微波名词解释与简答题
- 格式:pdf
- 大小:102.22 KB
- 文档页数:12
1、微波的波长微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
2、微波的性质微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
3、介质的穿透性通过不同介质时,会发生折射、反射、绕射、散射及吸收等等。
电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波以及天波。
波长越长其衰减也越少,电磁波的波长越长也越容易绕过障碍物继续传播。
机械波与电磁波都能发生折射\反射\衍射\干涉,因为所有的波都具有波粒两象性.折射\反射属于粒子性;衍射\干涉为波动性。
4、天波与地波天波是靠电磁波在地面和电离层之间来回反射而传播的。
天波是短波的主要传播途径。
短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以多次反射,因而传播距离很远(可上万公里),而且不受地面障碍物阻挡。
但天波传播的最大弱点是信号很不稳定的,处理不好会影响通信效果。
沿大地与空气的分界面传播的电波叫地表面波,简称地波,传播时无线电波可随地球表面的弯曲而改变传播方向。
长波无线电之传递,以地波为主。
其折射率在海面与平原之吸收率均较小。
在传播途中的衰减大致与距离成正比,因受气候影响甚微,在有效距离内通信可靠。
5、卫星通信卫星通信是地球上(包括陆地、水面和低层大气中)无线电通信站之间利用人造卫星作为中继站而进行的空间微波通信,卫星通信是地面微波接力通信的继承和发展。
我们知道微波信号是直接传播的,因此,可以把卫星通信看作是微波中继通信的一种特例,它只是把中继站放置在空间轨道上。
6、卫星通信使用哪些频段?由于卫星处于外层空间,即在电离层之外,地面上发射的电磁波必须能穿透电离层才能到达卫星;同样,从卫星到地面上的电磁波也必须穿透电离层,而在无线电频段中只有微波频段恰好具备这一条件,因此卫星通信使用微波频段。
简述微波的定义
微波是指频率在 300MHz-300GHz 之间的电磁波,是无线电波中一个有限频带的简称,即波长在 1 米(不含 1 米)到 1 毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
微波具有许多独特的特性,例如较高的频率、较短的波长、较强的穿透力和较小的散射等。
这些特性使得微波在通信、雷达、微波炉、医疗、科学研究等领域有着广泛的应用。
在通信领域,微波被用于卫星通信、移动通信、无线局域网等。
在雷达技术中,微波可以用于探测目标、导航和气象预测等。
在医疗领域,微波被用于治疗肿瘤、组织凝固等。
此外,微波还被广泛应用于工业、科学研究和家庭等领域。
总的来说,微波是一种重要的电磁波,具有许多独特的特性和广泛的应用领域。
随着科技的不断发展,微波技术将在更多的领域发挥重要作用。
微波试题及答案在现代社会中,微波技术已经广泛应用于通信、雷达、天文学等领域。
掌握微波知识对于从事相关行业的人士来说至关重要。
本篇文章将介绍一些微波试题及其答案,帮助读者深入了解微波技术。
试题一:什么是微波?答案:微波是电磁波的一种,具有较短的波长和高频率特点,通常波长在1毫米至1米之间。
微波具有很强的穿透力和方向性,被广泛应用于通信、雷达、医疗等领域。
试题二:什么是微波导?答案:微波导是一种用于传输微波信号的特殊波导结构。
微波导常见的形式有矩形波导、圆柱波导等,其内部壁面具有优良的导波性能,能够有效地传输微波信号。
试题三:微波的功率和频率有何关系?答案:微波的功率和频率之间呈正比关系。
功率越大,频率也相应增加。
这是因为微波的功率与电磁波的幅度相关,而频率则与波的周期有关。
试题四:什么是微波障碍物?答案:微波障碍物是指在微波传输过程中会对信号产生干扰或反射的物体。
微波障碍物可能导致信号衰减、多径效应等问题,影响信号的传输质量。
试题五:微波天线的作用是什么?答案:微波天线是用于接收和发射微波信号的装置。
它能够将电磁波能量转换成电流或电流转换成电磁波能量,并将其传输到空间中进行无线通信或能量传输。
试题六:什么是微波功率放大器?答案:微波功率放大器是一种用于增加微波信号功率的装置。
它通过引入恒定的电源电压来驱动微波管或半导体器件,实现对微波信号电压的放大。
试题七:什么是微波衰减器?答案:微波衰减器是一种用于降低微波信号功率的装置。
它通过引入衰减材料或实现信号的反向传播等方式,对微波信号进行衰减,用于调节微波信号的强度。
试题八:什么是微波干扰?答案:微波干扰是指在微波传输过程中,由于不同信号的干涉或其他外界干扰因素而导致的信号失真或中断现象。
微波干扰可能影响通信、雷达等应用的正常运行。
试题九:如何解决微波干扰问题?答案:解决微波干扰问题可以采取多种方法。
例如,可以提高微波系统的抗干扰能力,使用合适的隔离器或拐角衰减器,合理安排微波设备的布局等,从而减少微波干扰。
11、微波是一般指频率从 300M H z 至 3000G H z 范围内的电磁波,其相应的波长从 1m 至 0.1m m 。
并划为 分米波、厘米波、毫米波、亚毫米波 四个波段;从电子学和物理学的观点看,微波有 似光性 、 似声性 、 穿透性 、 非电离性 、 信息性 等重要特点。
2、无耗传输线上的三种工作状态分别为: 行波 、 驻波 、 行驻波状态 。
3、传输线几个重要的参数: (1) 波阻抗: 导行系统中导模的横向电场和与这个电场有关的横向磁场之比 ;介质的固有波阻抗为:。
(2) 特性阻抗: 传输线上行波的电压和电流之比 ,或 入射波的电压和入射波的电流之比 ,Z 0=其表达式为Z 0= ,是一个复数; 其倒数为传输线的 特性导纳 . (3) 输入阻抗(分布参数阻抗):传输线上任一点的阻抗Z i n (d )定义为该点的电压和电流之比 ,即Z i n (d )= 。
传输线输入阻抗的特点是: A 、传输线阻抗随位置d 而变,分布于沿线各点,且与负载有关;B 、传输线具有阻抗变换作用,Z L 通过线段d 变换成Z i n (d ),或相反;C 、无耗线的阻抗呈周期性变化,具有变换性和重复性。
(8) 无耗传输线的特性阻抗= , 输入阻抗具有 周期性,传输线上电压与电流反射系数关系 ,驻波比和放射系数关系。
5、负载获得最大输出功率时,负载与源阻抗间关系:Zin=Zg* 。
6、史密斯圆图是求街均匀传输线有关 阻抗匹配 和 功率匹配 问题的一类曲线坐标图,图上有两组坐标线,即归一化阻抗或导纳的实部和虚部 的等值线簇与反射系数的 幅和模角 等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。
阻抗圆图上的等值线分别标有 刻度和电压驻波比 ,而 特征参数z 0 和 特征参数β ,并没有在圆图上表示出来。
导纳圆图可以通过对 阻抗圆图 旋转180°得到。
阻抗圆图的实轴左半部和右半部的刻度分别表示 r m i n 或 行波系数k 和r m a x 或 驻波比r 。
微波加热技术常见问题解答问题1:微波是什么?问题2:微波是怎样产生的?问题3:微波应用的频率有那些?问题4:微波加热的原理是什么?问题5:微波杀菌的机理是什么?问题6:微波的穿透能力如何?问题7:什么叫微波的选择性加热?问题8:微波加热为什么称之为内部加热方式?问题9:各种物质对微波的吸收能力如何?问题10:微波的脱水效率如何?问题1:微波是什么?答:微波与无线电波、红外线、可见光一样都是电磁波,微波是指频率为300MHz-300KMHz的电磁波,即波长在1米到1毫米之间的电磁波。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
问题2:微波是怎样产生的?答:微波能通常由直流或50MHz交流电通过一特殊的器件来获得。
可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。
电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。
在电真空器件中能产生大功率微波能量的有磁控管,多腔速调管,微波三、四极管,行波管等。
在目前微波加热领域特别是工业应用中使用的主要是磁控管及速调管。
问题3:微波应用的频率有那些?答:因为微波应用极为广泛,特别是通信领域,为了避免相互间的干扰,国际无线电管理委员会对频率的划分作了具体规定。
分给工业、科学和医学用的频率有 433 兆赫、915兆赫、2450兆赫、5800兆赫、22125兆赫,与通信频率分开使用。
目前国内用于工业加热的常用频率为915兆赫和2450兆赫。
微波频率与功率的选择可根据被加热材料的形状、材质、含水率的不同而定。
问题4:微波加热的原理是什么?答:介质材料由极性分子和非极性分子组成,在电磁场作用下,这些极性分子从原来的随机分布状态转向依照电场的极性排列取向。
而在高频电磁场作用下,这些取向按交变电磁的频率不断变化,这一过程造成分子的运动和相互摩擦从而产生热量。
此时交变电场的场能转化为介质内的热能,使介质温度不断升高,这就是对微波加热最通俗的解释。
微波原理习题答案微波原理习题答案微波技术作为一种高频电磁波技术,已经广泛应用于通信、雷达、医疗等领域。
学习微波原理是理解和应用微波技术的基础。
下面将针对一些微波原理的习题进行解答,帮助读者更好地掌握相关知识。
1. 问题:什么是微波?答案:微波是一种频率高于射频、低于红外线的电磁波。
它的频率范围一般为300MHz到300GHz。
相比于射频信号,微波信号具有更高的频率和更短的波长。
2. 问题:微波与直流信号有什么不同?答案:微波与直流信号在频率和传输方式上存在明显的差异。
直流信号的频率非常低,一般为0Hz,而微波信号的频率较高。
此外,微波信号一般采用空间传输,而直流信号主要通过导线传输。
3. 问题:为什么微波信号适合用于通信和雷达系统?答案:微波信号具有较高的频率和短波长,能够有效地穿透大气层,减少传输损耗。
此外,微波信号还具有较高的方向性和较小的散射,有利于提高通信和雷达系统的性能。
4. 问题:什么是微波的衰减?答案:微波的衰减是指微波信号在传输过程中的能量损失。
衰减的原因包括自由空间损耗、大气吸收、反射损耗等。
衰减会导致微波信号的功率降低,影响通信和雷达系统的可靠性。
5. 问题:什么是微波的驻波比?答案:微波的驻波比是指在传输线上微波信号的最大值与最小值之比。
驻波比反映了传输线上的反射程度。
当驻波比为1时,表示传输线上没有反射,微波信号完全被传输;当驻波比不为1时,表示传输线上存在反射,部分微波信号被反射回去。
6. 问题:什么是微波的功率分配?答案:微波的功率分配是指将输入的微波功率按照一定的比例分配到不同的输出端口。
常见的功率分配方式包括等分功率分配、不等分功率分配和反向功率分配等。
功率分配的设计对于微波系统的性能和稳定性具有重要影响。
7. 问题:什么是微波的相位?答案:微波的相位是指波的起始点在时间上的位置。
相位可以用角度或时间表示。
相位差是指两个波之间的相位差异。
相位差可以用来描述波的干涉和衍射现象。
微波技术基础答案
微波技术是一种利用微波频段(300 MHz至300 GHz)的电
磁波进行通信、雷达、无线电传输和加热等应用的技术。
以下是微波技术的基础知识:
1. 微波的特点:微波具有高频率、短波长、能够穿透大气、易于聚焦和定向传播的特点。
2. 微波的发生和传输:微波可以通过射频发生器产生,通
过导波管、同轴电缆、微带线、光纤等传输介质进行传输。
3. 微波的传播特性:微波的传播受到衰减、反射、折射和
散射等影响。
在自由空间中,微波的传播速度接近光速。
4. 微波天线:微波通信中常用的天线类型包括方向性天线(如喇叭天线、微带天线)、全向天线(如偶极子天线、
螺旋天线)和阵列天线等。
5. 微波通信:微波通信是利用微波进行无线传输的技术,
常用于卫星通信、移动通信和无线局域网等领域。
6. 微波雷达:微波雷达利用微波的反射特性来检测和跟踪
目标,广泛应用于航空、海洋、气象和交通等领域。
7. 微波加热:微波加热利用微波的能量来加热物体,常用
于食品加热、材料处理和医疗领域。
8. 微波器件:微波技术中常用的器件包括微波源(如
Klystron、Magnetron、Gunn Diode)、微波放大器、微波滤波器、微波开关和微波混频器等。
9. 微波安全:由于微波的高频率和能量较高,对人体和环境有一定的辐射危害。
因此,在微波技术应用中需要注意微波辐射的安全性。
10. 微波技术的发展:随着无线通信和雷达技术的快速发展,微波技术在通信、雷达、医疗、材料科学等领域得到广泛应用,并不断推动着技术的进步和创新。
绪论1、微波是电磁波谱中介于超短波与红外线之间的波段。
频率(300MHz —3000GHz)。
波长(1m—0.1mm )微波分为:分米波、厘米波、毫米波、亚毫米波。
特点:似光性、穿透性、热效应特性、宽频带特性、散射性、抗低频干扰特性视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。
第一章2、微波传输线:是用以传输微波信息和能量的各种形式传输系统的总称3、T EM波指①无纵向电磁场分量的电磁波称为横电磁波②电矢量和磁矢量都与传播方向垂直TE波指电矢量与传播方向垂直,或者说传播方向上没有电矢量TM波是指磁矢量与传播方向垂直4、特性阻抗:传输线上导行波电压与电流的比值:①Z0= U:)(定义式),乙=厝恰(推出来的),仅由传输线自身的分布参数决定而与负载及信号源无关。
②对于均匀无耗传输线:Z0 =.;③平行双导线传输线的特性阻抗:Z0 =〕丝|门(d为传输线直径,D为间距,E r为相对介电常数,常用的特… d 性阻抗:250 Q , 400 Q , 600 Q )^In b(a,b分别为内外导体半径,常用的特性阻抗:④无耗同轴线的特性阻抗:Z0=50 Q , 75 Q);r :'5、传播常数Y是描述传输线上导行波沿导波系统传播过程中衰减和相移的参数。
, 是衰减常数,dB/m。
是相移常数,rad/m6、输入阻抗是传输线上任意一点Z处的输入电压与输入电流之比,——7、输入阻抗与特性阻抗的关系:Z in(z)=Z0fj茫8 反射系数:传输线上任意一点反射波电压(电流)与入射波电压(电流)的比值,】u = (定义式)U H6z)推出:«z)= r e42(z,其中=乙一Z° = K|e j°(『1为终端反射系数)乙+ Z0合起来就是:F(z)= - e j(^闵(指任一点的反射系数)对于均匀无耗传输线,】⑵大小均等,沿线只有相位按周期变化,周期为一,也就是一重复性()2 2Z -Z 19、对于-1 1 0,①当乞时,丨=0,此时传输线上任一点的反射系数都等于0,称之为负载匹配②当乙=Z0Z21 *Z0时,有反射波,不匹配1+『()10、输入阻抗与反射系数的关系:Z in(z)二Z00■(知道一个就可以推出其他的)1-r(z)11、驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比驻波比的取值范围是1:::::;当传输线上 无反射时,驻波比为1,当传输线 全反射时,驻波比趋于 无穷大。
简明微波知识点总结一、微波的产生微波是电磁波的一种,其频率范围通常定义为300MHz至300GHz。
微波的产生主要有以下几种方式:1. 电子运动产生的微波:当高速电子在磁场或者电场中运动时,会产生微波辐射。
这种产生微波的方式叫做“同步辐射”,是一种重要的微波源。
2. 电子射频振荡器产生的微波:电子射频振荡器是一种专门用来产生微波的设备,其工作原理是通过调谐某些特定的谐振频率,使得电子在强电场中振荡产生微波。
3. 微波管放大器:微波管放大器是一种设备,通过将微波信号输入到管中,然后通过电磁场的作用来放大微波信号。
4. 光学激光器产生的微波:激光器可以通过频率加倍或者调制的方式产生微波。
二、微波的特点微波具有一些独特的特性,使得它在很多领域有着广泛的应用:1. 穿透性强:微波在穿透物质时,能力比可见光和红外线更强。
这使得微波可以穿透一些通常不透明的物质,如水、塑料、衣物等。
2. 热效应:微波在物质中的能量损耗主要表现为产生热效应,这种热效应可以被应用于微波加热、烤箱等领域。
3. 反射和折射:微波在遇到边界时,会发生反射和折射现象。
这种特性被广泛应用于雷达、卫星通信等领域。
4. 定向传播:微波可以通过定向天线进行传播,这使得微波通信有着更多的灵活性和可靠性。
三、微波的应用由于微波具有穿透性强、热效应明显、定向传播等特点,使得它在很多领域有着广泛的应用:1. 通信领域:微波被广泛应用于通信领域,如无线电、卫星通信、雷达等。
通过微波通信技术,可以实现远距离、高速、高效率的信息传输。
2. 医疗领域:微波被应用于医学诊断和治疗领域。
如微波成像技术、微波治疗设备等,已经成为现代医疗的重要技术手段。
3. 加热领域:微波加热技术被广泛应用于食品加热、工业加热等领域。
由于微波在物质中的能量损耗主要表现为产生热效应,因此可以实现快速、均匀的加热效果。
4. 安全检测领域:微波成像技术被应用于安全检测领域,如机场安检、建筑结构探测等。
《微波技术基础》题集一、选择题(每题2分,共20分)1.微波是指频率为()的电磁波。
A. 300MHz-300GHzB. 300Hz-300MHzC. 300GHz-300THzD. 300kHz-300MHz2.微波在真空中的传播速度与()相同。
A. 光速B. 声速C. 电场传播速度D. 磁场传播速度3.微波的主要特性不包括()。
A. 直线传播B. 穿透性强C. 反射性D. 绕射能力强4.微波传输线主要包括()。
A. 同轴电缆和光纤B. 双绞线和同轴电缆C. 光纤和波导D. 双绞线和波导5.在微波通信中,常用的天线类型是()。
A. 偶极子天线B. 抛物面天线C. 环形天线D. 螺旋天线6.微波谐振腔的主要作用是()。
A. 储存微波能量B. 放大微波信号C. 转换微波频率D. 衰减微波信号7.微波加热的原理是()。
A. 微波与物体内部的分子振动相互作用B. 微波使物体表面温度升高C. 微波直接转化为热能D. 微波引起物体内部化学反应8.微波在介质中的传播速度与介质的()有关。
A. 密度B. 介电常数C. 磁导率D. 温度9.微波通信中,为了减少信号的衰减,通常采取的措施是()。
A. 增加信号频率B. 减小信号功率C. 使用中继站D. 改用光纤通信10.微波测量中,常用的仪器是()。
A. 示波器B. 微波功率计C. 万用表D. 频谱分析仪(部分功能重叠,但更专用于频率分析)二、填空题(每题2分,共20分)1.微波的频率范围是_________至_________。
2.微波在真空中的传播速度约为_________m/s。
3.微波的_________特性使其在雷达和通信系统中得到广泛应用。
4.微波传输线中,_________具有宽频带、低损耗的特点。
5.微波天线的作用是将微波能量转换为_________或相反。
6.微波加热过程中,物体吸收微波能并将其转化为_________。
7.微波在介质中的衰减主要取决于介质的_________和频率。
二、名词解释
1、传输线理论
传输线理论是用来分析传输线上电压与电流的分布,以及传输线上阻抗变化规律的理论。
它是分布参数理论,在场分析与基本电路理论之间架起了桥梁。
2、TEM 波、TE 波和TM 波
TEM 波(横电磁波):在波传播的方向上没有电场或磁场分量的波。
(02
c k )
TE 波或M 波(电场纯横向波): 在波传播的方向上有磁场分量,但没有电场分量的波。
(02c k ,00z z H E ,此时只有纵向磁场)
TM 波或E 波(磁场纯横向波): 在波传播的方向上有电场分量,但没有磁场分量的波。
(02c k ,00z z H E ,此时只有纵向电场)
3、传播常数、相速、波长
传播常数是描述传输线上导行波沿波导系统传播过程中衰减和相移的参数。
(通常为复数j ,其中为衰减常数,为相移常数)
相速p v :电压、电流入射波(或反射波)等相位面沿传输方向的传播速度。
p
v 波长:传输线上的波长与自由空间的波长0有以下关系:
r
p
f v 0
24、行波、驻波、行驻波
行波状态:是无反射的传输状态,此时终端反射系数
01,而负载阻抗等于传输线的特性阻抗,即01Z Z ,也可称此时的负载为匹配负载。
驻波状态:是全反射的传输状态,此时终端反射系数11。
行驻波状态:当微波传输线终端接任意复数阻抗负载时,由信号源入射的电磁波功率一部分被终端吸收,另一部分则被反射,因此传输线上既有行波又有纯驻波,构成混合波状态。
5、传输线特性阻抗、输入阻抗、反射系数、驻波比
特性阻抗0Z :传输线上导行波的电压与电流之比。
(其倒数称为特性导纳0Y )输入阻抗)(in z Z :传输线上任意一点z 处的输入电压与输入电流之比。
反射系数:传输线上任意一点z 处的反射波电压(或电流)与入射波电压(或电流)之比。
驻波比:(驻波系数)传输线上波腹点电压振幅与波节点电压振幅之比。
(其倒数称为行波系数
K )
6、简并模简并模是传播常数相同或截止波长相同的传输模。
7、工作波长、波导波长、截止波长
工作波长:TEM 波的相波长,它由频率与光速确定,即r
r f c
0波导波长:理想导波系统中的相波长,即波导系统内电磁波的相位改变2所经过的距离。
截止波长:截止频率所确定的波长,r
f c
c 8、Smith 圆图
史密斯圆图是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图。
(主要用于传输线的阻抗匹配)
9、天线的互易定理
同一天线作为发射或接收的基本特性参数是相同的。
10、S 参数
S 参数,也就是散射参数,是建立在入射波、反射波的关系基础上的网络参数。