是50.瘤细胞分化程度和分化方向的差异性是A.再分化B.胚胎性基因重现表达C.转录因子AP-1D.特异性基因表达受到抑制E.细胞周期调控51.肝癌细胞不合成白蛋白是因为52.结肠癌表达癌胚抗原是因为53.jun蛋白和fos蛋白的二聚体是54.在一些物质的作用下,恶性肿瘤细胞可以向正常细胞演变分化称为55.对细胞增殖、分化和凋亡进行调节的过程称为X型题1.细胞周期素依赖性激酶抑制因子(CDI)包括A. Ink4 B. TGF-β C.泛素 D.Kip2.Cyclin D是A.生长因子感受器 B.Bcl-1 C.原癌基因产物 D.肿瘤抑制基因产物3.肿瘤细胞周期调控异常的机制有A. cyclin D过表达B.检查点功能障碍 C.CDI表达不足 D.CDI 突变4.细胞分化的机制是A.细胞核不受细胞质影响 B.“决定”先于分化 C.细胞间相互作用D.细胞质决定子决定细胞基因的差别表达5.恶性肿瘤细胞异常分化的机制有A.细胞的增殖和分化脱偶联 B.癌基因和抑癌基因的协同失衡C.基因表达时空上失调 D.过度增强的正信号癌基因表达产物6.肿瘤细胞的诱导分化是指A.诱导剂可抑制癌基因表达或提高抑癌基因表达B.分化诱导剂处理后肿瘤细胞分布于G0和 G1期的比例明显增加C.能诱发瘤细胞凋亡D.诱导一些肿瘤细胞向正常成熟方向发展,甚至成为终末分化的细胞参考答案:A型题1.C 2.B 3.D 4.B 5.D 6.C 7.D 8.D 9. B 10.A 11.A 12.D 13.D 14. A 15. AB型题1.E 2.B 3.A 4.D 5.C 6.B 7.A 8.D 9.C 10.E 11.D 12.E 13.C 14.A 15.B16.C 17.B 18.E 19.D 20.A 21.C 22.B 23.A 24.D 25.E 26.B 27.C 28.D 29.E 30.A31.A 32.C 33.B 34.D 35.E 36.E 37.A 38.C 39.D 40.B 41.B 42.A 43.C 44.E 45.D46.E 47.D 48.C 49.B 50.A 51.D 52.B 53.C 54.A 55.E X型题1.AD2.ABC3.ABCD4.BCD5.ABCD6.ABCD填空题1.G0期细胞在遭遇损伤或应激等刺激后可返回细胞周期,进行细胞增殖,称为_______。