高一物理动能定理试题
- 格式:doc
- 大小:267.50 KB
- 文档页数:7
高一物理动能定理试题答案及解析1.一子弹以速度v飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为()A.3块B.6块C.9块D.12块【答案】C【解析】子弹以速度v运动时,恰能水平穿透一块固定的木板,根据动能定理有:,设子弹的速度为时,穿过的木板数为n,则有:联立两式并代入数据得:n=9块,C正确。
【考点】考查了动能定理的应用2.在一次试车实验中,汽车在平直的公路上由静止开始做匀加速运动,当速度达到v时,立刻关闭发动机让其滑行,直至停止。
其v-t图象如图所示。
则下列说法中正确的是()A.全程牵引力做功和克服阻力做功之比为1:1B.全程牵引力做功和克服阻力做功之比为2:1C.牵引力和阻力之比为2:1D.牵引力和阻力之比为3:1【答案】AD【解析】试题解析:由于物体初始的速度为零,最后的速度也为零,故物体的动能没有变化,即动能的增量为零,根据动能定理可知,物体受到的合外力也为零,即全程牵引力做功和克服阻力做功相等,故它们的比值为1:1,A正确,B错误;由图像可知,1s前物体在牵引力的作用下运动,其位移为x,则后2s内物体的位移为2x,故由动能定理可得:Fx=f(x+2x),所以牵引力F和阻力f之比为3:1,D正确,C错误。
【考点】动能定理。
3.甲、乙两物体质量之比m1∶m2=1∶2,它们与水平桌面间的动摩擦因数相同,若它们以相同的初动能在水平桌面上运动,则运动位移之比为.【答案】2:1。
【解析】根据动能定理得可知,对于甲物体:m1gμ×x1=Ek,对于乙物体:m2gμ×x2=Ek,联立以上两式解之得x1:x2=m2:m1=2:1,故位移之比为2:1。
【考点】动能定理。
4.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m、带电量为+q的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是A.球的速度为零时,弹簧伸长qE/kB.球做简谐运动的振幅为qE/kC.运动过程中,小球的机械能守恒D.运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零【答案】BD【解析】球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确。
高一物理动能试题及答案一、单项选择题(每题3分,共30分)1. 一个物体的动能等于其质量与速度平方的乘积的一半,这个公式是()。
A. E=mc^2B. E=1/2mv^2C. E=1/2mvD. E=mc答案:B2. 动能是标量还是矢量?()A. 标量B. 矢量C. 既不是标量也不是矢量D. 既是标量也是矢量答案:A3. 一个物体的动能与其速度的关系是()。
A. 正比B. 反比C. 无关D. 正比于速度的平方答案:D4. 一个物体的动能与其质量的关系是()。
A. 正比B. 反比C. 无关D. 正比于质量的平方答案:A5. 一个物体的动能与其速度的关系是()。
A. 正比B. 反比C. 无关D. 正比于速度的平方答案:D6. 一个物体的动能与其质量的关系是()。
A. 正比B. 反比C. 无关D. 正比于质量的平方答案:A7. 一个物体的动能与其速度和质量的关系是()。
A. 正比于速度的平方和质量B. 正比于速度和质量的平方C. 正比于速度和质量D. 正比于速度的平方和质量的平方答案:A8. 一个物体的动能与其速度和质量的关系是()。
A. 正比于速度的平方和质量B. 正比于速度和质量的平方C. 正比于速度和质量D. 正比于速度的平方和质量的平方答案:A9. 一个物体的动能与其速度和质量的关系是()。
A. 正比于速度的平方和质量B. 正比于速度和质量的平方C. 正比于速度和质量D. 正比于速度的平方和质量的平方答案:A10. 一个物体的动能与其速度和质量的关系是()。
A. 正比于速度的平方和质量B. 正比于速度和质量的平方C. 正比于速度和质量D. 正比于速度的平方和质量的平方答案:A二、填空题(每题4分,共20分)11. 动能的公式是:E=________。
答案:1/2mv^212. 动能的单位是:________。
答案:焦耳(J)13. 动能是物体由于________而具有的能量。
答案:运动14. 动能的大小与物体的________和________有关。
高一物理动能和动能定理试题1.光滑水平面上一运动的磁铁动能为Ek,若其吸引一静止的相等质量铁球后,二者共同运动速度变为原来的一半,则总动能为()A.2Ek B.EkC.Ek/2D.Ek/4【答案】C【解析】设磁铁质量为m,速度为v,则;由题意可知,变化后的动能为:,C正确。
【考点】考查了动能的计算2.来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流强度为1mA的细柱形质子流。
已知质子电荷e=1.60×10-19C。
这束质子流每秒打到靶上的质子数为。
假定分布在质子源到靶之间的加速电场是均匀的,在质子束与质源相距L和4L的两处,各取一段极短的相等长度的质子流,其中的质子数分别是n1和n2,则 = 。
【答案】;2:1.【解析】1S内打到靶上的质子所带总电量为q=1×10-3×1=1×10-3C 则质子个数为I 1=n1ev1I2=n2ev2在L处与4L处的电流相等:I1=I2故 n1ev1=n2ev2得由动能定理在L处 EqL=mv12得在4L处 4EqL=mv22得由以上式得【考点】动能定理;电流强度。
3.某人用50N的恒力F,通过动滑轮把重物拉上斜面,如图所示,用力方向始终与斜面成600角。
将物体沿斜面向上移动1.0m,他所做的功A.25J B.50JC.75J D.条件不足,无法计算【答案】C【解析】选C。
4.用力拉同一物体自静止开始在粗糙水平面上前进,第一次沿水平方向拉,第二次沿与水平方向成角斜向上拉。
若两次用力使物体产生的加速度相同,且物体在平面上前进的距离也相同,则在两次拉动过程中,外力所做的功A.两次拉动中,拉力做的功相等B.第二次拉力做的功大一些C.第二次拉力做的功小一些D.两种情况下,合外力做的功不相同【答案】C【解析】两种情况合外力做功相同,因为第二次摩擦力较小,所以克服摩擦力做功也小,所以第二次拉力做的功小一些,选C。
动能定理典型练习题典型例题讲解1.下列说法正确的是( )A 做直线运动的物体动能不变,做曲线运动的物体动能变化B 物体的速度变化越大,物体的动能变化也越大C 物体的速度变化越快,物体的动能变化也越快D 物体的速率变化越大,物体的动能变化也越大【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力的多少倍?【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速度为v ,根据动能定理有0212-=mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有2210mv Fh mgh -=- ②由①②两式解得hh H mg F += 另解:研究物体运动的全过程,根据动能定理有000)(=-=-+Fh h H mg解得hh H mg F +=3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2)【解析】设物体克服摩擦力图5-3-5Hh图5-3-4图5-3-6图5-3-7所做的功为W ,对物体由A 运动到B 用动能定理得221mv W mgh =- Jmv mgh W 32612151012122=⨯⨯-⨯⨯=-=即物体克服阻力所做的功为32J.课后创新演练1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A )A .0B .8JC .16JD .32J2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C )A .1:3B .3:1C .1:9D .9:13.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A )A .4LB .L )12(-C .2LD .2L4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD )A .fL =21Mv 2B .f s =21mv 2C .f s =21mv 02-21(M +m )v 2D .f (L +s )=21mv 02-21mv 25.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2B .mv 02C .2mv 02/3D .3mv 02/86.如图5-3-8所示,一小物块初速v 1,开始由A 点沿水平面滑至B 点时速度为v 2,若该物块仍以速度v 1从A 点沿两斜面滑动至B 点时速度为v 2’,已知斜面和水平面与物块的动摩擦因数相同,则( C ) A.v 2>v 2' B.v 2<v 2’ C.v 2=v 2’ D .沿水平面到B 点时间与沿斜面到达B 点时间相等. 7.如图5-3-9所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【解析】滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端.在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功.设其经过和总路程为L ,对全过程,由动能定理得:200210cos sin mv L ng mgS -=-αμα得αμαcos 21sin mgS 20mg mv L +=8.如图5-3-10所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传知工件与传送带间的动摩擦因数23=μ,g 取送至h =2m 的高处.已10m/s 2.(1) 试通过计算分析工件在传送带上做怎样的运动?(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?【解析】 (1) 工件刚放上皮带时受滑动摩擦力θμcos mg F =,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin 得:图5-3-8图5-3-10V 0S 0αP 图5-3-9)30sin 30cos 23(10)sin cos (sin 00-⨯=-=-=θθμθg g mFa =2.5m/s 2设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得5.2222220⨯==a v x =0.8m <4m. 故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。
高一物理动能定理试题答案及解析1.两个带等量正电的点电荷,固定在图中P、Q两点,MN为PQ连线的中垂线,交PQ于O点,A点为MN上的一点。
一带负电的试探电荷q,从A点由静止释放,只在静电力作用下运动.取无限远处的电势为零,则A.q由A向O的运动是匀加速直线运动B.q由A向O运动的过程电势能逐渐减小C.q运动到O点时的动能最大D.q运动到O点时电势能为零【答案】BC【解析】两等量正电荷周围部分电场线如右图所示,其中P、Q连线的中垂线MN上,从无穷远到O过程中电场强度先增大后减小,且方向始终指向无穷远方向.故试探电荷所受的电场力是变化的,q由A向O的运动做非匀加速直线运动,故A错误.电场力方向与AO方向一致,电场力做正功,电势能逐渐减小;故B正确.从A到O过程,电场力做正功,动能增大,从O到N过程中,电场力做负功,动能减小,故在O点试探电荷的动能最大,速度最大,故C正确.取无限远处的电势为零,从无穷远到O点,电场力做正功,电势能减小,则q运动到O点时电势能为负值,故D错误.【考点】考查了带电粒子在电场中的运动2.一汽车质量为2000kg,行驶时受到的阻力为车重的0.1倍。
若汽车以3000N的恒定牵引力在水平公路上从静止开始前进100m时关闭发动机。
求:(1)汽车前进100m时的速度;(2)汽车关闭发动机后还能滑行多远。
【答案】(1)v=10m/s(2)x=50m【解析】设汽车前进100m时的速度为v,则对汽车应用动能定理得:.......................① 4分代入数据解得:v=10m/s....... ..... ..② 1分设汽车关闭发动机后还能滑行的距离为x,则对汽车应用动能定理得:.......... ..... ..... ③ 4分代入数据解得:x=50m..... ..... ..... . ④ 1分【考点】考查了动能定理的综合应用3.中国著名篮球运动员姚明在一次投篮中对篮球做功为W,出手高度为h1,篮筐距地面高度为h2,球的质量为m。
高一物理动能定理的理解试题答案及解析1.质量为0.01kg、以800m/s的速度飞行的子弹与质量为0.8kg、以10m/s的速度飞行的皮球相比A.子弹的动量较大B.皮球的动量较大C.子弹的动能较大D.皮球的动能较大【答案】C【解析】根据,子弹的动量P1=8Kg.m/s;皮球的动量P2=8Kg.m/s;所以两者动量相等;根据,子弹的动能EK1="3200J;" 皮球的动能EK2=40J;所以子弹的动能较大,选项C正确。
【考点】动量及动能的概念。
2.一质量为m的滑块,以速度v在光滑水面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v(方向与原来相反),在这段时间内,水平力所做的功为:()A.B.C.D.【答案】A【解析】水平力做的功等于物体动能的变化量,所以,选A。
3.水平地面上,一运动物体在10 N摩擦力的作用下,前进5 m后停止,在这一过程中物体的动能减少了()A.10 J B.25 JC.50 J D.100 J【答案】C【解析】根据动能定理内容:合外力做功等于动能变化量,所以开始动能为fs=50J,C对;4.某运动的物体动能为Ek,若将其质量和速度均变为原来的2倍,则物体的动能变为() A.2Ek B.4EkC.8Ek D.16Ek【答案】C【解析】根据动能公式,质量和速度都变为原来的2倍,动能变为原来的8倍,C对;5.一个物体的速度从0增加到v,再从v增加到2v,前后两种情况下,物体所受的合外力对物体做的功之比是()A.1∶1B.1∶3C.1∶2D.1∶4【答案】B【解析】,B对;6.在足球比赛中,红队球员在白队禁区附近主罚定位球,并将球从球门右上角贴着球门射入,球门高为h ,足球飞入球门的速度为v ,足球质量为m ,则红队球员将足球踢出时对足球做的功为 : ( )A .B .C .D .【答案】C【解析】以踢球后到最高点应用动能定理,,则W=,C 对;7. 一人用力踢质量为1 kg 的皮球,使球由静止以10m/s 的速度飞出,假定人踢球瞬间对球的平均作用力是200N ,球在水平方向运动了20 m 停止,那么人对球所做的功为 A .500J B .4000J C .50J D .1000J【答案】C【解析】根据动能定理,人对球所做的功等于动能的变化量,即,C 正确。
高中动能定理试题及答案一、选择题1. 动能定理表明,一个物体的动能变化量等于外力对它做的功。
以下哪个选项描述了正确的动能定理?A. 动能的变化量等于外力做的功B. 动能的变化量等于外力做的功的负值C. 动能的变化量等于外力做的功的两倍D. 动能的变化量等于外力做的功的一半答案:A2. 一个物体从静止开始,沿着光滑斜面下滑,其动能变化量与下列哪个因素无关?A. 斜面的长度B. 斜面的角度C. 物体的质量D. 物体的初速度答案:D二、填空题3. 动能定理的数学表达式为:\(\Delta E_k = W\),其中\(\Delta E_k\)表示动能的变化量,W表示_______。
答案:外力做的功4. 一个质量为2kg的物体从高度为5m的平台上自由落体,忽略空气阻力,其落地时的动能为_______J(g取10m/s²)。
答案:100三、计算题5. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车,经过10s后停止。
假设汽车在刹车过程中受到的阻力是恒定的,求阻力的大小。
答案:2000N四、简答题6. 描述动能定理在实际生活中的应用。
答案:动能定理在实际生活中有广泛的应用,例如在汽车的制动系统设计中,通过计算刹车时的动能变化量,可以确定所需的制动力,以确保车辆在安全距离内停止。
此外,在运动训练中,运动员通过控制动能的变化来优化运动表现,如跳高运动员通过助跑来增加起跳时的动能,以跳得更高。
五、实验题7. 设计一个实验来验证动能定理。
请描述实验步骤和预期结果。
答案:实验步骤:- 准备一个斜面、一个质量已知的小车、一个测力计和一把尺子。
- 将小车放置在斜面的不同高度,测量小车从静止开始滑下到达斜面底部的速度。
- 使用测力计测量小车在滑下过程中受到的摩擦力。
- 计算小车在不同高度滑下时的动能变化量和摩擦力做的功。
预期结果:- 预期小车的动能变化量与摩擦力做的功相等,从而验证动能定理。
完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。
对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。
速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。
速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。
2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。
假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。
在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。
解方程得到F = (H + h)mg / (gh)。
3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。
假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。
解方程得到W = 32J。
课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。
在一段时间内,水平力方向变为向右,大小不变为未知。
根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。
根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。
2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。
假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。
因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。
动能定理练习巩固基础一、不定项选择题(每小题至少有一个选项)1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是( )A .如果物体所受合外力为零,则合外力对物体所的功一定为零;B .如果合外力对物体所做的功为零,则合外力一定为零;C .物体在合外力作用下做变速运动,动能一定发生变化;D .物体的动能不变,所受合力一定为零。
2.下列说法正确的是( )A .某过程中外力的总功等于各力做功的代数之和;B .外力对物体做的总功等于物体动能的变化;C .在物体动能不变的过程中,动能定理不适用;D .动能定理只适用于物体受恒力作用而做加速运动的过程。
3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定( )A .水平拉力相等B .两物块质量相等C .两物块速度变化相等D .水平拉力对两物块做功相等4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能( )A .与它通过的位移s 成正比B .与它通过的位移s 的平方成正比C .与它运动的时间t 成正比D .与它运动的时间的平方成正比5.一子弹以水平速度v 射入一树干中,射入深度为s ,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v /2的速度射入此树干中,射入深度为( )A .sB .s/2C .2/sD .s/46.两个物体A 、B 的质量之比m A ∶m B =2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为( )A .s A ∶sB =2∶1 B .s A ∶s B =1∶2C .s A ∶s B =4∶1D .s A ∶s B =1∶47.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( )A .LB .2LC .4LD .0.5L8.一个人站在阳台上,从阳台边缘以相同的速率v 0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能( )A .上抛球最大B .下抛球最大C .平抛球最大D .三球一样大9.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( )A .2022121mv mv mgh --B .mgh mv mv --2022121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( )A .sin 2θB .cos 2θC .tan 2θD .cot 2θ11.将质量为1kg 的物体以20m /s 的速度竖直向上抛出。
专题06动能定理和机械能守恒定律一、单选题1.(2023下·南开区高一期末)下列物体在运动过程中,机械能守恒的是()A.沿粗糙的斜面向下做匀加速运动的木块B.在空中向上做匀速运动的氢气球C.做平抛运动的铁球D.被起重机拉着向上做匀速运动的货物【答案】C【解析】A .沿粗糙的斜面向下做匀加速运动的木块,摩擦力对木块做负功,机械能减少,A 错误;B .在空中向上做匀速运动的氢气球,氢气球动能不变,重力势能变大,机械能变大,B 错误;C .做平抛运动的铁球,只受重力作用,机械能守恒,C 正确;D .被起重机拉着向上做匀速运动的货物,动能不变,重力势能变大,机械能变大,D 错误。
故选C 。
2.(2023下·红桥区高一期末)质量为0.5kg 的足球以1m/s 速度水平撞击墙壁,又以1-m/s 速度弹回。
若以足球的初速度方向为正方向,则在碰撞过程中足球的速度变化量以及动能的变化量为()A.0,0.5JB.2-m/s ,0C.2m/s ,0D.2-m/s ,0.5J【答案】B【解析】碰撞过程中足球的速度变化量211m/s 1m/s 2m/s v v v ∆=-=--=-,动能的变化量22k 2111Δ022E mv mv =-=,ACD 错误;B 正确。
故选B 。
3.(2023下·红桥区高一期末)如图所示,轻质弹簧竖直放置,下端与水平地面相连,让小球从距离弹簧上端一定高度自由下落,直至弹簧被压缩到最短的整个下落过程中(弹簧始终在弹性限度内且不计空气阻力的影响),下列说法正确的是()A.小球的机械能守恒B.小球的加速度先不变后减小C.小球的动能一直增大D.小球、弹簧、地球组成的系统机械能守恒【答案】D【解析】AD .在整个过程中,有重力做功,所有有重力势能的变化;有弹簧做功,所以有弹性势能的变化。
除此之外,没有其他力做功,所以小球、弹簧、地球组成的系统机械能守恒,小球机械能不守恒,故A 错误,D 正确;B .小球在接触弹簧之后,加速度是先减小后反向增大,B 错误;C .下落的过程中,小球先加速后减速,动能先增大后减小,C 错误。
动 能 和 动 能 定 理例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。
例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A. gh v 20+B. gh v 20-C.gh v 220+ D.gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。
已知工件与传送带间的动摩擦因数23=μ,g 取10m/s 2。
(1) 试通过计算分析工件在传送带上做怎样的运动?(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?.2-7-32-7-42-7-2例8如图4所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
求物体在轨道AB段所受的阻力对物体做的功。
例9电动机通过一条绳子吊起质量为8kg的物体。
绳的拉力不能超过120N,电动机的功率不能超过1 200W,要将此物体由静止起,用最快的方式将物体吊高90m(已知物体在被吊高90m以前已开始以最大速度匀速上升),所需时间为多少?(g取10 m/s2)例10一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.2-7-6例11 从离地面H高处落下一只小球,小球在运动过程中所受的空气阻力是它重力的k(k<1)倍,而小球与地面相碰后,能以相同大小的速率反弹,求:(1)小球第一次与地面碰撞后,能够反弹起的最大高度是多少?(2)小球从释放开始,直至停止弹跳为止,所通过的总路程是多少?例12某同学从高为h处水平地投出一个质量为m的铅球,测得成绩为s,求该同学投球时所做的功.例13如图所示,一根长为l 的细线,一端固定于O 点,另一端拴一质量为m 的小球,当小球处于最低平衡位置时,给小球一定得初速度0v ,要小球能在竖直平面内作圆周运动并通过最高点P ,0v 至少应多大?例14 新疆达坂城风口的风速约为v=20m/s ,设该地空气的密度为ρ=1.4kg/m 3,若把通过横截面积S=20m 2的风能的50%转化为电能,利用上述已知量推导计算电功率的公式,并求出发电机电功率的大小。
例15 质量为M 、长度为d 的木块,放在光滑的水平面上,在木块右边有一个销钉把木块挡住,使木块不能向右滑动。
质量为m 的子弹以水平速度V 0射入木块,刚好能将木块射穿。
现在拔去销钉,使木块能在水平面上自由滑动,而子弹仍以水平速度V 0射入静止的木块。
设子弹在木块中受阻力恒定。
求:(1)子弹射入木块的深度(2)从子弹开始进入木块到与木块相对静止的过程中,木块的位移是多大?例16如图2-7-19所示的装置中,轻绳将A 、B 相连,B 置于光滑水平面上,拉力F 使B 以1m /s 匀速的由P 运动到Q,P 、Q 处绳与竖直方向的夹角分别为α1=37°,α2=60°.滑轮离光滑水平面高度h=2m ,已知m A =10kg ,m B =20kg ,不计滑轮质量和摩擦,求在此过程中拉力F 做的功(取sin37°=0.6,g 取10m /s 2)2-7-7参考答案:1、解答:取飞机为研究对象,对起飞过程研究。
飞机受到重力G 、支持力N 、牵引力F 和阻力f 作用,如图2-7-1所示2-7-1各力做的功分别为W G =0,W N =0,W F =Fs ,W f =-kmgs .起飞过程的初动能为0,末动能为221mv据动能定理得:代入数据得: 2、石头在空中只受重力作用;在泥潭中受重力和泥的阻力。
对石头在整个运动阶段应用动能定理,有00)(-=-+h F h H mg 。
所以,泥对石头的平均阻力10205.005.02⨯⨯+=⋅+=mg h h H F N=820N 。
3、解答 由于碰撞前后速度大小相等方向相反,所以Δv=v t -(-v 0)=12m/s,根据动能定理答案:BC4、解答 小球下落为曲线运动,在小球下落的整个过程中,对小球应用动能定理,有2022121mv mv mgh -=, 解得小球着地时速度的大小为 =v gh v 220+。
正确选项为C 。
5、解答 将小球从位置P 很缓慢地拉到位置Q 的过程中,球在任一位置均可看作处于平衡状态。
由平衡条件可得F=mg tan θ,可见,随着θ角的增大,F 也在增大。
而变力的功是不能用W= Fl cos θ求解的,应从功和能关系的角度来求解。
小球受重力、水平拉力和绳子拉力的作用,其中绳子拉力对小球不做功,水平拉力对小球做功设为W ,小球克服重力做功mgl (1-cos θ)。
小球很缓慢移动时可认为动能始终为0,由动能定理可得 W -mgl (1-cos θ)=0,W = mgl (1-cos θ)。
正确选项为B 。
6、32FR N G f F 0212-=-mv kmgs Fs Nsv m kmg F 42108.12⨯=+=02121ΔE 202K =-==mv mv W t7、解答 (1) 工件刚放上皮带时受滑动摩擦力θμcos mg F =,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin可得 )30sin 30cos 23(10)sin cos (sin 00-⨯=-=-=θθμθg g m F a m/s 2=2.5m/s 2。
设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得 5.2222220⨯==a v x m=0.8m <4m 。
故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。
(2) 在工件从传送带底端运动至h =2m 高处的过程中,设摩擦力对工件做功W f ,由动能定理 2021mv mgh W f =-, 可得 210102120⨯⨯=+=mv mgh W f J 221021⨯⨯+J=220J 。
8、解答:物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求。
根据动能定理可知:W 外=0,所以mgR-umgS-W AB =0即W AB =mgR-umgS=1×10×0.8-1×10×3/15=6(J)9、解答 起吊最快的方式是:开始时以最大拉力起吊,达到最大功率后维持最大功率起吊。
在匀加速运动过程中,加速度为8108120⨯-=-=m m g F a m m/s 2=5 m/s 2, 末速度 1202001==m m t F P v m/s=10m/s , 上升时间 5101==a v t t s=2s , 上升高度 52102221⨯==a v h t m=10m 。
在功率恒定的过程中,最后匀速运动的速度为1082001⨯==mg P v m m m/s=15m/s , 由动能定理有 22122121)(t m m mv mv h h mg t P -=--, 解得上升时间2001)1015(821)1090(108)(21)(222212-⨯⨯+-⨯⨯=-+-=m t m P v v m h h m g t s=5.75s 。
所以,要将此物体由静止起,用最快的方式将物体吊高90m ,所需时间为t=t 1+t 2=2s+5.75s=7.75s 。
10、解答 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则对物体在全过程中应用动能定理:ΣW=ΔEk .mglsin α-μmglcos α-μmgS 2=0得 h -μS 1-μS 2=0. 式中S1为斜面底端与物体初位置间的水平距离.故11、解答:(1) 设小球第一次与地面碰撞后,能够反弹起的最大高度是h ,则由动能定理得:mg(H-h)-kmg(H+h)=0 解得 H kkh +-=11 (2)、设球从释放开始,直至停止弹跳为止,所通过的总路程是S ,对全过程由动能定理得mgH-kmgS=0解得 kH S =12、解答 同学对铅球做的功等于铅球离手时获得的动能,即0212-=mv W铅球在空中运动的时间为g h t 2=铅球时离手时的速度t s v =1314、解答 首先建立风的“柱体模型”,如图2-7-7所示,设经过时间t 通过截面S 的αμcos 1mgl W f -=mghmgl W G ==αsin空气的质量为m ,则有m =ρV=ρSl=ρSvt 。
这部分空气的动能为 t Sv v Svt mv E 322212121ρρ=⋅⋅==∆。
因为风的动能只有50%转化为电能,所以其电功率的表达式为3341%5021%50Sv t tSv t E P ρρ=⨯=⨯∆=。