正弦波振荡器总结要点
- 格式:doc
- 大小:4.35 MB
- 文档页数:12
正弦波振荡器总结模块参数要求:设计制作20MHZ 石英晶体振荡器、30MHZ 克拉泼(串联改进型电容三点式振荡器)震荡器,40MHZ 西勒(并联改进型电容三点式振荡器)震荡器频率,工作电压+5V 。
模块完成情况:设计制作了20MHZ 石英晶体振荡器、24.1MHZ--38.7MHZ 克拉泼震荡器、38.9MHZ--40.5MHZ 西勒震荡器。
模块涉及的理论知识:振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路,它无需外加激励信号。
为了使振荡器在接通直流电源后能够自动起振,要求反馈电压在相位上与放大器输入电压同相在幅度上则要求U f >Ui ,即πϕϕn F A 2=+ n=0,1,2,…10>F A式中,A0为振荡器起振时放大器工作于甲类状态时的电压放大倍数。
振荡建立起来之后,振荡幅度会无限制地增长下去吗?不会的,因为随着振荡幅度的增长,放大器的动态范围就会延伸到非线性区,放大器的增益将随之下降,振荡幅度越大,增益下降越多,最后当反馈电压正好等于原输入电压时,振荡幅度不再增大而进入平衡状态。
1=AF综上所述,为了确保振荡器能够起振,设计的电路参数必须满足A 0F>1的条件。
而后,随着振荡幅度的不断增大,A 0就向A 过渡,直到AF=1时,振荡达到平衡状态。
显然,A 0F 越大于1,振荡器越容易起振,并且振荡幅度也较大。
但A 0F 过大,放大管进入非线性区的程度就会加深,那么也就会引起放大管输出电流波形的严重失真。
所以当要求输出波形非线性失真很小时,应使A 0F 的值稍大于1。
当振荡器受到外部因素的扰动(如电源电压波动、 温度变化、噪声干扰等),将引起放大器和回路的参数发生变化破坏原来的平衡状态。
如果通过放大和反馈的不断循环,振荡器越来越偏离原来的平衡状态,从而导致振荡器停振或突变到新的平衡状态,则表明原来的平衡状态是不稳定的。
反之,如果通过放大和反馈的不断循环,振荡器能够产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态,则表明原平衡状态是稳定的。
项目三正弦波振荡器主要内容:基础知识模块介绍项目训练1 基础知识1.1 振荡器基本知识一、振荡器的概述在无需外加激励信号的情况下,将直流电源的能量转换成按特定频率变化的交流信号能量的电路,称为振荡器或振荡电路。
振荡器与放大器都是能量转换装置,它们都是把直流电源的能量转换为交流能量输出,但是,放大器需要外加激励,即必须有信号输入,而振荡器不需要外加激励。
因此,振荡产生的信号是自激信号,常称为自激振荡器。
二、振荡器分类三、反馈振荡器的含义与用途1 . 含义:凡是从输出信号中取出一部分反馈到输入端作为输入信号,无需外部提供激励信号,能产生等幅正弦波输出的电路称为正反馈振荡器。
2 . 用途:(1)无线发射机中的载波信号源,超外差接收机中的本振信号源,电子测量仪器中的正弦波信号源,数字系统中的时钟信号源等。
要求:振幅尤其是振荡频率的准确性和稳定性。
(2)高频加热设备和医用电疗仪器中的正弦交变能源。
要求:高效产生足够大的正弦交变功率,对振荡频率的准确性和稳定性要求不高。
3.分类(按组成原理)反馈振荡器:利用正反馈原理构成,应用广泛。
负阻振荡器:利用负电阻效应抵消回路中的损耗,以产生等幅自由振荡。
主要工作于微波段。
二者工作原理一致。
1.2 反馈振荡器的工作原理 主要要求:1.掌握反馈振荡器的组成和基本工作原理。
2.掌握反馈振荡器的起振条件和平衡条件。
3.掌握反馈振荡器能否振荡的判断方法。
一、反馈式正弦波振荡器构成框图图3-1反馈放大器和振荡器的框图图中,i X 为输入信号,i X ' 为净输入信号,fX 为反馈信号,o X 为输出信号。
比较(a)和(b)两图,很容易看出负反馈放大电路与正反馈振荡电路的区别:负反馈时放大器的闭环增益 1fA A AF =+ 正反馈时放大器的闭环增益 1fA A AF=- 显然,当1=F A 时,∞→f A ,正反馈产生振荡 ,此后振荡电路的输入信号0i=X ,所以fi 'X X =。
第三章 正弦波振荡器学习目标在电子线路中,正弦波是一种非常重要的波形,为什么会这么重要呢?原因在于电子线路中几乎所有的交流信号,不管它的形状如何怪异,都是由各种不同频率和不同强度的正弦波信号组成的,所以在电路中,需要正弦波信号的时候是非常多的,我们现在要给大家介绍的正弦波振荡器不仅可以用来做下面介绍的两种小玩意,更是不少电路的重要组成部分,希望读者能通过下面这些制作对正弦波振荡器有一个清楚的了解。
1、重点掌握串联LC 和并联LC 电路的频率特性,以及LC 电路的振荡器的工作原理,了解RC 振荡器的电路构成。
2、通过制作,理解正弦波振荡器的电路特点和调试方法。
第一节 正弦波振荡器的电路组成正弦波是一种与圆周运动关系很紧密的一种波形,这与荡秋千是非常相似的。
如图3-1所示,我们在秋千的漏斗里装上细沙,当这个小秋千在振动的时候拉动下面的纸看到一个正弦波了,而秋千就是一种振荡器,当然,这个正弦波的幅度会越来越小。
在电路中,也有与秋千相类似的振荡器,这就是LC 电路和RC 电路。
请读者注意了,这样的电路要振荡,不是让电路板随着通电而上下抖动(那样会将电路板损坏),而是在电感和电容内有一个大小和方向不断来回变化的电压或电流,这就是振荡——即是电流和电压的振荡。
为什么用一个电感和一个电容就会产生电流或电压的振荡呢?原因在于电容有电压不能突变的特性,而电感则有电流不能突变的特性。
如图3-2所示的电路,假如在电容上已经充有电,也就是说电容上存储有电压,于是电容上的电压就会形成—个流过电感的电流,但由于有碍于电感的脾气,这个电流不能突然产生,它只能逐渐地增大,并且随着这个过程的进行.电容上的电压会越来越低,当这个电压用完的时候,就不能再对电感进行放电了,于是电感上的电流不再增大了,但这个电流也不会因为电容上没电了就消失,这同样是电感的脾气所致。
图3-1 用一个沙漏斗的振荡来画出一个正弦波电感上的电流要逐渐减少,但这个逐渐减少的电流又会对电容形成充电,当这个电流减少为零时,电容上的电压也增加到了—个足够的值,于是电容又会对电感放电,于是周而复始,形成了电容对电感放电后,电感又对电容放电(皇帝轮流做,奴隶换着当),于是振荡图3-2 LC 电路中电压和电流的变化就形成了。
正弦波振荡电路知识点总结1. 振荡电路的基本概念振荡电路是一种能够在没有外部输入的情况下产生连续变化的信号的电路。
它通过自身的反馈环路来产生振荡。
振荡电路的基本组成包括振荡器、反馈网络、放大器和输出网络。
振荡器是产生基频信号的核心元件,反馈网络用于将一部分输出信号反馈到输入端,放大器则用于提供振荡器所需要的放大增益,输出网络用于将振荡器的输出信号提取到外部装置上。
2. 正弦波振荡电路的工作原理正弦波振荡电路是一种能够产生连续变化正弦波信号的振荡电路,它利用正反馈和负反馈的结合来实现振荡。
首先,放大器将输入信号放大,然后经过反馈网络将一部分输出信号反馈到放大器的输入端。
这样就形成了一个正反馈环路,当反馈信号到达一定幅值时,输出信号将开始增大,最后达到稳定状态,形成正弦波振荡。
3. 常见的正弦波振荡电路类型常见的正弦波振荡电路包括RC正弦波振荡电路、LC正弦波振荡电路、晶振电路、信号发生器和运放正弦波振荡电路等。
RC正弦波振荡电路利用电容和电阻元件来构成反馈网络,LC正弦波振荡电路利用电感和电容元件构成反馈网络,并且晶振电路利用晶体谐振器的内部谐振回路产生正弦波信号,信号发生器则是通过内部振荡电路产生正弦波信号,运放正弦波振荡电路则是利用运放放大器的高增益和稳定性实现正弦波振荡。
4. 正弦波振荡电路的频率和幅值控制正弦波振荡电路可以通过改变反馈元件的数值、改变振荡器的工作参数、改变放大器的增益等方法来控制输出信号的频率和幅值。
例如,RC正弦波振荡电路的谐振频率与RC元件相关,改变电阻或电容的数值可以改变输出信号的频率;LC正弦波振荡电路的谐振频率与LC元件相关,改变电感或电容的数值可以改变输出信号的频率;晶振电路的谐振频率与晶体的谐振频率相关,调整晶振的谐振频率可以改变输出信号的频率;信号发生器和运放正弦波振荡电路通过内部电路来控制输出信号的频率和幅值。
5. 正弦波振荡电路的应用正弦波振荡电路广泛应用于各种电子设备中,如信号发生器、音频设备、通信系统、测量仪器等。
正弦波振荡器总结模块参数要求:设计制作20MHZ 石英晶体振荡器、30MHZ 克拉泼(串联改进型电容三点式振荡器)震荡器,40MHZ 西勒(并联改进型电容三点式振荡器)震荡器频率,工作电压+5V 。
模块完成情况:设计制作了20MHZ 石英晶体振荡器、24.1MHZ--38.7MHZ 克拉泼震荡器、38.9MHZ--40.5MHZ 西勒震荡器。
模块涉及的理论知识:振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路,它无需外加激励信号。
为了使振荡器在接通直流电源后能够自动起振,要求反馈电压在相位上与放大器输入电压同相在幅度上则要求U f >Ui ,即πϕϕn F A 2=+ n=0,1,2,…10>F A式中,A0为振荡器起振时放大器工作于甲类状态时的电压放大倍数。
振荡建立起来之后,振荡幅度会无限制地增长下去吗?不会的,因为随着振荡幅度的增长,放大器的动态范围就会延伸到非线性区,放大器的增益将随之下降,振荡幅度越大,增益下降越多,最后当反馈电压正好等于原输入电压时,振荡幅度不再增大而进入平衡状态。
1=AF综上所述,为了确保振荡器能够起振,设计的电路参数必须满足A 0F>1的条件。
而后,随着振荡幅度的不断增大,A 0就向A 过渡,直到AF=1时,振荡达到平衡状态。
显然,A 0F 越大于1,振荡器越容易起振,并且振荡幅度也较大。
但A 0F 过大,放大管进入非线性区的程度就会加深,那么也就会引起放大管输出电流波形的严重失真。
所以当要求输出波形非线性失真很小时,应使A 0F 的值稍大于1。
当振荡器受到外部因素的扰动(如电源电压波动、 温度变化、噪声干扰等),将引起放大器和回路的参数发生变化破坏原来的平衡状态。
如果通过放大和反馈的不断循环,振荡器越来越偏离原来的平衡状态,从而导致振荡器停振或突变到新的平衡状态,则表明原来的平衡状态是不稳定的。
反之,如果通过放大和反馈的不断循环,振荡器能够产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态,则表明原平衡状态是稳定的。
一个振荡器除了它的输出信号要满足一定的幅度和频率外,还必须保证输出信号的幅度和频率的稳定,而频率稳定度更为重要。
评价振荡器频率的主要指标有两个,即准确度和稳定度。
LC振荡器振荡频率主要取决于谐振回路的参数,也与其它电路元器件参数有关。
因此,任何能够引起这些参数变化的因素,都将导致振荡频率的不稳定。
这些因素有外界的和电路本身的两个方面。
其中,外界因素包括:温度变化、电源电压变化、负载阻抗变化、机械振动、湿度和气压的变化、外界磁场感应等。
这些外界因素的影响,一是改变振荡回路元件参数和品质因数;二是改变晶体管及其它电路元件参数,而使振荡频率发生变化的。
因此要提高振荡频率的稳外界因素定度可以从两方面入手:一是尽可能减小外界因素的变化;二是尽可能提高振荡电路本身抵御外界因素变化影响的能力。
设计考虑:1.振荡器电路选择LC振荡器一般工作在几百千赫兹至几百兆赫兹范围。
振荡器线路主要根据工作的频率范围及波段宽度来选择。
在短波范围,电感反馈振荡器、电容反馈振荡器都可以采用。
在中、短波收音机中,为简化电路常用变压器反馈振荡器做本地振荡器。
2.晶体管选择从稳频的角度出发,应选择fT较高的晶体管,这样晶体管内部相移较小。
通常选择fT >(3~10) fmax。
同时希望电流放大系数β大些,这既容易振荡,也便于减小晶体管和回路之间的耦合。
3.直流馈电线路的选择为保证振荡器起振的振幅条件,起始工作点应设置在线性放大区;从稳频出发,稳定状态应在截止区,而不应在饱和区,否则回路的有载品质因数QL将降低。
所以,通常应将晶体管的静态偏置点设置在小电流区,电路应采用自偏压。
4.振荡回路元件选择从稳频出发,振荡回路中电容C应尽可能大,但C过大,不利于波段工作;电感L 也应尽可能大,但L 大后,体积大,分布电容大,L 过小,回路的品质因数过小,因此应合理地选择回路的L 、C 。
在短波范围,C 一般取几十至几百pF ,L 一般取0.1至几十μH 。
5.反馈回路元件选择由前述可知,为了保证振荡器有一定的稳定振幅以及容易起振,在静态工作点通常应按下式选择5~3||0==∑F g y F A f当静态工作点确定后,yf 的值就一定,对于小功率晶体管可以近似为m V I g y CQ m f 26==反馈系数的大小应在下列范围选择F=0.01-0.5 克拉泼振荡器:图2.4.1 (a) 为克拉泼振荡器原理电路,(b)为其交流等效电路。
它的特点是在前述的电容三点式振荡谐振回路电感支路中增加了一个电容C3,其取值比较小,要求C3<< C1,C3<< C2。
图2.4.1 克拉泼振荡器先不考虑各极间电容的影响,这时谐振回路的总电容量C Σ为C1、C2 和C3的串联,即43211111C C C C C ≈++=∑(2-9)于是,振荡频率为402121LC LC f ππ≈≈∑ (2-10)(a ) 原理电路 (b ) 交流等效电 33使式(2-10)成立的条件是C1和C2都要选得比较大,由此可见,C1、C2对振荡频率的影响显著减小,那么与C1、C2并接的晶体管极间电容的影响也就很小了,提高了振荡频率的稳定度。
西勒振荡器:4332141111C C C C C C C +≈+++=∑所以振荡频率()4302121C C L LC f +≈≈∑ππL 为谐振放大器电路的电感线圈的电感量;C 为谐路的总电容。
在LC 谐振回路中,电感L (H )/电容C (F )=105~106,可达到较好的效果。
并联晶体振荡:模拟电子技术基础(第三版)书中P408页上有振荡电路图8.1.29如图2所示,是并联型石英晶体振荡电路,该并联型石英晶体振荡电路中,石英晶体必须等效为电感,否则振荡电路就无意义了,图2的等效电路如图3所示.则振荡电路的振荡频率为图2.4.2 西勒振荡器L(a ) 原理电路(b ) 交流等效电路4所以,并联型石英晶体振荡电路的振荡频率为设计制作过程:克拉泼振荡器:克拉泼振荡器由上理论知识可知:当要求输出波形非线性失真很小时,应使AF的值稍大于1。
因此使用50K的可调电阻RES1,调节RES1,致使三极管静态工作点发生。
变化,影响三极管的放大倍数AC1、C2的选择较为重要,并非是比例合适就可以。
经试验:C1、C2过大、过小时,放大器的电压增益都会降低,振幅下降,甚至会停振。
最终选择C1=110pF,C2=1000pF,反馈系数F=110/1000(未考虑三极管节电容)。
由于设定振荡频率为30MHZ左右,因此电感L=1uH(可调),电容C=20pF(可调)。
振荡器输出波形有些失真,这是因为其含有多次谐波,为使输出波形较理想,输出我使用谐振放大器。
振荡器输出加了谐振放大器,跟随器或者谐振放大器的输入阻抗不可过小,应尽量大一些,否则会影响振荡器的工作。
调板过程总,我修改谐振放大器发射极电阻R7,不接谐振放大器发射极电阻放大倍数最大。
西勒振荡器:西勒振荡器设计思路与方法与克拉泼振荡器一样,在此不重复。
并联晶体振荡:同理,可以使用50K的可调电阻RES1,调节RES1,致使三极管静态工作点。
发生变化,影响三极管的放大倍数A使用20MHZ无源晶振,调节CL6,可以微调振荡电路的振荡频率,使振荡频率刚好达到20MHZ。
频率稳定,但可能由于电路参数设计问题,波形不理想,输出失真比较大。
克拉泼振荡器:参数测量:由表可知,频率可调范围为34.1MHZ-38.7MHZ ,不同频率,其最佳工作点电压不一样。
所以在调节频率过程中,要调节电阻RES1,使放大器工作在最佳的状态,达到最好的效果。
如若不调节电阻RP1,达到一定频率时,有可能使振荡器停振。
测试图:克拉泼24.1MHZ 时输出克拉泼30MHZ时输出克拉泼38.7MHZ时输出西勒振荡器:参数测量:从表格可以看出,振荡频率范围21.5MHZ-32.2MHZ,各静态工作点电压基本一样。
由此可知,西勒振荡器效果比克拉泼差了许多。
在调节频率过程中,仍需调节电阻RES2,使放大器工作在最佳的状态,达到最好的效果。
可能参数设计有问题修改L、C的参数,对调节提高振荡器的频率效果不大。
测试图:西勒39.0MHZ时输出西勒40.0MHZ时输出西勒40.6MHZ 时输出并联晶体振荡从表格可以看出,并联晶体振荡并不是频率一样放大倍数就一样大,输出越大的,并不一定是你想要的。
需调节电阻RES1,使放大器工作在最佳的状态,达到最好的效果。
测试图:并联晶体振荡20.0MHZ 输出总结以及心得体会:本次设计花费一周多,快两周的时间,虽然波形已经出来了,但是还有许多地方还需要改进,但是时间已经不应许了。
如一级幅度并不是很大,加了二级之后一级的振荡幅值也下降了许多,这是因为二级输入电阻变成了一级的输出电阻,与一级输出电阻相连分压。
尤其是西勒加了二级之后看到的就是十几毫伏的杂波了,只有放大输出才能看到好的波形。
带负载能力差,加上负载,波形就会变得很小很乱,需要在以后的实践中加一个缓冲级,以提高带负载能力。
电感的制作很重要,我绕电感的技术不行,要1uH的电感,我绕了几个都不好,波形差(最后我拿焊台上别人绕好的电感用,效果好很多)。
克拉泼、西勒的二级发射级段,已过测试发现发射级电阻越小越好,太大容易失真变形。
最重要的是我切身认识的画图很重要,本次设计失败了四、五块板,但是原理图是一样的,参数也一样,究其原因只是PCB不同而已,今后要加强自己画板的能力。