【步步高】届高三数学大一轮复习 基本不等式及其应用学案 理 新人教A版
- 格式:doc
- 大小:276.50 KB
- 文档页数:10
基本不等式及其应用一、教学分析设计【教材分析】人教版普通高中课程标准试验教科书分不同的章节处理不等式问题。
在必修5的第三章中,首先介绍了不等关系与不等式;然后是一元二次不等式及其解法,二元一次不等式(组)与简单的线性规划问题;最后在第四节介绍基本不等式。
在选修教材《不等式选讲》中对不等式与绝对值不等式、证明不等式的基本方法、柯西不等式与排序不等式、数学归纳法证明不等式作了更详细的介绍。
并在书中还安排章节复习了基本不等式,并将其推广到三元的形式。
基本不等式从数学上凸显了沟通基础数学知识间的内在联系的可行性。
基本不等式的课程标准内容为:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最值问题。
教学要求为:了解基本不等式的代数背景、几何背景以及它的证明过程;理解算数平均数、几何平均数的概念;会用基本不等式解决简单的最值问题;通过基本不等式的实际应用,感受数学的应用价值(说明:突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形)。
《考试说明》中内容为:会用基本不等式解决简单的最值问题。
通过对比分析,他们的共同都有“会用基本不等式解决简单的最值问题”。
基本不等式与函数(包括三角函数)、数列、解析几何等内容均有丰富的联系,在《考试说明》中属于C及内容(含义:对该知识有实质性的认识并能与已有知识建立联系,掌握内容与形式的变化;有关技能已经形成,能用它来解决简单的有关问题)。
【学生分析】从知识储备上看,高三学生已经基本掌握了不等式的简单性质和证明,并能用不等式及不等式组抽象出实际问题中的数学模型,也具备一定的几何知识。
从思维特点看,学生了解了不等关系的数学模型是解决实际问题的重要工具,具备一定的归纳、猜想、演绎证明和抽象思维的能力。
【目标分析】结果性目标:1、能在具体的问题情景中,通过抽象概括、数学建模以及逻辑推理获得基本不等式;2、掌握基本不等式应用的条件“一正二定三相等”,和基本不等式的常见变形;3、会用基本不等式解决一些简单的实际问题。
学案36 基本不等式及其应用导学目标: 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.自主梳理1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:____________.(2)等号成立的条件:当且仅当________时取等号. 2.几个重要的不等式(1)a 2+b 2≥________ (a ,b ∈R ). (2)b a +a b≥____(a ,b 同号).(3)ab ≤⎝⎛⎭⎪⎫a +b 22 (a ,b ∈R ).(4)⎝ ⎛⎭⎪⎫a +b 22____a 2+b 22. 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为________,几何平均数为________,基本不等式可叙述为:________________________________________________.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当________时,x +y 有最____值是________(简记:积定和最小).(2)如果和x +y 是定值p ,那么当且仅当________时,xy 有最____值是__________(简记:和定积最大).自我检测1.“a >b >0”是“ab <a 2+b 22”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.(2011·南平月考)已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a 、b ∈(0,+∞),A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A 、B 、C 的大小关系是( ) A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤A D .C ≤B ≤A 3.下列函数中,最小值为4的函数是( )A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x +4e -xD .y =log 3x +log x 814.(2011·大连月考)设函数f (x )=2x +1x-1(x <0),则f (x )有最________值为________.5.(2010·山东)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围为________________.探究点一 利用基本不等式求最值例1 (1)已知x >0,y >0,且1x +9y=1,求x +y 的最小值;(2)已知x <54,求函数y =4x -2+14x -5的最大值;(3)若x ,y ∈(0,+∞)且2x +8y -xy =0,求x +y 的最小值.变式迁移1 (2011·重庆)已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72 B .4 C.92D .5 探究点二 基本不等式在证明不等式中的应用例2 已知a >0,b >0,a +b =1,求证:(1+1a )(1+1b)≥9.变式迁移2 已知x >0,y >0,z >0.求证:⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +yz ≥8.探究点三 基本不等式的实际应用例3 (2011·镇江模拟)某单位用2 160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).(1)写出楼房平均综合费用y 关于建造层数x 的函数关系式;(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)变式迁移3 (2011·广州月考)某国际化妆品生产企业为了占有更多的市场份额,拟在2012年英国伦敦奥运会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x 万件与年促销费t 万元之间满足3-x 与t +1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2012年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完.(1)将2012年的利润y (万元)表示为促销费t (万元)的函数.(2)该企业2012年的促销费投入多少万元时,企业的年利润最大?(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)⎣⎢⎡-ax +⎝ ⎛(满分:75分)一、选择题(每小题5分,共25分)1.设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为( )A .8B .4C .1D.14 2.(2011·鞍山月考)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .83.已知a >0,b >0,则1a +1b+2ab 的最小值是( )A .2B .2 2C .4D .5 4.一批货物随17列货车从A 市以a km/h 的速度匀速直达B 市,已知两地铁路线长400 km ,为了安全,两列车之间的距离不得小于⎝ ⎛⎭⎪⎫a 202km ,那么这批货物全部运到B 市,最快需要( )A .6 hB .8 hC .10 hD .12 h5.(2011·宁波月考)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0x -y +2≥0x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则2a +3b的最小值为( )A.256 B.83 C.113D .4 二、填空题(每小题4分,共12分)6.(2010·浙江)若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.7.(2011·江苏)在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f (x )=2x的图象交于P ,Q 两点,则线段PQ 长的最小值是________.8.已知f (x )=32x -(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围为__________________.三、解答题(共38分)9.(12分)(1)已知0<x <43,求x (4-3x )的最大值;(2)点(x ,y )在直线x +2y =3上移动,求2x +4y的最小值.10.(12分)(2011·长沙月考)经观测,某公路段在某时段内的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间有函数关系y=920vv2+3v+1 600(v>0).(1)在该时段内,当汽车的平均速度v为多少时车流量y最大?最大车流量为多少?(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?11.(14分)某加工厂需定期购买原材料,已知每千克原材料的价格为1.5元,每次购买原材料需支付运费600元,每千克原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400千克,每次购买的原材料当天即开始使用(即有400千克不需要保管).(1)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1关于x的函数关系式;(2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y最小,并求出这个最小值.学案36 基本不等式及其应用自主梳理1.(1)a>0,b>0 (2)a=b 2.(1)2ab(2)2 (4)≤3.a +b2ab 两个正数的算术平均数不小于它们的几何平均数 4.(1)x =y 小2p (2)x =y 大p 24自我检测1.A 2.A 3.C4.大 -22-1 5.[15,+∞)课堂活动区例1 解题导引 基本不等式的功能在于“和与积”的相互转化,使用基本不等式求最值时,给定的形式不一定能直接适合基本不等式,往往需要拆添项或配凑因式(一般是凑和或积为定值的形式),构造出基本不等式的形式再进行求解.基本不等式成立的条件是“一正、二定、三相等”,“三相等”就是必须验证等号成立的条件.解 (1)∵x >0,y >0,1x +9y=1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫1x +9y=y x+9xy+10≥6+10=16. 当且仅当y x =9x y 时,上式等号成立,又1x +9y=1, ∴x =4,y =12时,(x +y )min =16.(2)∵x <54,∴5-4x >0.y =4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3 ≤-2-4x15-4x+3=1, 当且仅当5-4x =15-4x,即x =1时,上式等号成立,故当x =1时,y max =1. (3)由2x +8y -xy =0,得2x +8y =xy , ∴2y +8x=1.∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y=10+8y x +2x y=10+2⎝ ⎛⎭⎪⎫4y x+x y≥10+2×2×4y x ·xy=18,当且仅当4y x =xy,即x =2y 时取等号.又2x +8y -xy =0,∴x =12,y =6.∴当x =12,y =6时,x +y 取最小值18.变式迁移1 C [∵a +b =2,∴a +b2=1.∴1a +4b =(1a +4b )(a +b 2)=52+(2a b +b 2a )≥52+22a b ·b 2a =92(当且仅当2a b =b2a,即b =2a时,“=”成立),故y =1a +4b 的最小值为92.]例2 解题导引 “1”的巧妙代换在不等式证明中经常用到,也会给解决问题提供简捷的方法.在不等式证明时,列出等号成立的条件不仅是解题的必要步骤,而且也是检验转化是否有误的一种方法.证明 方法一 因为a >0,b >0,a +b =1,所以1+1a =1+a +b a =2+ba.同理1+1b=2+a b.所以(1+1a )(1+1b )=(2+b a )(2+ab)=5+2(b a +a b)≥5+4=9.所以(1+1a )(1+1b )≥9(当且仅当a =b =12时等号成立).方法二 (1+1a )(1+1b )=1+1a +1b +1ab=1+a +b ab +1ab =1+2ab, 因为a ,b 为正数,a +b =1,所以ab ≤(a +b 2)2=14,于是1ab ≥4,2ab≥8,因此(1+1a )(1+1b )≥1+8=9(当且仅当a =b =12时等号成立).变式迁移2 证明 ∵x >0,y >0,z >0, ∴y x +z x ≥2yz x >0,x y +z y ≥2xz y >0, x z +y z ≥2xy z>0. ∴⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8yz ·xz ·xy xyz=8.当且仅当x =y =z 时等号成立.所以(y x +z x )(x y +z y )(x z +yz)≥8.例3 解题导引 1.用基本不等式解应用题的思维程序为: 由题设写出函数→变形转化→利用基本不等式→求得最值→结论2.在应用基本不等式解决实际问题时,要注意以下四点:(1)先理解题意,设变量,一般把要求最值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数最值问题;(3)在定义域内求函数最值;(4)正确写出答案.解 (1)依题意得y =(560+48x )+2 160×10 0002 000x=560+48x +10 800x(x ≥10,x ∈N *).(2)∵x >0,∴48x +10 800x≥248×10 800=1 440,当且仅当48x =10 800x,即x =15时取到“=”,此时,平均综合费用的最小值为560+1 440=2 000(元).答 当该楼房建造15层时,可使楼房每平方米的平均综合费用最少,最少值为2 000元.变式迁移3 解 (1)由题意可设3-x =kt +1,将t =0,x =1代入,得k =2.∴x =3-2t +1. 当年生产x 万件时,∵年生产成本=年生产费用+固定费用,∴年生产成本为32x +3=32⎝ ⎛⎭⎪⎫3-2t +1+3. 当销售x (万件)时,年销售收入为150%⎣⎢⎡⎦⎥⎤32⎝ ⎛⎭⎪⎫3-2t +1+3+12t .由题意,生产x 万件化妆品正好销完,由年利润=年销售收入-年生产成本-促销费,得年利润y =-t 2+98t +35t + (t ≥0).(2)y =-t 2+98t +35t +=50-⎝ ⎛⎭⎪⎫t +12+32t +1 ≤50-2t +12×32t +1=50-216=42(万元),当且仅当t +12=32t +1,即t =7时,y max =42,∴当促销费投入7万元时,企业的年利润最大. 课后练习区1.B [因为3a ·3b=3,所以a +b =1, 1a +1b=(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·a b =4,当且仅当b a =a b 即a =b =12时,“=”成立.]2.B [不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则1+a +y x +ax y ≥a +2a+1≥9,∴a ≥2或a ≤-4(舍去). ∴正实数a 的最小值为4.]3.C [因为1a +1b +2ab ≥21ab+2ab=2⎝⎛⎭⎪⎫1ab+ab ≥4,当且仅当1a =1b 且1ab=ab ,即a =b =1时,取“=”号.]4.B [第一列货车到达B 市的时间为400a h ,由于两列货车的间距不得小于⎝ ⎛⎭⎪⎫a 202km ,所以第17列货车到达时间为400a +16·⎝ ⎛⎭⎪⎫a 202a =400a +16a400≥8,当且仅当400a =16a 400,即a =100km/h 时成立,所以最快需要8 h .]5.A 6.18解析 由x >0,y >0,2x +y +6=xy ,得xy ≥22xy +6(当且仅当2x =y 时,取“=”),即(xy )2-22xy -6≥0,∴(xy -32)·(xy +2)≥0.又∵xy >0,∴xy ≥32,即xy ≥18. 故xy 的最小值为18. 7.4解析 过原点的直线与f (x )=2x交于P 、Q 两点,则直线的斜率k >0,设直线方程为y =kx ,由⎩⎪⎨⎪⎧y =kx ,y =2x,得⎩⎪⎨⎪⎧x =2k ,y =2k或⎩⎪⎨⎪⎧x =-2k ,y =-2k ,∴P (2k,2k ),Q (-2k ,-2k )或P (-2k,-2k ),Q (2k,2k ).∴|PQ |=2k+2k2+2k +2k 2=22k +1k≥4.8.(-∞,22-1)解析 由f (x )>0得32x -(k +1)·3x +2>0,解得k +1<3x +23x ,而3x+23x ≥22,∴k +1<22,k <22-1.9.解 (1)∵0<x <43,∴0<3x <4.∴x (4-3x )=13(3x )(4-3x )≤13⎝ ⎛⎭⎪⎫3x +4-3x 22=43,(4分)当且仅当3x =4-3x ,即x =23时,“=”成立.∴当x =23时,x (4-3x )的最大值为43.(6分)(2)已知点(x ,y )在直线x +2y =3上移动,∴x +2y =3. ∴2x +4y ≥22x 4y =22x +2y =223=4 2. (10分)当且仅当⎩⎪⎨⎪⎧2x =4y ,x +2y =3,即x =32,y =34时,“=”成立.∴当x =32,y =34时,2x +4y的最小值为4 2.(12分)10.解 (1)y =920vv 2+3v +1 600=920v +1 600v+3≤9202v ×1 600v+3=92083≈11.08.(4分) 当v =1 600v,即v =40千米/小时时,车流量最大,最大值为11.08千辆/小时(6分)(2)据题意有920vv 2+3v +1 600≥10,(8分)化简得v 2-89v +1 600≤0,即(v -25)(v -64)≤0, 所以25≤v ≤64.所以汽车的平均速度应控制在[25,64]这个范围内. (12分)11.解 (1)每次购买原材料后,当天用掉的400千克原材料不需要保管费,第二天用掉的400千克原材料需保管1天,第三天用掉的400千克原材料需保管2天,第四天用掉的400千克原材料需保管3天,…,第x 天(也就是下次购买原材料的前一天)用掉最后的400千克原材料需保管(x -1)天.∴每次购买的原材料在x 天内总的保管费用 y 1=400×0.03×[1+2+3+…+(x -1)]=6x 2-6x .(6分)(2)由(1)可知,购买一次原材料的总费用为6x 2-6x +600+1.5×400x , ∴购买一次原材料平均每天支付的总费用为 y =1x (6x 2-6x +600)+1.5×400=600x+6x +594.(9分)∴y ≥2600x·6x +594=714,(12分)当且仅当600x=6x ,即x =10时,取等号.∴该厂10天购买一次原材料可以使平均每天支付的总费用y 最小,且最小为714元.(14分)。
§7.2一元二次不等式及其解法2014高考会这样考 1.考查一元二次不等式的解法及其“三个二次”间的关系问题;2.会从实际情景中抽象出一元二次不等式模型;3.以函数、导数为载体,考查不等式的参数范围问题.复习备考要这样做 1.结合二次函数的图象,理解“三个二次”的关系,掌握二次不等式的解法;2.理解简单的分式不等式、高次不等式的解法,和函数单调性结合解一些指数不等式、对数不等式.1.一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax2+bx+c>0 (a>0)或ax2+bx+c<0 (a>0).(2)求出相应的一元二次方程的根.(3)利用二次函数的图象与x轴的交点确定一元二次不等式的解集.2.一元二次不等式与相应的二次函数及一元二次方程的关系如下表:[1.一元二次不等式的解集及解集的确定一元二次不等式ax2+bx+c<0 (a≠0)的解集的确定受a的符号、b2-4ac的符号的影响,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y=ax2+bx+c(a ≠0)的图象,数形结合求得不等式的解集.若一元二次不等式经过不等式的同解变形后,化为ax 2+bx +c >0(或<0)(其中a >0)的形式,其对应的方程ax 2+bx +c =0有两个不等实根x 1,x 2(x 1<x 2) (此时Δ=b 2-4ac >0),则可根据“大于取两边,小于夹中间”求解集.2. 解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.1. 不等式x 2<1的解集为________.答案 {x |-1<x <1} 解析 x 2<1,则-1<x <1, ∴不等式的解集为{x |-1<x <1}.2. 函数y =x 2+x -12的定义域是____________.答案 (-∞,-4]∪[3,+∞)解析 由x 2+x -12≥0得(x -3)(x +4)≥0, ∴x ≤-4或x ≥3.3. 已知不等式x 2-2x +k 2-1>0对一切实数x 恒成立,则实数k 的取值范围为__________.答案 (-∞,-2)∪(2,+∞)解析 由题意,知Δ=4-4×1×(k 2-1)<0, 即k 2>2,∴k >2或k <- 2.4. (2012·重庆)不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎤-12,1 B.⎣⎢⎡⎦⎥⎤-12,1 C.⎝ ⎛⎭⎪⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎥⎤-∞,-12∪[1,+∞) 答案 A解析 x -12x +1≤0等价于不等式组⎩⎪⎨⎪⎧x -1≤0,2x +1>0,①或⎩⎪⎨⎪⎧x -1≥0,2x +1<0.②解①得-12<x ≤1,解②得x ∈∅,∴原不等式的解集为⎝ ⎛⎦⎥⎤-12,1.5.若不等式ax 2+bx -2<0的解集为{x |-2<x <14},则ab 等于( )A .-28B .-26C .28D .26答案 C解析 由已知得⎩⎪⎨⎪⎧-2+14=-b a-2×14=-2a ,∴a =4,b =7,∴ab =28.题型一 一元二次不等式的解法例1 已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }.(1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.思维启迪:(1)先化简不等式为标准形式,再依据解集确定a 的符号,然后利用根与系数的关系列出a ,b 的方程组,求a ,b 的值.(2)所给不等式含有参数c ,因此需对c 讨论写出解集.解 (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,b >1且a >0.由根与系数的关系,得⎩⎪⎨⎪⎧1+b =3a ,1×b =2a. 解得⎩⎪⎨⎪⎧a =1,b =2.(2)不等式ax 2-(ac +b )x +bc <0, 即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; 当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; 当c =2时,不等式(x -2)(x -c )<0的解集为∅.所以,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c }; 当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.探究提高 (1)解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集. (2)解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.(1)不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为________.(2)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). (1)答案 {x |-3<x <-2}解析 令f (x )=ax 2+bx +c ,则f (-x )=ax 2-bx +c ,结合图象,可得ax 2-bx +c >0的解集为{x |-3<x <-2}.(2)解 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. ①当a =0时,原不等式化为x +1≤0⇒x ≤-1.②当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a;当2a =-1,即a =-2时,原不等式等价于x =-1; 当2a<-1,即a >-2,原不等式等价于2a≤x ≤-1.综上所述,当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1};当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a,+∞.题型二 一元二次不等式恒成立问题例2 已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围.思维启迪:化为标准形式ax 2+bx +c >0后分a =0与a ≠0讨论.当a ≠0时,有⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0.解 原不等式等价于(a +2)x 2+4x +a -1>0对一切实数恒成立,显然a =-2时,解集不是R ,因此a ≠-2,从而有⎩⎪⎨⎪⎧a +2>0,Δ=42-4a +2a -1<0,整理,得⎩⎪⎨⎪⎧a >-2,a -2a +3>0,所以⎩⎪⎨⎪⎧a >-2,a <-3或a >2,所以a >2.故a 的取值范围是(2,+∞).探究提高 不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是______________. 答案 (-∞,-5]解析 方法一 当x ∈(1,2)时,不等式x 2+mx +4<0恒成立⇒m <-x 2+4x =-⎝ ⎛⎭⎪⎫x +4x 在x ∈(1,2)上恒成立,设φ(x )=-⎝ ⎛⎭⎪⎫x +4x ,φ(x )=-⎝ ⎛⎭⎪⎫x +4x ∈(-5,-4),故m ≤-5.方法二 设f (x )=x 2+mx +4,因为当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,所以⎩⎪⎨⎪⎧f 1≤0,f 2≤0,即⎩⎪⎨⎪⎧5+m ≤0,8+2m ≤0,解得m ≤-5.题型三 一元二次不等式的实际应用例3 某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量. (1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 思维启迪:(1)依据“年利润=(出厂价-投入成本)×年销售量”写出;(2)年利润有所增加,即y -(12-10)×10 000>0,解此不等式即可得x 的范围.解 (1)由题意得y =[12(1+0.75x )-10(1+x )]×10 000 ×(1+0.6x ) (0<x <1), 整理得y =-6 000x 2+2 000 x +20 000(0<x <1). (2)要保证本年度的年利润比上年度有所增加,必须有⎩⎪⎨⎪⎧y -12-10×10 000>0,0<x <1, 即⎩⎪⎨⎪⎧-6 000x 2+2 000x >0,0<x <1,解得0<x <13,所以投入成本增加的比例应在⎝ ⎛⎭⎪⎫0,13范围内. 探究提高 不等式应用题常以函数、数列为背景出现,多是解决现实生活、生产中的最优化问题,在解题中主要涉及到不等式的解法等问题,构造数学模型是解不等式应用题的关键.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________. 答案 20 解析 由题意得,3 860+500+[500(1+x %)+500(1+x %)2]×2≥7 000, 化简得(x %)2+3·x %-0.64≥0,解得x %≥0.2,或x %≤-3.2(舍去).∴x ≥20,即x 的最小值为20.解与一元二次不等式有关的恒成立问题典例:(12分)设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.审题视角 (1)对于x ∈R ,f (x )<0恒成立,可转化为函数f (x )的图象总是在x 轴下方,可讨论m 的取值,利用判别式求解.(2)含参数的一元二次不等式在某区间内恒成立问题,常有两种处理方法:方法一是利用二次函数区间上的最值来处理;方法二是先分离出参数,再去求函数的最值来处理,一般方法二比较简单. 规范解答解 (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒-4<m <0.所以-4<m ≤0.[4分](2)要使f (x )<-m +5在[1,3]上恒成立,即m ⎝⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.[6分]有以下两种方法:方法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数,[8分] 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,则0<m <67;[10分]当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述:m 的取值范围是{m |m <67}.[12分]方法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.[8分]因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.[10分] 所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m |m <67.[12分]答题模板对于给定区间上的不等式恒成立问题,一般可根据以下几步求解: 第一步:整理不等式(或分离参数); 第二步:构造函数g (x );第三步:求函数g (x )在给定区间上的最大值或最小值; 第四步:根据最值构造不等式求参数;第五步:反思回顾,查看关键点,易错点,完善解题步骤.温馨提醒 1.与一元二次不等式有关的恒成立问题,可通过二次函数求最值,也可通过分离参数,再求最值.2.解决恒成立问题一定要搞清谁是自变量,谁是参数,一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数.3.对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方. 4.本题易错点:忽略对m =0的讨论.这是由思维定势所造成的.方法与技巧1. “三个二次”的关系是解一元二次不等式的理论基础;一般可把a <0的情况转化为a >0时的情形.2. f (x )>0的解集即为函数y =f (x )的图象在x 轴上方的点的横坐标的集合,充分利用数形结合思想.3. 简单的分式不等式可以等价转化,利用一元二次不等式解法进行求解. 失误与防范1.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 2.当Δ<0时,ax 2+bx +c >0 (a ≠0)的解集为R 还是∅,要注意区别. 3.含参数的不等式要注意选好分类标准,避免盲目讨论.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分) 1. 不等式x -3x +2<0的解集为 ( )A .{x |-2<x <3}B .{x |x <-2}C .{x |x <-2,或x >3}D .{x |x >3}答案 A 解析 不等式x -3x +2<0可转化为(x +2)(x -3)<0, 解得-2<x <3.2. 已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞) C.⎝ ⎛⎭⎪⎫13,12D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞答案 A解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).3. 若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}答案 D解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0Δ=a 2-4a ≤0得0<a ≤4,所以0≤a ≤4.4. 已知函数f (x )=ax 2+bx +c ,不等式f (x )<0的解集为{x |x <-3或x >1},则函数y =f (-x )的图象可以为( )答案 B解析 由f (x )<0的解集为{x |x <-3或x >1}知a <0,y =f (x )的图象与x 轴交点为(-3,0),(1,0),∴f (-x )图象开口向下,与x 轴交点为(3,0),(-1,0). 二、填空题(每小题5分,共15分) 5. 已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,则a =________.答案 -2 解析 由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,故-12应是ax -1=0的根,∴a =-2.6. (2012·江西)不等式x 2-9x -2>0的解集是________.答案 {x |-3<x <2或x >3}解析 利用“穿根法”求解.不等式可化为x -3x +3x -2>0,即(x -3)(x +3)(x -2)>0,利用数轴穿根法可知,不等式的解集为{x |-3<x <2或x >3}.7. 若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________.答案 2解析 根据不等式与方程之间的关系知1为方程ax 2-6x +a 2=0的一个根,即a 2+a -6=0,解得a =2或a =-3,当a =2时,不等式ax 2-6x +a 2<0的解集是(1,2),符合要求;当a =-3时,不等式ax 2-6x +a 2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m =2. 三、解答题(共22分)8. (10分)求不等式12x 2-ax >a 2 (a ∈R )的解集.解 原不等式可化为(3x -a )(4x +a )>0. 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为{x |x <a 3或x >-a4}. 9. (12分)某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解 (1)依题意,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x .又售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0.所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2]. (2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 不等式ax 2+bx +c >0的解集为{x |-1<x <2},那么不等式a (x 2+1)+b (x -1)+c >2ax 的解集为( )A .{x |0<x <3}B .{x |x <0,或x >3}C .{x |-2<x <1}D .{x |x <-2,或x >1}答案 A解析 由题意知a <0且-1,2是方程ax 2+bx +c =0的两根,∴⎩⎪⎨⎪⎧-ba=1ca =-2,∴b =-a ,c =-2a ,∴不等式a (x 2+1)+b (x -1)+c >2ax , 即为a (x 2+1)-a (x -1)-2a >2ax , ∴x 2-3x <0,∴0<x <3.2. 若不等式x 2-2ax +a >0对一切实数x ∈R 恒成立,则关于t 的不等式at 2+2t -3<1的解集为( )A .(-3,1)B .(-∞,-3)∪(1,+∞)C .∅D .(0,1)答案 B解析 不等式x 2-2ax +a >0对一切实数x ∈R 恒成立,则Δ=(-2a )2-4a <0,即a 2-a <0,解得0<a <1,所以不等式at 2+2t -3<1转化为t 2+2t -3>0,解得t <-3或t >1,故选B.3. 若不等式组⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -1+a ≤0的解集不是空集,则实数a 的取值范围是( )A .(-∞,-4]B .[-4,+∞)C .[-4,20]D .[-40,20)答案 B解析 设f (x )=x 2+4x -(1+a ),根据已知可转化为存在x 0∈[-1,3]使f (x 0)≤0.易知函数f (x )在区间[-1,3]上为增函数,故只需f (-1)=-4-a ≤0即可,解得a ≥-4. 二、填空题(每小题5分,共15分)4. 已知f (x )=⎩⎪⎨⎪⎧x +1 x <0,-x -1 x ≥0,则不等式x +(x +1)f (x -1)≤3的解集是________.答案 {x |x ≥-3}解析 ∵f (x -1)=⎩⎪⎨⎪⎧x , x <1-x , x ≥1,∴x +(x +1)f (x -1)≤3等价于⎩⎪⎨⎪⎧x <1x +x +1x ≤3或⎩⎪⎨⎪⎧x ≥1x +x +1-x ≤3,解得-3≤x <1或x ≥1,即x ≥-3.5. 设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.答案 10 100解析 由不等式x 2-x <2nx (n ∈N *),可得其解集为(0,2n +1),其中整数解有2n 个,即a n =2n ,∴S 100=100×2+2002=10 100.6. 若关于x 的不等式4x-2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为__________.答案 (-∞,0] 解析 ∵4x-2x +1-a ≥0在[1,2]上恒成立,∴4x-2x +1≥a 在[1,2]上恒成立.令y =4x-2x +1=(2x )2-2×2x +1-1=(2x -1)2-1.∵1≤x ≤2,∴2≤2x≤4.由二次函数的性质可知:当2x=2,即x =1时,y 有最小值0.∴a 的取值范围为(-∞,0]. 三、解答题7. (13分)已知f (x )=-3x 2+a (6-a )x +b .(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>0的解集为(-1,3),求实数a ,b 的值. 解 (1)∵f (1)>0,∴-3+a (6-a )+b >0, 即a 2-6a +3-b <0.Δ=(-6)2-4(3-b )=24+4b .①当Δ≤0,即b ≤-6时,原不等式的解集为∅. ②当Δ>0,即b >-6时,方程a 2-6a +3-b =0有两根a 1=3-6+b ,a 2=3+6+b ,∴不等式的解集为(3-6+b ,3+6+b ). 综上所述:当b ≤-6时,原不等式的解集为∅;当b >-6时,原不等式的解集为(3-6+b ,3+6+b ). (2)由f (x )>0,得-3x 2+a (6-a )x +b >0, 即3x 2-a (6-a )x -b <0.∵它的解集为(-1,3), ∴-1与3是方程3x 2-a (6-a )x -b =0的两根.∴⎩⎪⎨⎪⎧-1+3=a 6-a 3,-1×3=-b3,解得⎩⎨⎧a =3-3,b =9或⎩⎨⎧a =3+3,b =9.。
第十三章 选修系列4 学案73 几何证明选讲(一)相似三角形的判定及有关性质导学目标: 1.了解平行线等分线段定理和平行线分线段成比例定理;2.掌握相似三角形的判定定理及性质定理;3.理解直角三角形射影定理.自主梳理1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.2.平行线分线段成比例定理两条直线与一组平行线相交,它们被这组平行线截得的对应线段__________. 推论1 平行于三角形一边的直线截其他两边(或________________),所得的对应线段__________.推论2 平行于三角形的一边,并且和其他两边________的直线所截得的三角形的三边与原三角形的三边对应________.推论3 三角形的一个内角平分线分对边所得的两条线段与这个角的两边对应成比例. 3.相似三角形的判定判定定理1 对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应________的两个三角形相似.判定定理2 对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且____________相等的两个三角形相似.判定定理3 对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例的两个三角形相似.4.相似三角形的性质(1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比; (2)相似三角形周长的比等于相似比;(3)相似三角形面积的比等于相似比的平方. 5.直角三角形射影定理直角三角形一条直角边的平方等于该直角边在____________与斜边的______,斜边上的高的________等于两条直角边在斜边上的射影的乘积.自我检测1.如果梯形的中位线的长为6 cm ,上底长为4 cm ,那么下底长为________cm .2.如图,在△ABC 中,ED∥BC,EF∥BD,则下列四个结论正确的是(填序号)________. ①AF FD =ED BC ;②AF FD =CD AD ;③AF FD =AD DC ;④AF FD =AB AE.3.如图,在Rt △ABC 中,∠ACB=90°,CD⊥AB 于点D ,CD =2,BD =3,则AC =________.4.如图所示,在△ABC 中,AD 是∠BAC 的平分线,AB =5 cm ,AC =4 cm ,BC =7 cm ,则BD =________cm .第4题图 第5题图5.(2011²陕西)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB =6,AC =4,AD =12,则BE =________.探究点一 确定线段的n 等分点例1 已知线段PQ ,在线段PQ 上求作一点D ,使PD∶DQ=2∶1.变式迁移1 已知△ABC,D 在AC 上,AD∶DC=2∶1,能否在AB 上找到一点E ,使得线段EC 的中点在BD 上.探究点二 平行线分线段成比例定理的应用例2 在△ABC 的边AB 、AC 上分别取D 、E 两点,使BD =CE ,DE 的延长线交BC 的延长线于点F.求证:DF EF =ACAB.变式迁移2 如图,已知AB∥CD∥EF,AB =a ,CD =b(0<a<b),AE∶EC=m∶n(0<m<n),求EF.探究点三相似三角形的判定及性质的应用例3如图,已知梯形ABCD中,AB∥CD,过D与BC平行的直线交AB于点E,∠ACE =∠ABC,求证:AB²CE=AC²DE.变式迁移3 如图,已知▱ABCD中,G是DC延长线上一点,AG分别交BD和BC于E、F 两点,证明AF²AD=AG²BF.1.用添加平行辅助线的方法构造使用平行线等分线段定理与平行线分线段成比例定理的条件.特别是在使用平行线分线段成比例定理及推论时,一定要注意对应线段,对应边.2.利用平行线等分线段定理将某线段任意等分,需要过线段的一个端点作辅助线,在作图时要注意保留作图痕迹.3.在证明两个或两个以上的比例式相等时,需要找第三个比例式与它们都相等,可考虑利用平行线分线段成比例定理或推论,也可以考虑用线段替换及等比定理,由相等的传递性得出结论.4.判定两个三角形相似,根据题设条件选择使用三角形相似的判定定理.(满分:75分)一、填空题(每小题5分,共40分)1.如图所示,l 1∥l 2∥l 3,下列比例式正确的有________(填序号). (1)AD DF =CE BC ;(2)AD BE =BC AF ;(3)CE DF =AD BC ;(4)AF DF =BE CE.2.如图所示,D 是△ABC 的边AB 上的一点,过D 点作DE∥BC 交AC 于E.已知AD DB =23,则S △ADES 四边形BCED=__________________________________________.3.如图,在四边形ABCD 中,EF∥BC,FG∥AD,则EF BC +FGAD=________.4.在直角三角形中,斜边上的高为6,斜边上的高把斜边分成两部分,这两部分的比为3∶2,则斜边上的中线的长为________.5.(2010²苏州模拟)如图,在梯形ABCD 中,AD∥BC,BD 与AC 相交于点O ,过点O 的直线分别交AB ,CD 于E ,F ,且EF∥BC,若AD =12,BC =20,则EF =________.6.如图所示,在△ABC 中,AD⊥BC,CE 是中线,DC =BE ,DG⊥CE 于G ,EC 的长为4,则EG =________.7.(2010²天津武清一模)如图,在△ABC 中,AD 平分∠BAC,DE∥AC,EF∥BC,AB =15,AF =4,则DE =________.8.如图所示,BD 、CE 是△ABC 的中线,P 、Q 分别是BD 、CE 的中点,则PQBC=________.二、解答题(共35分)9.(11分)如图所示,在△ABC 中,∠CAB=90°,AD⊥BC 于D ,BE 是∠ABC 的平分线,交AD 于F ,求证:DF AF =AEEC.10.(12分)如图,△ABC 中,D 是BC 的中点,M 是AD 上一点,BM 、CM 的延长线分别交AC 、AB 于F 、E.求证:EF∥BC.11.(12分)(2010²苏州模拟)如图,在四边形ABCD 中,AC 与BD 相交于O 点,直线l 平行于BD 且与AB ,DC ,BC ,AD 及AC 的延长线分别相交于点M ,N ,R ,S 和P ,求证:PM²PN=PR²PS.学案73 几何证明选讲(一)相似三角形的判定及有关性质自主梳理2.成比例 两边的延长线 成比例 相交 成比例 3.相等 夹角 5.斜边上的射影 乘积 平方 自我检测 1.8 2.③ 3.2133解析 由射影定理:CD 2=AD²BD.∴AD=43,∴AC=CD 2+AD 2=4+169=2133.4.359解析 ∵AB AC =BD DC =54,∴BD=359cm .5.4 2解析 ∵AC=4,AD =12,∠ACD=90°,∴CD 2=AD 2-AC 2=128, ∴CD=8 2.又∵AE⊥BC,∠B=∠D,∴△ABE∽△ADC,∴AB AD =BECD,∴BE=AB²CD AD =6³8212=4 2.课堂活动区例1 解题导引 利用平行线等分线段定理可对线段任意等分,其作图步骤为:首先作出辅助射线,然后在射线上依次截取任意相同长度的n 条线段,最后过辅助线上的各等分点作平行线,确定所求线段的n 等分点.解 在线段PQ 上求作点D ,使PD∶DQ=2∶1,就是要作出线段PQ 上靠近Q 点的一个三等分点,通过线段PQ 的一个端点作辅助射线,并取线段的三等分点,利用平行线等分线段定理确定D 点的位置.作法:①作射线PN.②在射线PN 上截取PB =2a ,BC =a. ③连接CQ.④过点B 作CQ 的平行线,交PQ 于D. ∴点D 即为所求的点. 变式迁移1解 假设能找到,如图,设EC 交BD 于点F ,则F 为EC 的中点, 作EG∥AC 交BD 于G. ∵EG∥AC,EF =FC ,∴△EGF≌△CDF,且EG =DC ,∴EG 綊12AD ,△BEG∽△BAD,∴BE BA =EG AD =12,∴E 为AB 的中点. ∴当E 为AB 的中点时,EC 的中点在BD 上.例2 解题导引 证明线段成比例问题,一般有平行的条件可考虑用平行线分线段成比例定理或推论,也可以用三角形相似或考虑用线段替换等方法.证明 作EG∥AB 交BC 于G ,如图所示,∵△CEG∽△CAB, ∴EG AB =CE AC ,即AC AB =CE EG =DB EG , 又∵DB EG =DF EF ,∴DF EF =AC AB .变式迁移2 解 如图,过点F 作FH∥EC,分别交BA ,DC 的延长线于点G ,H ,由EF∥AB∥CD 及FH∥EC,知AG =CH =EF ,FG =AE ,FH =EC.从而FG∶FH=AE∶EC =m∶n.由BG∥DH,知BG∶DH=FG∶FH=m∶n. 设EF =x ,则得(x +a)∶(x+b)=m∶n.解得x =mb -nan -m ,即EF =mb -nan -m.例3 解题导引 有关两线段的比值的问题,除了应用平行线分线段成比例定理外,也可利用相似三角形的判定和性质求解.解题中要注意观察图形特点,巧添辅助线,对解题可起到事半功倍的效果.证明 方法一 ∵AB∥CD, ∴EA CD =AF CF ,即EA AF =CD CF .① ∵DE∥BC, ∴AF AC =AE AB ,即EA AF =AB AC.② 由①②得CD CF =ABAC,③∵∠FDC=∠ECF,∠DEC=∠FEC, ∴△EFC∽△ECD. ∴CD CF =DE CE.④ 由③④得AB AC =DECE,即AB²CE=AC²DE.方法二 ∵AB∥CD,DE∥BC, ∴BEDC 是平行四边形. ∴DE=BC.∵∠ACE=∠ABC,∠EAC=∠BAC,∴△AEC∽△ACB.∴BC CE =ABAC.∴AB AC =DECE,即AB²CE=AC²DE. 变式迁移3 证明 因为四边形ABCD 为平行四边形, 所以AB∥DC,AD∥BC.所以△ABF∽△GCF,△GCF∽△GDA. 所以△ABF∽△GDA.从而有AF AG =BFAD ,即AF²AD=AG²BF.课后练习区 1.(4)解析 由平行线分线段成比例定理可知(4)正确. 2.421解析 由AD DB =23知,AD AB =25,S △ADE S △ABC =425,故S △ADE S 四边形BCED =421.3.1解析 ∵EF∥BC,∴EF BC =AFAC ,又∵FG∥AD,∴FG AD =CFAC,∴EF BC +FG AD =AF AC +CF AC =ACAC=1. 4.562解析 设斜边上的两段的长分别为3t,2t ,由直角三角形中的射影定理知:62=3t²2t,解得t =6(t>0,舍去负根),所以斜边的长为56,故斜边上的中线的长为562.5.15解析 ∵AD∥BC,∴OB OD =BC AD =2012=53,∴OB BD =58,∵OE∥AD,∴OE AD =OB BD =58,∴OE=58AD =58³12=152,同理可求得OF =38BC =38³20=152,∴EF=OE +OF =15. 6.2解析 连接DE ,因为AD⊥BC,所以△ADB 是直角三角形,则DE =12AB =BE =DC.又因为DG⊥CE 于G ,所以DG 平分CE ,故EG =2.7.6解析 设DE =x ,∵DE∥AC, ∴BE 15=x x +4,解得BE =15x x +4. ∴BD DC =BE EA =BE 15-BE =x 4. 又∵AD 平分∠BAC,∴BD DC =BA AC =15x +4=x4,解得x =6. 8.14解析 连接DE ,延长QP 交AB 于N , 则⎩⎪⎨⎪⎧NP =12ED =14BC ,NP +PQ =12BC.得PQ =14BC.9.证明 由三角形的内角平分线定理得,在△ABD 中,DF AF =BDAB,①在△ABC 中,AE EC =ABBC,②(3分)在Rt △ABC 中,由射影定理知,AB 2=BD²BC, 即BD AB =ABBC.③(6分) 由①③得:DF AF =ABBC ,④(9分)由②④得:DF AF =AEEC.(11分)10.证明 延长AD 至G ,使DG =MD ,连接BG 、CG. ∵BD=DC ,MD =DG ,∴四边形BGCM 为平行四边形.(4分) ∴EC∥BG,FB∥CG, ∴AE AB =AM AG ,AF AC =AM AG , ∴AE AB =AFAC,(8分) ∴EF∥BC.(12分)11.证明 ∵BO∥PM, ∴PM BO =PAOA ,(2分) ∵DO∥PS, ∴PS DO =PA OA ,∴PM BO =PSDO .(4分) 即PM PS =BODO ,由BO∥PR 得PR BO =PCCO.(6分) 由DO∥PN 得PN OD =PCCO.(8分)∴PR BO =PN DO ,即PR PN =BO DO , ∴PR PN =PMPS.∴PM²PN=PR²PS.(12分) 学案74 几何证明选讲 (二)直线与圆的位置关系导学目标: 1.理解圆周角定理,弦切角定理及其推论;2.理解圆的切线的判定及性质定理;3.理解相交弦定理,割线定理,切割线定理;4.理解圆内接四边形的性质定理及判定.自主梳理1.圆周角、弦切角及圆心角定理(1)__________的度数等于其的对______的度数的一半.推论1:________(或________)所对的圆周角相等;同圆或等圆中,相等的圆周角__________相等.推论2:半圆(或直径)所对的__________等于90°.反之,90°的圆周角所对的弧是________(或__________).(2)弦切角的度数等于其所夹孤的度数的____.(3)圆心角的度数等于它所对弧的度数.2.圆中比例线段有关定理(1)相交弦定理:______的两条____________,每条弦被交点分成的____________的积相等.(2)切割线定理:从圆外一点引圆的一条割线和一条切线,切线长是这点到割线与圆的两个交点的线段长的____________.(3)割线定理:从圆外一点引圆的两条________,该点到每条割线与圆的交点的两条线段长的积相等.温馨提示相交弦定理,切割线定理,割线定理揭示了与圆有关的线段间的比例关系,在与圆有关的比例线段问题的证明、计算以及证明线段或角相等等问题中应用甚广.3.切线长定理从________一点引圆的两条切线,__________相等.4.圆内接四边形的性质与判定定理(1)性质定理:圆内接四边形的对角________.推论:圆内接四边形的任何一个外角都等于它的内角的________.(2)判定定理:如果四边形的__________,则四边形内接于____.推论:如果四边形的一个外角等于它的____________,那么这个四边形的四个顶点________.5.圆的切线的性质及判定定理(1)性质定理:圆的切线垂直于经过切点的________.推论1:经过________且________与垂直的直线必经过切点.推论2:经过________且切线与垂直的直线必经过______________________________.(2)判定定理:过半径________且与这条半径________的直线是圆的切线.自我检测1.如图在Rt△ABC中,∠B=90°,D是AB上一点,且AD=2DB,以D为圆心,DB为半径的圆与AC相切,则sin A=________.2.(2010²南京模拟)如图,AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为________.3.(2011²湖南)如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为________.4.如图所示,AB是⊙O的直径,BC是⊙O的切线,AC交⊙O于点D,若AD=32,CD=18,则AB =________.5.(2010²揭阳模拟)如图,已知P 是⊙O 外一点,PD 为⊙O 的切线,D 为切点,割线PEF 经过圆心O ,PF =12,PD =43,则圆O 的半径长为________、∠EFD 的度数为________.探究点一 与圆有关的等角、等弧、等弦的判定例1 如图,⊙O 的两条弦AC ,BD 互相垂直,OE⊥AB,垂足为点E.求证:OE =12CD.变式迁移1 在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆O 交BC 于点N ;若AC =13AB ,求证:BN =3MN.探究点二四点共圆的判定例2如图,四边形ABCD中,AB、DC的延长线交于点E,AD,BC的延长线交于点F,∠AED,∠AFB的角平分线交于点M,且EM⊥FM.求证:四边形ABCD内接于圆.变式迁移2 如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B、C两点,圆心O在∠PAC的内部,点M是BC的中点.(1)证明:A,P,O,M四点共圆;(2)求∠OAM+∠APM的大小.探究点三与圆有关的比例线段的证明例3如图,PA切⊙O于点A,割线PBC交⊙O于点B,C,∠APC的角平分线分别与AB,AC相交于点D,E,求证:(1)AD=AE;(2)AD2=DB²EC.变式迁移3 (2010²全国)如图,已知圆上的弧 AC= BD,过C点的圆的切线与BA的延长线交于E点,证明:(1)∠ACE=∠BCD;(2)BC2=BE³CD.1.圆周角定理与圆心角定理在证明角相等时有较普遍的应用,尤其是利用定理进行等角代换与传递.2.要注意一些常用的添加辅助线的方法,若证明直线与圆相切,则连结直线与圆的公共点和圆心证垂直;遇到直径时,一般要引直径所对的圆周角,利用直径所对的圆周角是直角解决有关问题.3.判断两线段是否相等,除一般方法(通过三角形全等)外,也可用等线段代换,或用圆心角定理及其推论证明.4.证明多点共圆的常用方法:(1)证明几个点与某个定点距离相等;(2)如果某两点在某条线段的同旁,证明这两点对这条线段的张角相等; (3)证明凸四边形内对角互补(或外角等于它的内角的对角).5.圆中比例线段有关定理常与圆周角、弦切角联合应用,要注意在题中找相等的角,找相似三角形,从而得到线段的比.(满分:75分)一、填空题(每小题5分,共40分)1.如图,已知AB ,CD 是⊙O 的两条弦,且AB =CD ,OE⊥AB,OF⊥CD,垂足分别是E ,F ,则结论① AB = CD ,②∠AOB=∠COD,③OE=OF ,④ AD = BC中,正确的有________个.2.(2010²湖南)如图所示,过⊙O 外一点P 作一条直线与⊙O 交于A 、B 两点.已知PA =2,点P 到⊙O 的切线长PT =4,则弦AB 的长为________.3.(2010²陕西)如图,已知Rt △ABC 的两条直角边AC ,BC 的长分别为3 cm,4 cm ,以AC 为直径的圆与AB 交于点D ,则BDDA=________.4.(2009²广东)如图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB=45°,则圆O 的面积为________.5.已知PA 是圆O 的切线,切点为A ,PA =2,AC 是圆O 的直径,PC 与圆O 交于点B ,PB =1,则圆O 的半径R =________.6.如图,圆O 是△ABC 的外接圆,过点C 的切线交AB 的延长线于点D ,CD =27,AB =3.则BD 的长为________.7.(2011²天津)如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且DF =CF =2,AF∶FB∶BE=4∶2∶1.若CE 与圆相切,则线段CE 的长为________.8.(2010²天津)如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P.若PB PA =12,PC PD =13,则BCAD的值为________.二、解答题(共35分)9.(11分)如图,三角形ABC 中,AB =AC ,⊙O 经过点A ,与BC 相切于B ,与AC 相交于D ,若AD =CD =1,求⊙O 的半径r.10.(12分)(2009²江苏)如图,在四边形ABCD 中,△ABC≌△BAD.求证:AB∥CD.11.(12分)(2011²江苏)如图,圆O 1与圆O 2内切于点A ,其半径分别为r 1与r 2(r 1>r 2).圆O 1的弦AB 交圆O 2于点C(O 1不在AB 上).求证:AB∶AC 为定值.学案74 几何证明选讲 (二)直线与圆的位置关系自主梳理1.(1)圆周角 弧 同弧 等弧 所对的弧 圆周角 半圆 弦为直径 (2)一半 2.(1)圆 相交弦 两条线段长(2)等比中项 (3)割线 3.圆外 切线长 4.(1)互补 对角 (2)对角互补 圆 内角的对角 共圆5.(1)半径 圆心 切线 切点 圆心 (2)外端 垂直 自我检测 1.12解析 设切点为T ,则DT⊥AC,AD =2DB =2DT ,∴∠A=30°,sin A =12.2.2 3解析 连接CB ,则∠DCA=∠CBA,又∠ADC=∠ACB=90°, ∴△ADC∽△ACB. ∴AD AC =AC AB . ∴AC 2=AB²AD=2³6=12. ∴AC=2 3. 3.233解析 如图,连接CE ,AO ,AB.根据A ,E 是半圆周上的两个三等分点,BC 为直径,可得∠CEB=90°,∠CBE=30°,∠AOB=60°,故△AOB 为等边三角形,AD =3,OD =BD =1,∴DF=33,∴AF=AD -DF =233.4.40解析 如图,连接BD ,则BD⊥AC,由射影定理知,AB 2=AD²AC=32³50=1 600,故AB =40. 5.4 30°解析 由切割线定理得PD 2=PE²PF,∴PE=PD 2PF =16³312=4,∴EF=8,OD =4.又∵OD⊥PD,OD =12PO ,∠P=30°,∠POD=60°=2∠EFD,∴∠EFD=30°. 课堂活动区例1 解题导引 (1)借用等弦或等弧所对圆周角相等,所对的圆心角相等,进行角的等量代换;同时也可借在同圆或等圆中,相等的圆周角(或圆心角)所对的弧相等,进行弧(或弦)的等量代换.(2)本题的证法是证明一条线段等于另一条线段的一半的常用方法.证明 作直径AF ,连接BF ,CF ,则∠ABF=∠ACF=90°. 又OE⊥AB,O 为AF 的中点,则OE =12BF.∵AC⊥BD,∴∠DBC+∠ACB=90°,又∵AF 为直径,∠BAF+∠BFA=90°, ∵∠AFB=∠ACB,∴∠DBC=∠BAF,即有CD =BF.从而得OE =12CD.变式迁移1 证明 ∵CM 是∠ACB 的平分线, ∴AC AM =BC BM, 即BC =AC²BMAM,又由割线定理得BM²BA=BN²BC,∴BN²AC²BMAM=BM²BA,又∵AC=13AB ,∴BN=3AM ,∵在圆O 内∠ACM=∠MCN, ∴AM=MN ,∴BN=3MN.例2 解题导引 证明多点共圆,当它们在一条线段同侧时,可证它们对此线段张角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补.证明 连接EF ,因为EM 是∠AEC 的角平分线, 所以∠F EC +∠FEA=2∠FEM. 同理,∠EFC+∠EFA=2∠EFM. 而∠BCD+∠BAD=∠ECF+∠BAD=(180°-∠FEC-∠EFC)+(180°-∠FEA-∠EFA) =360°-2(∠FEM+∠EFM)=360°-2(180°-∠EMF)=2∠EMF=180°, 即∠BCD 与∠BAD 互补. 所以四边形ABCD 内接于圆.变式迁移2 (1)证明 连接OP ,OM , 因为AP 与⊙O 相切于点P , 所以OP⊥AP.因为M 是⊙O 的弦BC 的中点,所以OM⊥BC. 于是∠OPA+∠OMA=180°,由圆心O 在∠PAC 的内部,可知四边形APOM 的对角互补, 所以A ,P ,O ,M 四点共圆.(2)解 由(1)得A ,P ,O ,M 四点共圆, 所以∠OAM=∠OPM. 由(1)得OP⊥AP.由圆心O 在∠PAC 的内部, 可知∠OPM+∠APM=90°, 所以∠OAM+∠APM=90°.例3 解题导引 寻找适当的相似三角形,把几条要证的线段集中到这些相似三角形中,再用圆中角、与圆有关的比例线段的定理找到需要的比例式,使问题得证.证明 (1)∠AED=∠EPC+∠C,∠ADE=∠APD+∠PAB.因PE 是∠APC 的角平分线,故∠EPC=∠APD,PA 是⊙O 的切线,故∠C=∠PAB. 所以∠AED=∠ADE.故AD =AE.(2)⎭⎪⎬⎪⎫∠PCE=∠PAD ∠CPE=∠APD ⇒△PCE∽△PAD ⇒EC AD =PCPA ;⎭⎪⎬⎪⎫∠PEA=∠PDB ∠APE=∠BPD ⇒△PAE∽△PBD ⇒AE DB =PAPB .又PA 是切线,PBC 是割线⇒PA 2=PB²PC ⇒PA PB =PC PA. 故EC AD =AE DB,又AD =AE ,故AD 2=DB²EC. 变式迁移3 证明 (1)因为AC = BD ,所以∠BCD=∠ABC. 又因为EC 与圆相切于点C ,故∠ACE=∠ABC, 所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ECB,故BC BE =CD BC,即BC 2=BE³CD.课后练习区 1.4解析 ∵在同圆或等圆中,等弦所对的圆心角相等,所对的弧相等,所对弦心距相等,故①②③成立,又由 AB = CD ,得 AD = BC,∴④正确. 2.6解析 连接BT ,由切割线定理,得PT 2=PA²PB,所以PB =8,故AB =6. 3.169解析 AD AC =AC AB ⇒AD 3=35⇒AD =95⇒BD =165(cm ),BD DA =169.4.8π解析 连接OA ,OB , ∵∠BCA=45°, ∴∠AOB=90°.设圆O 的半径为R ,在Rt △AOB 中,R 2+R 2=AB 2=16,∴R 2=8.∴圆O 的面积为8π.5. 3解析 如图,依题意,AO⊥PA,AB⊥PC,PA =2,PB =1,∠P=60°, 在Rt △CAP 中,有2OA =2R =2tan 60°=23, ∴R= 3. 6.4解析 由切割线定理得:DB²DA=DC 2,即DB(DB +BA)=DC 2,∴DB 2+3DB -28=0,∴DB =4.7.72解析 设BE =a ,则AF =4a ,FB =2a.∵AF²FB=DF²FC,∴8a 2=2,∴a=12,∴AF=2,FB =1,BE =12,∴AE=72.又∵CE 为圆的切线,∴CE 2=EB²EA=12³72=74.∴CE=72. 8.66解析 ∵∠P=∠P,∠PCB=∠PAD,∴△PCB∽△PAD.∴PB PD =PC PA =BCAD .∵PB PA =12,PC PD =13,∴BC AD =66. 9.解 过B 点作BE∥AC 交圆于点E ,连接AE ,BO 并延长交AE 于F , 由题意∠ABC=∠ACB=∠AEB,(2分)又BE∥AC,∴∠CAB=∠ABE,则AB =AC 知,∠ABC=∠ACB=∠AEB=∠BAE,(4分) 则AE∥BC,四边形ACBE 为平行四边形.∴BF⊥AE.又BC 2=CD³AC=2,∴BC=2,BF =AB 2-AF 2=142.(8分)设OF =x ,则⎩⎪⎨⎪⎧x +r =142,x 2+222=r 2,解得r =2147.(11分)10.证明 由△ABC≌△BAD 得∠ACB=∠BDA,(3分) 故A 、B 、C 、D 四点共圆,(5分) 从而∠CAB=∠CDB.(7分)再由△ABC≌△BAD 得∠CAB=∠DBA, 因此∠DBA=∠CDB,(10分) 所以AB∥CD.(12分) 11.证明 如图,连接AO 1并延长,分别交两圆于点E 和点D.连接BD ,CE.因为圆O 1与圆O 2内切于点A ,所以点O 2在AD 上,故AD ,AE 分别为圆O 1,圆O 2的直径.(5分)从而∠ABD=∠ACE=π2.(7分)所以BD∥CE,于是AB AC =AD AE =2r 12r 2=r 1r 2.(10分)所以AB∶AC 为定值.(12分)学案75 坐标系与参数方程导学目标:1.了解坐标系的有关概念,理解简单图形的极坐标方程.2.会进行极坐标方程与直角坐标方程的互化.3.理解直线、圆及椭圆的参数方程,会进行参数方程与普通方程的互化,并能进行简单应用.自主梳理1.极坐标系的概念在平面上取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做________;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个____________.设M 是平面上任一点,极点O 与点M 的距离OM 叫做点M 的________,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的________,记为θ.有序数对(ρ,θ)叫做点M 的__________,记作(ρ,θ).2.极坐标和直角坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y),极坐标为(ρ,θ),则它们之间的关系为x =__________,y =__________.另一种关系为:ρ2=__________,tan θ=______________.3.简单曲线的极坐标方程(1)一般地,如果一条曲线上任意一点都有一个极坐标适合方程φ(ρ,θ)=0,并且坐标适合方程φ(ρ,θ)=0的点都在曲线上,那么方程φ(ρ,θ)=0叫做曲线的____________.(2)常见曲线的极坐标方程 ①圆的极坐标方程____________表示圆心在(r,0)半径为|r|的圆;____________表示圆心在(r ,π2)半径为|r|的圆;________表示圆心在极点,半径为|r|的圆. ②直线的极坐标方程____________表示过极点且与极轴成α角的直线; ____________表示过(a,0)且垂直于极轴的直线;____________表示过(b ,π2)且平行于极轴的直线;ρsin (θ-α)=ρ0sin (θ0-α)表示过(ρ0,θ0)且与极轴成α角的直线方程. 4.常见曲线的参数方程 (1)直线的参数方程若直线过(x 0,y 0),α为直线的倾斜角,则直线的参数方程为⎩⎪⎨⎪⎧x =x 0+l cos α,y =y 0+l sin α.这是直线的参数方程,其中参数l 有明显的几何意义.(2)圆的参数方程若圆心在点M(a ,b),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,0≤α<2π.(3)椭圆的参数方程中心在坐标原点的椭圆x 2a 2+y2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数).(4)抛物线的参数方程抛物线y 2=2px(p>0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt.自我检测1.(2010²北京)极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( ) A .两个圆 B .两条直线C .一个圆和一条射线D .一条直线和一条射线2.(2010²湖南)极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+3t (t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线3.(2010²重庆)直线y =33x +2与圆心为D 的圆⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ∈[0,2π))交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( )A .76πB .54πC .43πD .53π 4.(2011²广州一模)在极坐标系中,直线ρsin (θ+π4)=2被圆ρ=4截得的弦长为________.5.(2010²陕西)已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________________.探究点一 求曲线的极坐标方程例1 在极坐标系中,以(a 2,π2)为圆心,a2为半径的圆的方程为________.变式迁移1 如图,求经过点A(a,0)(a>0),且与极轴垂直的直线l 的极坐标方程.探究点二 极坐标方程与直角坐标方程的互化 例2 (2009²辽宁)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1,M 、N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.变式迁移2 (2010²东北三校第一次联考)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin (θ-π4)=22,(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.探究点三 参数方程与普通方程的互化例3 将下列参数方程化为普通方程:(1)⎩⎪⎨⎪⎧x =3k 1+k2y =6k21+k2;(2)⎩⎪⎨⎪⎧x =1-sin 2θy =sin θ+cos θ;(3)⎩⎪⎨⎪⎧x =1-t 21+t2y =t1+t2.变式迁移3 化下列参数方程为普通方程,并作出曲线的草图. (1)⎩⎪⎨⎪⎧x =12sin 2θy =sin θ+cos θ(θ为参数);(2)⎩⎪⎨⎪⎧x =1t y =1tt 2-1(t 为参数).探究点四 参数方程与极坐标的综合应用例4 求圆ρ=3cos θ被直线⎩⎪⎨⎪⎧x =2+2ty =1+4t (t 是参数)截得的弦长.变式迁移 4 (2011²课标全国)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α.(α为参数) M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2. (1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB|.本节内容要注意以下两点:一、简单曲线的极坐标方程可结合极坐标系中ρ和θ的具体含义求出,也可利用极坐标方程与直角坐标方程的互化得出.同直角坐标方程一样,由于建系的不同,曲线的极坐标方程也会不同.在没有充分理解极坐标的前提下,可先化成直角坐标解决问题.二、在普通方程中,有些F(x ,y)=0不易得到,这时可借助于一个中间变量(即参数)来找到变量x ,y 之间的关系.同时,在直角坐标系中,很多比较复杂的计算(如圆锥曲线),若借助于参数方程来解决,将会大大简化计算量.将曲线的参数方程化为普通方程的关键是消去其中的参数,此时要注意其中的x ,y(它们都是参数的函数)的取值范围,也即在消去参数的过程中一定要注意普通方程与参数方程的等价性.参数方程化普通方程常用的消参技巧有:代入消元、加减消元、平方后相加减消元等.同极坐标方程一样,在没有充分理解参数方程的前提下,可先化成直角坐标方程再去解决相关问题.(满分:75分)一、选择题(每小题5分,共25分)1.在极坐标系中,与点(3,-π3)关于极轴所在直线对称的点的极坐标是( )A .(3,23π)B .(3,π3)C .(3,43π)D .(3,56π)2.曲线的极坐标方程为ρ=2cos 2θ2-1的直角坐标方程为( )A .x 2+(y -12)2=14B .(x -12)2+y 2=14C .x 2+y 2=14D .x 2+y 2=13.(2010²湛江模拟)在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点(4,π6)作曲线C 的切线,则切线长为( )A .4B .7C .2 2D .2 34.(2010²佛山模拟)已知动圆方程x 2+y 2-x sin 2θ+22²y sin (θ+π4)=0(θ为参数),那么圆心的轨迹是( )A .椭圆B .椭圆的一部分C .抛物线D .抛物线的一部分5.(2010²安徽)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( )A .1B .2C .3D .4二、填空题(每小题4分,共12分)6.(2010²天津)已知圆C 的圆心是直线⎩⎪⎨⎪⎧x =t ,y =1+t (t 为参数)与x 轴的交点,且圆C与直线x +y +3=0相切,则圆C 的方程为________.7.(2011²广东)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.8.(2010²广东深圳高级中学一模)在直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数),若以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的极坐标方程为________.三、解答题(共38分)9.(12分)(2011²江苏)在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.10.(12分)(2010²福建)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |.11.(14分)(2010²课标全国)已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.。
§7.1 不等关系与不等式2014高考会这样考 1.考查有关不等式的命题真假及数式的大小比较;2.考查和函数、数列等知识的综合应用.复习备考要这样做 1.熟练掌握不等式的性质,并会正确理解和应用;2.对含参数的不等式,要把握分类讨论的标准和技巧.1. 不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号>、<、≥、≤、≠连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.2. 两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = ba -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b <1⇔a < b(a ∈R ,b >0).3. 不等式的性质(1)对称性:a >b ⇔b <a ;(2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇒a +c >b +d ;(4)可乘性:a >b ,c >0⇒ac >bc ,a >b >0,c >d >0⇒ac >bd ;(5)可乘方:a >b >0⇒a n>b n(n ∈N ,n ≥1);(6)可开方:a >b >0⇒n ∈N ,n ≥2).[难点正本 疑点清源]1. 在学习不等式的性质时,要特别注意下面几点(1)不等式的性质是解、证不等式的基础,对任意两实数a 、b 有a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ,这是比较两数(式)大小的理论根据,也是学习不等式的基石. (2)一定要在理解的基础上记准、记熟不等式的性质,并注意在解题中灵活、准确地加以应用.(3)不等式的传递性:若a >b ,b >c ,则a >c ,这是放缩法的依据,在运用传递性时,要注意不等式的方向,否则易产生这样的错误:为证明a >c ,选择中间量b ,在证出a >b ,c >b 后,就误认为能得到a >c .(4)同向不等式可相加,但不能相减,即由a >b ,c >d ,可以得出a +c >b +d ,但不能得出a -c >b -d .2. 理解不等式的思想和方法(1)作差法是证明不等式的最基本也是很重要的方法,应引起高度注意,要注意强化. (2)加强化归意识,把比较大小问题转化为实数的运算.(3)通过复习要强化不等式“运算”的条件.如a >b 、c >d 在什么条件下才能推出ac >bd . (4)强化函数的性质在大小比较中的重要作用,加强知识间的联系.1. 已知a >b >0,且c >d >0,则a d 与bc的大小关系是______________. 答案a d >b c解析 ∵a >b >0,c >d >0,∴a d >b c>0, ∴a d >b c. 2. 已知a <0,-1<b <0,那么a ,ab ,ab 2的大小关系是__________________.答案 ab >ab 2>a解析 由-1<b <0,可得b <b 2<1. 又a <0,∴ab >ab 2>a .3. 限速40 km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40 km/h ,写成不等式就是( )A .v <40 km/hB .v >40 km/hC .v ≠40 km/hD .v ≤40 km/h答案 D4. (2011·浙江)设a ,b 为实数,则“0<ab <1”是“b <1a”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 D解析 ∵0<ab <1,∴a ,b 同号,且ab <1. ∴当a >0,b >0时,b <1a ;当a <0,b <0时,b >1a.∴“0<ab <1”是“b <1a”的不充分条件.而取b =-1,a =1,显然有b <1a,但不能推出0<ab <1,∴“0<ab <1”是“b <1a”的不必要条件.5. (2012·湖南)设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是( )A .①B .①②C .②③D .①②③答案 D解析 根据不等式的性质构造函数求解. ∵a >b >1,∴1a <1b.又c <0,∴c a >c b,故①正确.构造函数y =x c.∵c <0,∴y =x c在(0,+∞)上是减函数. 又a >b >1,∴a c<b c ,故②正确. ∵a >b >1,-c >0,∴a -c >b -c >1.∵a >b >1,∴log b (a -c )>log a (a -c )>log a (b -c ), 即log b (a -c )>log a (b -c ),故③正确.题型一 不等式性质的应用例1 已知-π2<α<β<π2,求α+β2,α-β2的取值范围.思维启迪:不等式性质的应用是本题的突破点. 解 因为-π2<α<β<π2,所以-π4<α2<π4,-π4<β2<π4.所以-π2<α+β2<π2,-π4<-β2<π4.因为α<β,所以α-β2<0.故-π2<α-β2<0.探究提高 (1)利用不等式的性质求范围要充分利用题设中的条件,如本题中的条件α<β;(2)注意“α-β”形式,利用不等式要正确变形.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________(答案用区间表示). 答案 (3,8)解析 设2x -3y =m (x +y )+n (x -y ),∴⎩⎪⎨⎪⎧m +n =2,m -n =-3.解得⎩⎪⎨⎪⎧m =-12,n =52.∴2x -3y =-12(x +y )+52(x -y ),∵-1<x +y <4,2<x -y <3,∴-2<-12(x +y )<12,5<52(x -y )<152,∴3<-12(x +y )+52(x -y )<8,即3<2x -3y <8,所以z =2x -3y 的取值范围为(3,8). 题型二 比较大小问题例2 已知a ≠1且a ∈R ,试比较11-a与1+a 的大小.思维启迪:要判断11-a 与1+a 的大小,只需研究它们差的符号.解 ∵11-a -(1+a )=a21-a ,①当a =0时,a 21-a =0,∴11-a=1+a . ②当a <1,且a ≠0时,a 21-a >0,∴11-a >1+a .③当a >1时,a 21-a <0,∴11-a<1+a .探究提高 实数的大小比较常常转化为对它们差(简称作差法)的符号的判定,当解析式里面含有字母时常需分类讨论.(2012·四川)设a ,b 为正实数.现有下列命题:①若a 2-b 2=1,则a -b <1;②若1b -1a=1,则a -b <1;③若|a -b |=1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中的真命题有________.(写出所有真命题的编号) 答案 ①④解析 ①中,a 2-b 2=(a +b )(a -b )=1,a ,b 为正实数,若a -b ≥1, 则必有a +b >1,不合题意,故①正确. ②中,1b -1a =a -b ab=1,只需a -b =ab 即可.如取a =2,b =23满足上式,但a -b =43>1,故②错.③中,a ,b 为正实数,所以a +b >|a -b |=1, 且|a -b |=|(a +b )(a -b )|=|a +b |>1,故③错. ④中,|a 3-b 3|=|(a -b )(a 2+ab +b 2)| =|a -b |(a 2+ab +b 2)=1.若|a -b |≥1,不妨取a >b >1,则必有a 2+ab +b 2>1,不合题意,故④正确.题型三 不等式与函数、方程的综合问题例3 已知f (x )是定义在(-∞,4]上的减函数,是否存在实数m ,使得f (m -sinx )≤f ⎝⎛⎭⎪⎫1+2m -74+cos 2x 对定义域内的一切实数x 均成立?若存在,求出实数m 的取值范围;若不存在,请说明理由.思维启迪:不等式和函数的结合,往往要利用函数的单调性和函数的值域.解 假设实数m 存在,依题意,可得⎩⎪⎨⎪⎧m -sin x ≤4,m -sin x ≥1+2m -74+cos 2x ,即⎩⎪⎨⎪⎧m -4≤sin x ,m -1+2m +12≥-⎝ ⎛⎭⎪⎫sin x -122.因为sin x 的最小值为-1,且-(sin x -12)2的最大值为0,要满足题意,必须有⎩⎪⎨⎪⎧m -4≤-1,m -1+2m +12≥0,解得m =-12或32≤m ≤3.所以实数m 的取值范围是⎣⎢⎡⎦⎥⎤32,3∪⎩⎨⎧⎭⎬⎫-12.探究提高 不等式恒成立问题一般要利用函数的值域,m ≤f (x )恒成立,只需m ≤f (x )min .已知a 、b 、c 是实数,试比较a 2+b 2+c 2与ab +bc +ca 的大小.解 方法一 (作差法) ∵a 2+b 2+c 2-(ab +bc +ca )=12[(a -b )2+(b -c )2+(c -a )2]≥0, 当且仅当a =b =c 时取等号,∴a 2+b 2+c 2≥ab +bc +ca . 方法二 (函数法)记t =a 2+b 2+c 2-(ab +bc +ca ) =a 2-(b +c )a +b 2+c 2-bc , ∵Δ=(b +c )2-4(b 2+c 2-bc ) =-3b 2-3c 2+6bc =-3(b -c )2≤0,∴t ≥0对a ∈R 恒成立,即a 2+b 2+c 2≥ab +bc +ca .不等式变形中扩大范围致误典例:(12分)已知1≤lg x y ≤2,2≤lg x 3y ≤3,求lg x 33y的取值范围.易错分析 根据不等式性质先解出lg x ,lg y 的范围,再求lgx 33y的范围,错误原因是lg x ,lg y 的最值不一定能同时取到,这种做法可能扩大所求范围.审题视角 (1)注意已知条件1≤lg x y ≤2,2≤lg x 3y ≤3.(2)分析lg x 33y与lg x y 、lg x 3y 的线性关系.(3)先将它们表示成lg x 、lg y 的线性关系. 规范解答解 由⎩⎪⎨⎪⎧1≤lg xy≤2,2≤lg x3y≤3变形,得⎩⎪⎨⎪⎧1≤lg x -lg y ≤2,2≤3lg x -12lg y ≤3,[2分]令⎩⎪⎨⎪⎧lg x -lg y =a ,3lg x -12lg y =b ,解得⎩⎪⎨⎪⎧lg x =2b -a5,lg y =2b -6a5.[4分]∴lgx 33y=3lg x -13lg y=3·2b -a 5-13·2b -6a 5=1615b -15a .[6分]由⎩⎪⎨⎪⎧1≤a ≤2,2≤b ≤3,得⎩⎪⎨⎪⎧-25≤-15a ≤-15,3215≤1615b ≤165.[9分]∴2615≤1615b -15a ≤3,即2615≤lg x33y≤3.[11分] ∴lgx 33y的取值范围是⎣⎢⎡⎦⎥⎤2615,3.[12分]温馨提醒 (1)此类问题的一般解法是:先建立待求整体与已知范围的整体的关系,最后通过”一次性“使用不等式的运算求得整体范围; (2)本题也可以利用线性规划思想求解;(3)求范围问题如果多次利用不等式有可能扩大变量取值范围.方法与技巧1. 用同向不等式求差的范围.⎩⎪⎨⎪⎧a <x <bc <y <d⇒⎩⎪⎨⎪⎧a <x <b -d <-y <-c⇒a -d <x -y <b -c这种方法在三角函数中求角的范围时经常用到. 2. 倒数关系在不等式中的作用.⎩⎪⎨⎪⎧ab >0a >b ⇒1a <1b ;⎩⎪⎨⎪⎧ab >0a <b⇒1a >1b.3. 比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比差法的主要步骤为:作差——变形——判断正负.在所给不等式完全是积、商、幂的形式时,可考虑比商. 失误与防范1. a >b ⇒ac >bc 或a <b ⇒ac <bc ,当c ≤0时不成立. 2. a >b ⇒1a <1b或a <b ⇒1a >1b,当ab ≤0时不成立.3. a >b ⇒a n>b n对于正数a 、b 才成立. 4. ab>1⇔a >b ,对于正数a 、b 才成立.5. 注意不等式性质中“⇒”与“⇔”的区别,如:a >b ,b >c ⇒a >c ,其中a >c 不能推出⎩⎪⎨⎪⎧a >b b >c.6. 求范围问题要整体代换,“一次性”使用不等式性质,注意不要扩大变量的取值范围.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3答案 A解析 由a >b +1,得a >b +1>b ,即a >b ,而由a >b 不能得出a >b +1,因此,使a >b 成立的充分不必要条件是a >b +1.2. 设a <b <0,则下列不等式中不成立的是( )A.1a >1bB.1a -b >1aC .|a |>-bD.-a >-b答案 B解析 由题设得a <a -b <0,所以有1a -b <1a成立, 即1a -b >1a不成立. 3. 设a =lg e ,b =(lg e)2,c =lg e ,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a答案 B解析 ∵0<lg e<lg 10=12,∴lg e>12lg e>(lg e)2.∴a >c >b . 4. 已知p =a +1a -2,q =⎝ ⎛⎭⎪⎫12x 2-2,其中a >2,x ∈R ,则p ,q 的大小关系是 ( )A .p ≥qB .p >qC .p <qD .p ≤q答案 A 解析 p =a +1a -2=a -2+1a -2+2≥2+2=4,当且仅当a =3时取等号.因为x 2-2≥-2,所以q =⎝ ⎛⎭⎪⎫12x 2-2≤⎝ ⎛⎭⎪⎫12-2=4,当且仅当x =0时取等号.所以p ≥q . 二、填空题(每小题5分,共15分)5. (2011·天津改编)设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的____________条件.答案 充分不必要解析 ∵x ≥2且y ≥2,∴x 2+y 2≥4,∴“x ≥2且y ≥2”是“x 2+y 2≥4”的充分条件;而x 2+y 2≥4不一定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成立,故“x ≥2且y ≥2”不是“x 2+y 2≥4”的必要条件.∴“x ≥2且y ≥2”是“x 2+y 2≥4”的充分不必要条件.6. 若角α、β满足-π2<α<β<π2,则2α-β的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫-3π2,π2解析 ∵-π2<α<β<π2,∴-π<2α<π,-π2<-β<π2,∴-3π2<2α-β<3π2,又∵2α-β=α+(α-β)<α<π2,∴-3π2<2α-β<π2.7. 对于实数a ,b ,c 有下列命题:①若a >b ,则ac <bc ;②若ac 2>bc 2,则a >b ;③若a >b ,1a >1b,则a >0,b <0.其中真命题为__________.(把正确命题的序号写在横线上)答案 ②③解析 若c ≥0,①不成立;由ac 2>bc 2知c 2≠0,则a >b ,②正确;当a >b 时,1a -1b =b -aab>0,则a >0,b <0,③成立.三、解答题(共22分)8. (10分)已知a ,b 是正实数,求证:a b +ba≥a +b . 证明 方法一 a b +ba -(a +b ) =a 3+b 3-a +b abab=a +b a -2ab +b ab=a +b a -b 2ab.∵a +b >0,ab >0,(a -b )2≥0, ∴a b +b a -(a +b )≥0,∴a b +ba≥a +b . 方法二a b +baa +b =a a +b b ab a +b =a 3+b 3ab a +b=a +b -ab ab=1+a -b 2ab≥1,∵a >0,b >0,∴a b +ba>0,a +b >0,∴a b +ba≥a +b . 9. (12分)设f (x )=ax 2+bx,1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值范围.解 方法一 设f (-2)=mf (-1)+nf (1) (m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b . 于是得⎩⎪⎨⎪⎧m +n =4n -m =-2,解得⎩⎪⎨⎪⎧m =3n =1,∴f (-2)=3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧f -1=a -b f 1=a +b,得⎩⎪⎨⎪⎧a =12[f -1+f 1]b =12[f 1-f -1],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法三 由⎩⎪⎨⎪⎧1≤a -b ≤22≤a +b ≤4确定的平面区域如图阴影部分,当f (-2)=4a -2b 过点A ⎝ ⎛⎭⎪⎫32,12时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时,取得最大值4×3-2×1=10,∴5≤f (-2)≤10.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 B解析 当0<x <π2时,0<sin x <1.由x sin 2x <1知x sin x <1sin x ,不一定得到x sin x <1.反之,当x sin x <1时,x sin 2x <sin x <1. 故x sin 2x <1是x sin x <1的必要不充分条件.2. 已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b答案 A解析 c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b ,已知两式作差得2b =2+2a 2,即b =1+a 2,∵1+a 2-a =⎝ ⎛⎭⎪⎫a -122+34>0,∴1+a 2>a ,∴b =1+a 2>a ,∴c ≥b >a .3. 若a >b >0,则下列不等式中一定成立的是( )A .a +1b >b +1aB.b a >b +1a +1C .a -1b>b -1aD.2a +b a +2b >a b答案 A解析 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x是(0,+∞)上的增函数,但函数g (x )=x +1x在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )未必成立,这样,a -1a >b -1b ⇔a +1b >b +1a.二、填空题(每小题5分,共15分)4. 已知f (n )=n 2+1-n ,g (n )=n -n 2-1,φ(n )=12n(n ∈N *,n >2),则f (n ),g (n ),φ(n )的大小关系是__________. 答案 f (n )<φ(n )<g (n ) 解析 f (n )=n 2+1-n =1n 2+1+n<12n =φ(n ), g (n )=n -n 2-1=1n +n 2-1>12n=φ(n ),∴f (n )<φ(n )<g (n ).5. 设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是________.答案 27解析 由4≤x 2y ≤9,得16≤x 4y2≤81.又3≤xy 2≤8,∴18≤1xy 2≤13,∴2≤x 3y 4≤27.又x =3,y =1满足条件,这时x 3y 4=27.∴x 3y4的最大值是27. 6. 设a >b >c >0,x =a 2+b +c 2,y =b 2+c +a 2,z =c 2+a +b 2,则x ,y ,z的大小关系是_________. 答案 z >y >x解析 方法一 y 2-x 2=2c (a -b )>0,∴y >x . 同理,z >y ,∴z >y >x .方法二 令a =3,b =2,c =1,则x =18,y =20,z =26,故z >y >x .三、解答题7. (13分)(1)设x <y <0,试比较(x 2+y 2)(x -y )与(x 2-y 2)·(x +y )的大小;(2)已知a ,b ,x ,y ∈(0,+∞)且1a >1b ,x >y ,求证:x x +a >yy +b .(1)解 方法一 (x 2+y 2)(x -y )-(x 2-y 2)(x +y ) =(x -y )[x 2+y 2-(x +y )2]=-2xy (x -y ), ∵x <y <0,∴xy >0,x -y <0,∴-2xy (x -y )>0, ∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ).方法二 ∵x <y <0,∴x -y <0,x 2>y 2,x +y <0. ∴(x 2+y 2)(x -y )<0,(x 2-y 2)(x +y )<0,∴0<x2+y2x-yx2-y2x+y=x2+y2x2+y2+2xy<1,∴(x2+y2)(x-y)>(x2-y2)(x+y).(2)证明xx+a-yy+b=bx-ayx+a y+b.∵1a>1b且a,b∈(0,+∞),∴b>a>0,又∵x>y>0,∴bx>ay>0,∴bx-ayx+a y+b>0,∴xx+a>yy+b.。
常考题型强化练——不等式A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.“|x |<2”是“x 2-x -6<0”的什么条件( )A .充分而不必要B .必要而不充分C .充要D .既不充分也不必要 答案 A解析 不等式|x |<2的解集是(-2,2),而不等式x 2-x -6<0的解集是(-2,3),于是当x ∈(-2,2)时,可得x ∈(-2,3),反之则不成立,故选A.2.某种生产设备购买时费用为10万元,每年的设备管理费共计9千元,这种生产设备的维修费各年为第一年2千元,第二年4千元,第三年6千元,而且以后以每年2千元的增量逐年递增,则这种生产设备最多使用多少年报废最合算(即使用多少年的年平均费用最少)( )A .8B .9C .10D .11 答案 C解析 设使用x 年的年平均费用为y 万元. 由已知,得y =10+0.9x +0.2x 2+0.2x2x,即y =1+10x +x 10(x ∈N *).由基本不等式知y ≥1+210x ·x 10=3,当且仅当10x =x10,即x =10时取等号.因此使用10年报废最合算,年平均费用为3万元.3.(2011·某某)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A 地至少72吨的货物,派用的每辆车需满载且只能送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润z 为( ) A .4 650元 B .4 700元C .4 900元D .5 000元 答案 C解析 设该公司合理计划当天派用甲、乙型卡车的车辆数分别为x ,y ,则根据条件得x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +y ≤12,2x +y ≤19,10x +6y ≥72,x ≤8,y ≤7,x ∈N *,y ∈N *,目标函数z =450x +350y .作出约束条件所表示的平面区域,然后平移目标函数对应的直线450x +350y =0知,当直线经过直线x +y =12与2x +y =19的交点(7,5)时,目标函数取得最大值,即z =450×7+350×5=4 900.4.一元二次不等式ax 2+bx +c >0的解集为(α,β)(α>0),则不等式cx 2+bx +a >0的解集为( )A.⎝ ⎛⎭⎪⎫1α,1βB.⎝ ⎛⎭⎪⎫-1α,-1βC.⎝⎛⎭⎪⎫1β,1αD.⎝ ⎛⎭⎪⎫-1β,-1α 答案 C解析 ∵不等式ax 2+bx +c >0的解集为(α,β),则a <0,α+β=-ba,αβ=c a,而不等式cx 2+bx +a >0可化为cax 2+b ax +1<0,即αβx 2-(α+β)x +1<0,可得(αx -1)(βx -1)<0,即⎝ ⎛⎭⎪⎫x -1α⎝ ⎛⎭⎪⎫x -1β<0,所以其解集是⎝ ⎛⎭⎪⎫1β,1α,故选C.二、填空题(每小题5分,共15分)5.已知x >0,y >0,且2x +1y=1,若x +2y >m 2+2m 恒成立,则实数m 的取值X 围是_______.答案 (-4,2)解析 ∵x >0,y >0,且2x +1y=1,∴x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+4y x +x y≥4+24y x ·x y =8,当且仅当4y x =xy,即4y 2=x 2,x =2y 时取等号,又2x +1y=1,此时x =4,y =2,∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4<m <2.6.已知点P (x ,y )在曲线y =1x上运动,作PM 垂直于x 轴于M ,则△OPM (O 为坐标原点)的周长的最小值为_____________. 答案 2+ 2解析 三角形OPM 的周长为 |x |+1|x |+x 2+1x2≥2·|x |·1|x |+2·x 2·1x2=2+ 2(当且仅当|x |=1|x |时,即|x |=1时取等号). 7.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q ,则销售量Q (单位:件)与零售价P (单位:元)有如下关系:Q =8 300-170P -P 2,则最大毛利润为__________元.(毛利润=销售收入-进货支出) 答案 23 000解析 毛利润为(P -20)Q ,即f (P )=(P -20)(8 300-170P -P 2),f ′(P )=-3P 2-300P +11 700=-3(P +130)(P -30). 令f ′(P )=0,得P =30,又P ∈[20,+∞),故f (P )极大值=f (P )max , 故当P =30时,毛利润最大, ∴f (P )max =f (30)=23 000(元). 三、解答题(共22分)8.(10分)在一条直线型的工艺流水线上有3个工作台,将工艺流水线用如下图所示的数轴表示,各工作台的坐标分别为x 1,x 2,x 3,每个工作台上有若干名工人.现要在x 1与x 3之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短. (1)若每个工作台上只有一名工人,试确定供应站的位置;(2)设工作台从左到右的人数依次为2,1,3,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.解 设供应站坐标为x ,各工作台上的所有工人到供应站的距离之和为d (x ). (1)由题设,知x 1≤x ≤x 3,所以d (x )=x -x 1+|x -x 2|+x 3-x =|x -x 2|-x 1+x 3, 故当x =x 2时,d (x )取最小值,此时供应站的位置为x =x 2. (2)由题设,知x 1≤x ≤x 3,所以d (x )=2(x -x 1)+|x -x 2|+3(x 3-x )=⎩⎪⎨⎪⎧-2x +3x 3+x 2-2x 1,x 1≤x <x 2,3x 3-x 2-2x 1,x 2≤x ≤x 3.因此,函数d (x )在区间[x 1,x 2]上是减函数, 在区间[x 2,x 3]上是常数.故供应站位置位于区间[x 2,x 3]上任意一点时,均能使函数d (x )取得最小值,且最小值为3x 3-x 2-2x 1.9.(12分)某市政府为了打造宜居城市,计划在公园内新建一个如下图所示的矩形ABCD 的休闲区,内部是矩形景观区A 1B 1C 1D 1,景观区四周是人行道,已知景观区的面积为8 000平方米,人行道的宽为5米(如下图所示).(1)设景观区的宽B 1C 1的长度为x (米),求休闲区ABCD 所占面积S 关于x 的函数; (2)规划要求景观区的宽B 1C 1的长度不能超过50米,如何设计景观区的长和宽,才能使休闲区ABCD 所占面积最小?解 (1)因为AB =10+8 000x,BC =10+x ,所以S =⎝ ⎛⎭⎪⎫10+8 000x (10+x )=8 100+80 000x+10x (x >0).所以休闲区ABCD 所占面积S 关于x 的函数是S =8 100+80 000x+10x (x >0).(2)S =8 100+80 000x+10x (0<x ≤50),令S ′=10-80 000x2=0,得x =405或x =-405(舍去).所以当0<x ≤50时,S ′<0,故S =8 100+80 000x+10x 在(0,50]上单调递减.所以函数S =8 100+80 000x +10x (0<x ≤50)在x =50取得最小值,此时A 1B 1=8 00050=160(米).所以当景观区的长为160米,宽为50米时,休闲区ABCD 所占面积S 最小.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.某商场中秋前30天月饼销售总量f (t )与时间t (0<t ≤30)的关系大致满足f (t )=t 2+10t+16,则该商场前t 天平均售出(如前10天的平均售出为f 1010)的月饼最小值为( )A .18B .27C .20D .16 答案 A解析 平均销售量y =f t t =t 2+10t +16t=t +16t+10≥18.当且仅当t =16t,即t =4∈(0,30]时等号成立,即平均销售量的最小值为18.2.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成60°角(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积 为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤横断面的外周长不超过 10.5米,则其腰长x 的X 围为( ) A .[2,4] B .[3,4] C .[2,5] D .[3,5] 答案 B解析 根据题意知,93=12(AD +BC )h ,其中AD =BC +2·x 2=BC +x ,h =32x ,∴93=12(2BC +x )×32x ,得BC =18x -x2,由⎩⎪⎨⎪⎧h =32x ≥3,BC =18x -x 2>0,得2≤x <6.∴y =BC +2x =18x +3x2(2≤x <6),由y =18x +3x2≤10.5得3≤x ≤4.∵[3,4][2,6),∴腰长x 的X 围是[3,4].3.某蔬菜收购点租用车辆,将100吨新鲜黄瓜运往某市销售,可供租用的卡车和农用车分别为10辆和20辆.若每辆卡车载重8吨,运费960元,每辆农用车载重2.5吨,运费360元,则蔬菜收购点运完全部黄瓜支出的最低运费为( ) A .11 280元 B .12 480元 C .10 280元 D .11 480元 答案 B解析 设租用的卡车和农用车分别为x 辆和y 辆,运完全部黄瓜支出的运费为z 元,则⎩⎪⎨⎪⎧0≤x ≤100≤y ≤208x +2.5y ≥100x ∈N *y ∈N*,目标函数z =960x +360y ,此不等式组表示的可行域是△ABC (其中A (10,8),B (10,20),C (6.25,20))内横坐标和纵坐标均为整数的点.当直线l :z =960x +360y 经过点A (10,8)时,运费最低, 且其最低运费z min =960×10+360×8=12 480(元),选B. 二、填空题(每小题5分,共15分)4.如图所示,要挖一个面积为800平方米的矩形鱼池,并在鱼池的四周留出左右宽2米,上下宽1米的小路,则占地总面积的最小 值是________平方米. 答案 968解析 设鱼池的长EH =x ,则EF =800x,占地总面积是(x +4)·⎝⎛⎭⎪⎫800x +2=808+2⎝ ⎛⎭⎪⎫x +1 600x≥808+2·2x ·1 600x=968.当且仅当x =1 600x,即x =40时,取等号.5.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转________年时,年平均利润最大,最大值是________万元. 答案 5 8解析 每台机器运转x 年的年平均利润为y x =18-⎝⎛⎭⎪⎫x +25x ,而x >0,故y x ≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元.6.将边长为1 m 的正三角形薄铁片,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =梯形的周长2梯形的面积,则s 的最小值是________.答案3233解析 设剪成的小正三角形的边长为x , 则梯形的周长为3-x ,梯形的面积为12·(x +1)·32·(1-x ),所以s =3-x212·x +1·32·1-x=43·3-x21-x 2(0<x <1). 利用导数求函数的最小值: 由s (x )=43·3-x21-x 2,得 s ′(x )=43·2x -6·1-x2-3-x2·-2x1-x22=43·-23x -1x -31-x 22.令s ′(x )=0,且0<x <1,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′(x )>0.故当x =13时,s 取最小值3233.三、解答题7.(13分)某工厂每天生产某种产品最多不超过40件,产品的正品率P 与日产量x (x ∈N *)件之间的关系为P =4 200-x24 500,每生产一件正品盈利4 000元,每出现一件次品亏损2 000元.(注:正品率=产品中的正品件数÷产品总件数×100%) (1)将日利润y (元)表示成日产量x (件)的函数;(2)该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.解 (1)∵y =4 000·4 200-x 24 500·x -2 000⎝⎛⎭⎪⎫1-4 200-x 24 500·x =3 600x -43x 3,∴所求的函数关系式是y =-43x 3+3 600x (x ∈N *,1≤x ≤40).(2)由(1)知y ′=3 600-4x 2. 令y ′=0,解得x =30. ∴当1≤x <30时,y ′>0; 当30<x ≤40时,y ′<0.∴函数y =-43x 3+3 600x (x ∈N *,1≤x ≤40)在(1,30)上是单调递增函数,在(30,40)上是单调递减函数. ∴当x =30时,函数y =-43x 3+3 600x (x ∈N *,1≤x ≤40)取得最大值,最大值为-43×303+3 600×30=72 000(元).∴该厂的日产量为30件时,日利润最大, 最大值为72 000元.。